JPH0364913A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0364913A
JPH0364913A JP1202172A JP20217289A JPH0364913A JP H0364913 A JPH0364913 A JP H0364913A JP 1202172 A JP1202172 A JP 1202172A JP 20217289 A JP20217289 A JP 20217289A JP H0364913 A JPH0364913 A JP H0364913A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
ion implantation
substrate
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202172A
Other languages
Japanese (ja)
Inventor
Katsuro Yashima
八島 勝郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1202172A priority Critical patent/JPH0364913A/en
Publication of JPH0364913A publication Critical patent/JPH0364913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent deterioration of the efficiency of the title semiconductor device due to charge up when a high dosage is ion-implanted by a method wherein the amount of the electricity discharged into a substrate is reduced by the electric charges generated on the surface of ion irradiation when ions are implanted through the intermediary of the region which inflicts effect on the element efficiency in an element forming region. CONSTITUTION:A dummy region, where a field insulating film 2 is removed, is provided on a semiconductor substrate 1 in the vicinity of an element forming region 3 where impurities will be introduced, the above-mentioned dummy region 9 and the element forming region 3 are exposed together to one aperture 7 which will be used for the ion implantation of a resist mask 6, and the electric charges generated on the ion irradiation surface is preferentially discharged into the substrate from the dummy region 9 which has no field insulating film 2 and will be brought into a conductive state when ions are implanted. As a result, deterioration of efficiency of the title device, caused by the charge-up generated when high dosage ions are implanted, can be prevented.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特にレジストをマスクにして不
純物のイオン注入を行う方法の改良に関し、 デバイス性能に影響を及ぼす領域を通過する放電量を減
少させて、イオン注入の際のチャージアップによるデバ
イス性能の劣化を防止することを目的とし、 レジスト膜をマスクにして半導体基板内に選択的に不純
物のイオン注入を行うに際して、該半導体基板上に、フ
ィールド絶縁膜が開口された不純物を導入しようとする
領域及びダミー領域を形成し、該基板上に該不純物を導
入しようとする領域及びダミー領域を共に表出する一体
の開孔を有するレジスト膜を形成し、該レジスト膜をマ
スクにしイオン注入を行って、該イオン注入中にイオン
照射面に発生する電荷を、該ダミー領域を介し該半導体
基板内に流失せしめる工程、または、半導体基板上に、
該半導体基板上のフィールド絶縁膜が開口されてなるス
クライブラインを表出する第1の開孔と、不純物を導入
しようとする領域を表出し且つ該第1の開孔まで延在す
る第2の開孔とを有するレジスト膜を形成し、該レジス
ト膜をマスクにし該半導体基板内に不純物のイオン注入
を行って、該イオン注入中にイオン照射面に発生する電
荷を、該スクライブラインを介し該半導体基板内に流失
せしめる工程、または、半導体基板上に不純物の導入を
避ける領域を選択的に覆うレジストパターンを形成し、
該レジストパターンをマスクにしイオン注入を行って、
該イオン注入中にイオン照射面に発生する電荷を、表出
する該半導体基板上のフィールド絶縁膜の開口部を介し
半導体基板内に流出せしめる工程の、少なくとも一つを
有して構成される。
[Detailed Description of the Invention] [Summary] This invention relates to an improvement in a method for manufacturing a semiconductor device, particularly a method for implanting impurity ions using a resist as a mask, by reducing the amount of discharge passing through a region that affects device performance. In order to prevent deterioration of device performance due to charge-up during ion implantation, when selectively implanting impurity ions into a semiconductor substrate using a resist film as a mask, a field insulator is placed on the semiconductor substrate. forming an opening in the film to form a region into which an impurity is to be introduced and a dummy region, and forming a resist film having an integrated opening exposing both the region into which the impurity is to be introduced and the dummy region on the substrate; , a step of performing ion implantation using the resist film as a mask and causing charges generated on the ion irradiated surface during the ion implantation to flow into the semiconductor substrate through the dummy region;
A first aperture that exposes a scribe line formed by opening the field insulating film on the semiconductor substrate, and a second aperture that exposes a region into which impurities are to be introduced and extends to the first aperture. A resist film having openings is formed, and impurity ions are implanted into the semiconductor substrate using the resist film as a mask. Charges generated on the ion irradiation surface during the ion implantation are transferred through the scribe line. A step of draining into the semiconductor substrate, or forming a resist pattern that selectively covers areas on the semiconductor substrate where impurity introduction is avoided,
Ion implantation is performed using the resist pattern as a mask,
The method includes at least one step of causing charges generated on the ion irradiation surface during the ion implantation to flow into the semiconductor substrate through an exposed opening in a field insulating film on the semiconductor substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特にレジストをマスク
にして不純物のイオン注入を行う方法の改良に関する。
The present invention relates to a method of manufacturing a semiconductor device, and particularly to an improvement in a method of implanting impurity ions using a resist as a mask.

例えばMO3IGの製造工程においては、高集積化に伴
う素子の微細化のために、不純物の高ドーズ量イオン注
入に際してのイオン照射面のチャージアップによるゲー
ト絶縁膜破壊の問題が生じている。
For example, in the manufacturing process of MO3IG, the problem of gate insulating film breakdown due to charge-up on the ion irradiation surface during high-dose ion implantation of impurities has arisen due to the miniaturization of elements accompanying higher integration.

これを防止するためにイオン注入装置側においては、被
処理基板の表面に電子を照射して負に帯電せしめておき
、これによって注入されるイオンの電荷を中和する等の
方法が講じられているが、未だ不充分であり、デバイス
側でも構造、プロセスの改良により耐チャージアップ性
を向上させる必要がある。
To prevent this, ion implanters take measures such as irradiating the surface of the substrate to be processed with electrons to make it negatively charged, thereby neutralizing the charge of the implanted ions. However, it is still insufficient, and it is necessary to improve the charge-up resistance on the device side by improving the structure and process.

〔従来の技術〕[Conventional technology]

従来のイオン注入技術においては、第5図にレジストマ
スクの模式平面図を示すように、不純物のイオン注入を
行おうとする被処理基板上即ちこの基板上に配列される
チップ領域51上に、マスクとなるレジスト膜52を形
成し、このレジスト膜52にイオン注入を行う領域のみ
を選択的に表出する開孔53を形成し、この開孔53を
介して上記被処理基板のチップ領域51内に、選択的に
不純物のイオン注入がなされていた。
In conventional ion implantation technology, as shown in a schematic plan view of a resist mask in FIG. A resist film 52 is formed, and an opening 53 is formed in this resist film 52 to selectively expose only the region where ions are to be implanted. In this process, selective impurity ion implantation was performed.

即ち例えばMOSFETのソース/ドレイン領域を形成
するための不純物のイオン注入を行うに際しては、例え
ば第6図に平面図(a)、A−A矢視断面図(b)、B
−B矢視断面図(C)を模式的に示すように、p型シリ
コン(St)基板1面のフィールド酸化膜2により画定
された素子形成領域3上にゲート酸化膜4を形成し、そ
の上に例えば素子形tc9M域3を横切るゲート電極5
を形成した後、この基板上にマスクとなるレジスト膜6
を形成し、このレジスト膜6に前記素子形成領域3を位
置合わせ誤差を見込んでやや広く表出するイオン注入用
の開孔7を形成し、この開孔7を介し、ゲート電極5を
マスクにし、ゲート酸化膜4を貫いてn型不純物例えば
砒素(As”)を高濃度にイオン注入する方法が用いら
れた。(108はAs”注入領域)〔発明が解決しよう
とする課題〕 しかし上記従来方法においては、チャージ(電荷)の流
れを模式的に示す第7図のように、例えばポリSi等か
らなるゲート電極5に直に打ち込まれたイオンによる正
電荷(+)の逃げ道は、矢印PIに示すように、絶縁耐
圧の低いゲート酸化膜4を介してのみとなるため、高ド
ーズ量のイオン注入(1,1)によりチャージアップ量
が増大した際には、この放電に際してゲート酸化膜4が
破壊されることがある。
That is, when performing impurity ion implantation to form the source/drain region of a MOSFET, for example, FIGS.
As schematically shown in the cross-sectional view (C) taken along the -B arrow, a gate oxide film 4 is formed on an element formation region 3 defined by a field oxide film 2 on one surface of a p-type silicon (St) substrate. For example, a gate electrode 5 crossing the element shape tc9M region 3 is formed on the top.
After forming, a resist film 6 serving as a mask is formed on this substrate.
A hole 7 for ion implantation is formed in the resist film 6 to expose the element formation region 3 slightly wider, taking into account the alignment error, and the gate electrode 5 is inserted through the hole 7 as a mask. , a method was used in which n-type impurities such as arsenic (As") were ion-implanted at a high concentration through the gate oxide film 4. (108 is an As" implantation region) [Problem to be solved by the invention] However, the above-mentioned conventional method In this method, as shown in FIG. 7, which schematically shows the flow of charges, the escape route for positive charges (+) caused by ions directly implanted into the gate electrode 5 made of, for example, poly-Si, is indicated by the arrow PI. As shown in FIG. 2, the discharge occurs only through the gate oxide film 4 having a low dielectric breakdown voltage, so when the amount of charge-up increases due to high-dose ion implantation (1, 1), the gate oxide film 4 is discharged during this discharge. may be destroyed.

また従来の方法においては前述のように、イオン注入を
行う部分以外は総てレジスト膜6(第5図52参照)で
覆われるので、同じく第7図に示すようにイオン照射さ
れてチャージアップしたレジスト膜6(第5図52参照
)の表面からの正電荷(+)のゲート電極5への放電(
矢印pg)を考えた場合、1チツプ当たりの開孔7の数
が少ないときには、レジスト膜6表面の電荷(+)の、
レジスト膜6に形成されたイオン注入用の開孔7内に表
出するゲート電極5を介して基板lに向かう放電に対す
る電荷の供給量が多くなり、この点でもゲート酸化膜4
の絶縁破壊を生じ易いという問題があった。(lは半導
体基板、2はフィールド酸化膜) そして更に、図示しないがレジスト膜下部の例えばゲー
ト電極にもレジスト膜表面の電荷によって電位が誘起さ
れ、これにゲート酸化膜を通して基板から流れ込む電子
によってゲート酸化膜が劣化するという問題もあった。
In addition, in the conventional method, as mentioned above, all areas other than the area where ions are implanted are covered with the resist film 6 (see Fig. 5, 52), so that ions are irradiated and charged up as shown in Fig. 7. Discharge of positive charges (+) from the surface of the resist film 6 (see FIG. 52) to the gate electrode 5 (
Considering the arrow pg), when the number of openings 7 per chip is small, the charge (+) on the surface of the resist film 6 is
The amount of charge supplied to the discharge directed toward the substrate l via the gate electrode 5 exposed in the opening 7 for ion implantation formed in the resist film 6 increases, and in this respect as well, the gate oxide film 4
There was a problem that dielectric breakdown easily occurred. (l is the semiconductor substrate, 2 is the field oxide film) Furthermore, although not shown, a potential is induced in the gate electrode under the resist film by the charge on the surface of the resist film, and electrons flowing from the substrate through the gate oxide film cause the gate electrode to There was also the problem that the oxide film deteriorated.

そこで本発明は、デバイス性能に影響を及ぼす領域を通
過する放電量を減少させて、イオン注入の際のチャージ
アップによるデバイス性能の劣化を防止することを目的
とする。
Therefore, an object of the present invention is to reduce the amount of discharge passing through a region that affects device performance, thereby preventing deterioration of device performance due to charge-up during ion implantation.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、レジスト膜をマスクにして半導体基板内に
選択的に不純物のイオン注入を行うに際して、該半導体
基板上に、フィールド絶縁膜が開口された不純物を導入
しようとする領域及びダ藁−領域を形成し、該基板上に
該不純物を導入しようとする領域及びダミー領域を共に
表出する一体の開孔を有するレジスト膜を形成し、該レ
ジスト膜をマスクにしイオン注入を行って、該イオン注
入中にイオン照射面に発生する電荷を、該ダご一領域を
介し該半導体基板内に流失せしめる工程、及び、半導体
基板上に、該半導体基板上のフィールド絶縁膜が開口さ
れてなるスクライブラインを表出する第1の開孔と、不
純物を導入しようとする領域を表出し且つ該第1の開孔
まで延在する第2の開孔とを有するレジスト膜を形成し
、該レジスト膜をマスクにして該半導体基板内に不純物
のイオン注入を行って、該イオン注入中にイオン照射面
に発生する電荷を、該スクライブラインを介し該半導体
基板内に流失せしめる工程、及び、レジスト膜をマスク
にして半導体基板内に選択的に不純物のイオン注入を行
うに際して、該半導体基板上に不純物の導入を避ける領
域を選択的に覆うレジストパターンを形成し、該レジス
トパターンをマスクにしてイオン注入を行って、該イオ
ン注入中にイオン照射面に発生する電荷を、表出する該
半導体基板上のフィールド絶縁膜の開口部を介し半導体
基板内に流出せしめる工程、の何れかを寺===Mを有
する本発明による半導体装置の製造方法によって解決さ
れる。
The above problem occurs when selectively implanting impurity ions into a semiconductor substrate using a resist film as a mask. A resist film is formed on the substrate and has an integral opening that exposes both the region into which the impurity is to be introduced and the dummy region, and ions are implanted using the resist film as a mask. A step of causing charges generated on the ion irradiation surface during implantation to flow into the semiconductor substrate through the ladder region, and a scribe line formed by opening a field insulating film on the semiconductor substrate on the semiconductor substrate. forming a resist film having a first opening that exposes the impurity, and a second opening that exposes the region into which impurities are to be introduced and extends to the first opening; A step of implanting impurity ions into the semiconductor substrate using a mask and causing charges generated on the ion irradiated surface during the ion implantation to flow into the semiconductor substrate through the scribe line, and masking the resist film. When selectively implanting impurity ions into a semiconductor substrate, a resist pattern is formed on the semiconductor substrate to selectively cover areas where impurity introduction is avoided, and ions are implanted using the resist pattern as a mask. The step of causing the charges generated on the ion irradiated surface during the ion implantation to flow into the semiconductor substrate through the opening of the exposed field insulating film on the semiconductor substrate is performed. The problem is solved by a method of manufacturing a semiconductor device according to the present invention.

〔作 用〕[For production]

即ち第1の発明においては、半導体基板上に不純物が導
入される素子形成領域とは別にその近傍にフィールド絶
縁膜の除去されたダミー領域(ダミーフィールド)を設
け、レジストマスクのイオン注入用の一つの開孔内に上
記ダミ一領域と素子形成領域とを一緒に表出させ、上記
フィールド絶縁膜がなくイオン注入の際に導体化するダ
ミー領域から、イオン照射面に発生する電荷を優先的に
基板内へ放電させる。また第2の発明においては、イオ
ン注入用レジストマスクとして、スクライブラインを表
出する第1の開孔を有し、且つ不純物を導入しようとす
る領域上のイオン注入用の第2の開孔を延長して前記第
1の開孔に接続させたマスクを用い、第2の開孔の延長
部に表出されイオン照射によって導体化するフィールド
絶縁膜の表面を放電パスとし、イオン注入に際しイオン
注入領域及びレジスト上を含むその近傍領域に発生した
電荷を上記放電パスを介して基板内に放電させる。また
第3の発明においては、レジストマスクが覆う領域をイ
オン注入を避けたい最小の領域とすることによって、レ
ジスト表面に発生する電荷の総量を減少させて、レジス
ト表面から基板内に向かう放電電:ffL量を減少させ
る。
That is, in the first invention, a dummy region (dummy field) from which a field insulating film is removed is provided in the vicinity of an element formation region into which impurities are introduced on a semiconductor substrate, and a part of the resist mask for ion implantation is provided. The dummy region and the element formation region are exposed together in one opening, and the charges generated on the ion irradiation surface are preferentially transferred from the dummy region, which does not have the field insulating film and becomes conductive during ion implantation. Discharge into the board. Further, in the second invention, the resist mask for ion implantation has a first opening exposing the scribe line, and a second opening for ion implantation over a region where impurities are to be introduced. Using a mask extended and connected to the first aperture, the surface of the field insulating film exposed at the extension of the second aperture and made conductive by ion irradiation is used as a discharge path, and ions are implanted during ion implantation. Charges generated in the region and its neighboring region including on the resist are discharged into the substrate via the discharge path. Further, in the third invention, by making the area covered by the resist mask the smallest area in which ion implantation is desired to be avoided, the total amount of charges generated on the resist surface is reduced, and the discharge current flowing from the resist surface into the substrate: Decrease the amount of ffL.

以上により、イオン注入に際してイオン照射面に発生し
た電荷が素子形成領域内の素子性能に影響を及ぼす領域
を介して基板に放電される量を減少させ、これによって
高ドーズ量イオン注入の際のチャージアップによるデバ
イス性能の劣化を防止する。
As a result, the amount of charge generated on the ion irradiation surface during ion implantation is discharged to the substrate through the region in the device formation region that affects device performance, and this reduces the amount of charge generated during high-dose ion implantation. Prevent deterioration of device performance due to upgrades.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説゛明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図は本発明の方法の第1の実施例の模式図で、(a
)は平面図、(ロ)はA−A矢視断面図、(C)はB−
B矢視断面図、(d)はC−C矢視断面図、第2図は第
1の実施例に係る半導体装置の模式側断面図、第3図は
第2の実施例の模式図で、(a)は平面図、(ハ)はA
−A矢視断面図、第4図は第3の実施例の模式図で、(
a)は平面図、(ハ)はA−A矢視断面図、(C)はB
−B矢視断面図、(d)はC−C矢視断面図である。全
図を通じ同一対象物は同一符合で示す。
FIG. 1 is a schematic diagram of a first embodiment of the method of the present invention, (a
) is a plan view, (b) is a sectional view taken along A-A, (C) is B-
FIG. 2 is a schematic side sectional view of the semiconductor device according to the first embodiment, and FIG. 3 is a schematic diagram of the second embodiment. , (a) is a plan view, (c) is A
4 is a schematic diagram of the third embodiment;
a) is a plan view, (c) is a sectional view taken along the line A-A, and (C) is B
-B is a sectional view taken along the arrow, and (d) is a sectional view taken along the line C-C. Identical objects are indicated by the same reference numerals throughout the figures.

本発明の方法により例えばnチャネルMO3FETを形
成するに際しては、p型St基板1上に例えば通常の選
択酸化手段により、素子形成領域3及びそれをゲート電
極5が配設される領域を残して取り囲むダミー領域(ダ
ミーフィールド)9を画定表出するフィールド酸化膜2
を形成し、素子形成領域3上においてゲート酸化膜4を
下部に有し素子形成領域3上からフィールド酸化膜2上
に延在するゲート電極(ポリSi等からなる)5を形成
し、素子形成領域3及びダミー領域9のsi表出面と、
ゲート電極5の表面にイオン注入不純物を透過するスル
ー酸化膜10を形成した後、この基板1上に前記素子形
$7.95域3とダミー領域9を一緒に表出するイオン
注入用諮問孔7を有するレジスト膜6を形成して、この
レジスト膜6をマスクにしてAs”イオンを全面に照射
し、ゲート電極5に覆われない素子形成領域3内に選択
的に、ソース/ドレイン(S/D) TJ域を形成する
As”を例えば1016〜10′?程度の高ドーズ量で
イオン注入する。なおこの際、ダミー領域9にも同様に
As”が注入される。なお108A、 108B、 1
08cはAs”注入領域を示している。
When forming, for example, an n-channel MO3FET by the method of the present invention, the element formation region 3 and the region surrounding it are surrounded by, for example, ordinary selective oxidation means on the p-type St substrate 1, leaving a region where the gate electrode 5 is disposed. Field oxide film 2 defining and exposing a dummy region (dummy field) 9
A gate electrode (made of poly-Si or the like) 5 having a gate oxide film 4 underneath and extending from above the element formation region 3 to the field oxide film 2 is formed on the element formation region 3, and the element formation Si exposed surfaces of region 3 and dummy region 9;
After forming a through oxide film 10 through which ion-implanted impurities can pass through on the surface of the gate electrode 5, an ion-implantation advisory hole is formed on the substrate 1 to expose the element type region 3 and the dummy region 9 together. 7 is formed, and using this resist film 6 as a mask, the entire surface is irradiated with As'' ions to selectively form source/drain (S) ions in the element formation region 3 that is not covered with the gate electrode 5. /D) As'' forming the TJ region is, for example, 1016 to 10'? Ion implantation is performed at a relatively high dose. At this time, As'' is similarly implanted into the dummy region 9. Note that 108A, 108B, 1
08c indicates the As'' implanted region.

イオン注入が行われている時点では絶縁膜即ちフィール
ド酸化膜2のイオンが注入される表層部は、正、負電荷
のベアーの発生により導電状態になっており、且つイオ
ンが透過する薄い絶縁膜即ちスルー酸化膜10ば底面ま
でが完全に導体化される。そこでイオン注入によってゲ
ート電極5の表内に放電されると同時に、フィールド酸
化膜2の表面及びスルー酸化膜10を介してダs、 +
+ I?、M域9から基板1内へ放電される。従って絶
縁抵抗を有するゲート酸化膜4を通しての放電は殆ど皆
無になるのでゲート酸化膜4の絶縁破壊は防止される。
At the time when ion implantation is being performed, the surface layer of the insulating film, that is, the surface layer of the field oxide film 2 into which ions are implanted, is in a conductive state due to the generation of positive and negative charge bears, and is a thin insulating film through which ions can pass. That is, the through oxide film 10 is completely made conductive up to the bottom surface. Therefore, the ions are discharged into the surface of the gate electrode 5 by ion implantation, and at the same time, the ions are discharged through the surface of the field oxide film 2 and the through oxide film 10.
+ I? , are discharged from the M region 9 into the substrate 1. Therefore, since almost no discharge occurs through the gate oxide film 4 having insulation resistance, dielectric breakdown of the gate oxide film 4 is prevented.

またイオン注入中にイオンに照射されるレジスト膜6の
表面に発生した多量の正電荷(+)は、化膜10を介し
てゲート部を囲んでいるダミー領域9から基板1内に放
電されるので、この電荷がゲート酸化膜4を通過するこ
とは殆どなくなり、ゲート酸化膜4の絶縁破壊は防止さ
れる。
Also, a large amount of positive charge (+) generated on the surface of the resist film 6 that is irradiated with ions during ion implantation is discharged into the substrate 1 from the dummy region 9 surrounding the gate portion via the chemical film 10. Therefore, this charge hardly passes through the gate oxide film 4, and dielectric breakdown of the gate oxide film 4 is prevented.

第2図は上記イオン注入の後、通常の方法に従って形成
された半導体装置の側断面図を模式的に示したもので、
図中、8Aはn“型ソース領域、8Bはn9型ドレイン
領域、11は不純物ブロック用酸化膜、12は眉間絶縁
膜、13はコンタクト窓、14はソース配線、15はド
レイン配線、その他の符号は第1図と同一対象物を示す
FIG. 2 schematically shows a side sectional view of a semiconductor device formed according to a conventional method after the above ion implantation.
In the figure, 8A is an n" type source region, 8B is an n9 type drain region, 11 is an oxide film for impurity blocking, 12 is an insulating film between the eyebrows, 13 is a contact window, 14 is a source wiring, 15 is a drain wiring, and other symbols indicates the same object as in FIG.

第3図は本発明の方法の第2の実施例を模式的に示す平
面図(a)及びA−A矢視断面図(b)である。
FIG. 3 is a plan view (a) and a sectional view taken along the line A-A (b) schematically showing a second embodiment of the method of the present invention.

この方法においては、St基板1上にイオン注入用マス
クとして形成されるレジスト膜6に、チップ領域16を
画定するスクライブライン17全域を表出する第1の開
孔107と、チップ領域16内の素子形成領域3を表出
し且つスクライブライン17上まで延在して前記第1の
開孔107に接続するイオン注入用の第2の開孔207
を形成し、不純物イオンの全面照射により上記レジスト
膜6の第1の開孔207を介しスルー酸化膜10を通し
て素子形成領域3内へ不純物のイオン注入がなされる。
In this method, a resist film 6 formed as an ion implantation mask on the St substrate 1 has a first opening 107 that exposes the entire scribe line 17 that defines the chip region 16, and a first opening 107 that exposes the entire scribe line 17 that defines the chip region 16. A second opening 207 for ion implantation that exposes the element formation region 3 and extends above the scribe line 17 to connect to the first opening 107.
By irradiating the entire surface with impurity ions, impurity ions are implanted into the element formation region 3 through the through oxide film 10 through the first opening 207 of the resist film 6.

このようにすると、イオン照射中、素子形成領域3を囲
むレジスト膜6の表面に発生した電荷(+)は図示のよ
うに、第2の開孔207内に表出しイオン照射により導
体化しているフィールド酸化膜2の表面を伝ってスクラ
イブライン17上の第1の開孔107に達し、イオン照
射により底部まで導体化されているスルー酸化膜10を
通してSt基板1内に放電されるので、素子形成領域3
内に形成されているゲート酸化膜4等に絶縁破壊を生せ
しめることがなくなる。
In this way, during ion irradiation, the charge (+) generated on the surface of the resist film 6 surrounding the element formation region 3 is exposed in the second opening 207 and becomes a conductor by the ion irradiation, as shown in the figure. The discharge reaches the first opening 107 on the scribe line 17 along the surface of the field oxide film 2, and is discharged into the St substrate 1 through the through oxide film 10, which has been made conductive to the bottom by ion irradiation, so that the device is formed. Area 3
This prevents dielectric breakdown from occurring in the gate oxide film 4 and the like formed therein.

第4図はCMO3ICを形成する際における本発明の方
法の第3の実施例を模式的に示す平面図(a)、A−A
矢視断面図(b)、B−B矢視断面図(C)、C−C矢
視断面図(d)である。
FIG. 4 is a plan view (a) schematically showing a third embodiment of the method of the present invention when forming a CMO3IC, A-A
They are a cross-sectional view taken along arrows (b), a cross-sectional view taken along line B-B (c), and a cross-sectional view taken along line CC (d).

この例においては、例えばnチャネルMO3FETの形
tc %M域3 NchとpチャネルMO3FETO形
成領域3 PchO間のゲート電極5の両側にフィール
ド酸化膜2が開孔するダミー領域9A及び9Bが形成さ
れる。
In this example, dummy regions 9A and 9B in which the field oxide film 2 is opened are formed on both sides of the gate electrode 5 between the n-channel MO3FET type tc%M region 3 Nch and the p-channel MO3FETO formation region 3 PchO. .

そして例えばnチャネルMO3FETの形成領域3 M
e)iにソース/ドレイン形成用のn型不純物をイオン
注入する際には、不純物の導入を避けなければならない
pチャネルMO3FETの形成領域3Pchの上部のみ
にマスクとなるレジストパターン6Pが形成されてイオ
ン注入がなされる。會このようにすると、ゲート電極5
上にイオン照射により発生する電荷(+)は図示のよう
に導体化するフィールド酸化膜2の表面を伝ってダミー
領域9A、9Bから基板l内に放電される。
For example, an n-channel MO3FET formation region 3M
e) When ion-implanting n-type impurities for source/drain formation into i, a resist pattern 6P serving as a mask is formed only on the upper part of the p-channel MO3FET formation region 3Pch, where introduction of impurities must be avoided. Ion implantation is performed. By doing this, the gate electrode 5
Charges (+) generated by ion irradiation are discharged into the substrate l from the dummy regions 9A and 9B through the surface of the field oxide film 2 which becomes conductive as shown in the figure.

また、レジストマスク(レジストパターン6P)の表面
積は著しく小さくなってその表面にイオン照射により発
生する総電荷量が大幅に減少するので、ダミー領域9A
、 9Bによる放電が急速になされるようになり、nチ
ャネルMO3FETの形成領域S Nch内に形成され
る図示されないゲート酸化膜等の絶縁破壊の防止はより
完全になる。
In addition, the surface area of the resist mask (resist pattern 6P) becomes significantly smaller and the total amount of charge generated by ion irradiation on the surface is significantly reduced, so the dummy area 9A
, 9B is rapidly generated, and dielectric breakdown of the gate oxide film (not shown) formed in the n-channel MO3FET formation region S Nch is more completely prevented.

なおpチャネルMO3FETの形成領域3 Pchにソ
ース/ドレイン形成用のp型不純物をイオン注入する際
には、nチャネルMO3FETO形成S’JA域3N−
h上のみを覆うレジストパターンが形成される。
Note that when ion-implanting p-type impurities for source/drain formation into p-channel MO3FET formation region 3Pch, n-channel MO3FET formation S'JA region 3N-
A resist pattern covering only the area h is formed.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、イオン注入に際して
イオン照射面に発生した電荷が、素子形成領域内の素子
性能に影響を及ぼす領域を介して基板内に放電する量を
減少させ、これによって高ドーズ量イオン注入の際のチ
ャージアップによるデバイス性能の劣化が防止される。
As explained above, according to the present invention, the amount of charge generated on the ion irradiated surface during ion implantation is discharged into the substrate through the region in the device formation region that affects device performance, and thereby Deterioration of device performance due to charge-up during high-dose ion implantation is prevented.

従って本発明は高集積化されるMO3IC等の製造歩留
りや信頼性を向上させるうえに有効である。
Therefore, the present invention is effective in improving the manufacturing yield and reliability of highly integrated MO3ICs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の第1の実施例の模式図で、(a
)は平面図、(ロ)はA−A矢視断面図、(C)はB−
B矢視断面図、(d)はC−C矢視断面図、第2図は本
発明の方法の第1の実施例に係る半導体装置の模式側断
面図、 第3図は本発明の方法の第2の実施例の模式図で、(a
)は平面図、(ハ)はA−A矢視断面図、第4図は本発
明の方法の第3の実施例の模式図で、(a)は平面図、
中)はA−A矢視断面図、(C)はB−B矢視断面図、
(イ)はC−C矢視断面図、第5図は従来のレジストマ
スクの模式平面図、第6図は従来方法の模式図で、(a
)は平面図、(b)はA−A矢視断面図、(C)はB−
B矢視断面図、第7図は従来方法におけるチャージの流
れの模式図である。 図において、 1はSi基板、     2はフィールド酸化膜、3は
素子形成領域、  4はゲート酸化膜、5はゲート電極
、    6はレジスト膜、7はイオン注入用開孔、8
Aはn゛型ソース領域、8Bはn+型トドレイン領域 
8Cは n“型領域、9はダミー領域(ダミーフィール
ド)、10はスルー酸化膜 を示す。 不発日月の方5去の冨10実施例1;イO半欅忰装置の
榎メ庸11δ杓′顔図′$ 2 口 (α)平面図 不発明の机或/l箒2/)実塘伊1の梗六口冨 3 図 (17ンA−A’Aa##[2 (C)F3−B件曳舛面図 (d)C−C夫視@め図 千□李と日月のみ三去のk111/)実禰介1n榎弐旧
(α)平面図 CF)) A−A Emm面図 CC)B−B 夕(視dダY迂わ匹う (d)C−Cる(、橿d斥dわ岳コ 7!:発朗の方法の竿3の実施中In頑六旧第 4 回 イ足猥のレジス)−Yスク/l榎六平面図第  5 図 (#)A−A矢視#面図 (c)δ、−B矢asiu イ足釆方;六/)榎六起 算6図 1!1llli” 碓来木埴j;おけろ今ヤージの流出0榎六口第 図
FIG. 1 is a schematic diagram of a first embodiment of the method of the present invention, (a
) is a plan view, (b) is a sectional view taken along A-A, (C) is B-
2 is a schematic side sectional view of a semiconductor device according to the first embodiment of the method of the present invention, and FIG. 3 is a sectional view of the semiconductor device according to the first embodiment of the method of the present invention. A schematic diagram of the second embodiment of (a
) is a plan view, (c) is a sectional view taken along the line A-A, FIG. 4 is a schematic diagram of the third embodiment of the method of the present invention, and (a) is a plan view;
(Middle) is a cross-sectional view taken along A-A, (C) is a cross-sectional view taken along B-B,
(A) is a sectional view taken along the line C-C, FIG. 5 is a schematic plan view of a conventional resist mask, and FIG. 6 is a schematic diagram of a conventional method.
) is a plan view, (b) is a sectional view taken along A-A, (C) is B-
FIG. 7, a sectional view taken along arrow B, is a schematic diagram of the flow of charge in the conventional method. In the figure, 1 is a Si substrate, 2 is a field oxide film, 3 is an element formation region, 4 is a gate oxide film, 5 is a gate electrode, 6 is a resist film, 7 is an ion implantation hole, 8
A is an n-type source region, 8B is an n+-type drain region
8C is an n'' type region, 9 is a dummy region (dummy field), and 10 is a through oxide film. 'Face diagram' $ 2 Mouth (α) Plan of the uninvented desk/l Broom 2/) Shitang Yi 1's Rokukoufu 3 Figure (17nA-A'Aa##[2 (C)F3 - B matter hikimasu drawing (d) C-C husband's view @mezu 1000 □ Lee and Kazutsu no K111/) Sane-suke 1n Enoki old (α) Plan view CF)) A-A Emm Face view CC) B-B Yu (view d da Y detour (d) C-C ru (, 歿d斥dwatakeko 7!: During the implementation of the rod 3 of the method of Hatsuro In Gunroku old) 4th Regis) - Y Suku/l Enoki Roku Plan View Figure 5 (#) A-A arrow view 6 starting calculations 6 figures 1! 1lli” Usuki Mokuchi

Claims (3)

【特許請求の範囲】[Claims] (1)レジスト膜をマスクにして半導体基板内に選択的
に不純物のイオン注入を行うに際して、該半導体基板上
に、フィールド絶縁膜が開口された不純物を導入しよう
とする領域及びダミー領域を形成し、 該基板上に該不純物を導入しようとする領域及びダミー
領域を共に表出する一体の開孔を有するレジスト膜を形
成し、 該レジスト膜をマスクにしイオン注入を行って、該イオ
ン注入中にイオン照射面に発生する電荷を、該ダミー領
域を介し該半導体基板内に流失せしめる工程を有するこ
とを特徴とする半導体装置の製造方法。
(1) When selectively implanting impurity ions into a semiconductor substrate using a resist film as a mask, a region where the field insulating film is opened and where the impurity is to be introduced and a dummy region are formed on the semiconductor substrate. , forming a resist film having an integral opening exposing both the region into which the impurity is to be introduced and the dummy region on the substrate, performing ion implantation using the resist film as a mask, and performing ion implantation during the ion implantation. 1. A method of manufacturing a semiconductor device, comprising the step of causing charges generated on an ion-irradiated surface to flow into the semiconductor substrate through the dummy region.
(2)レジスト膜をマスクにして半導体基板内に選択的
に不純物のイオン注入を行うに際して、該半導体基板上
に、該半導体基板上のフィールド絶縁膜が開口されてな
るスクライブラインを表出する第1の開孔と、不純物を
導入しようとする領域を表出し且つ該第1の開孔まで延
在する第2の開孔とを有するレジスト膜を形成し、 該レジスト膜をマスクにして該半導体基板内に不純物の
イオン注入を行って、該イオン注入中にイオン照射面に
発生する電荷を、該スクライブラインを介し該半導体基
板内に流失せしめる工程を有することを特徴とする半導
体装置の製造方法。
(2) When selectively implanting impurity ions into a semiconductor substrate using a resist film as a mask, a scribe line formed by opening a field insulating film on the semiconductor substrate is exposed on the semiconductor substrate. forming a resist film having a first opening and a second opening exposing a region into which an impurity is to be introduced and extending to the first opening; and using the resist film as a mask, forming the semiconductor. A method for manufacturing a semiconductor device, comprising the step of implanting impurity ions into a substrate and causing charges generated on an ion-irradiated surface during the ion implantation to flow into the semiconductor substrate through the scribe line. .
(3)レジスト膜をマスクにして半導体基板内に選択的
に不純物のイオン注入を行うに際して、該半導体基板上
に不純物の導入を避ける領域を選択的に覆うレジストパ
ターンを形成し、 該レジストパターンをマスクにしてイオン注入を行って
、該イオン注入中にイオン照射面に発生する電荷を、表
出する該半導体基板上のフィールド絶縁膜の開口部を介
し半導体基板内に流出せしめる工程を有することを特徴
とする半導体装置の製造方法。
(3) When selectively implanting impurity ions into a semiconductor substrate using a resist film as a mask, a resist pattern is formed on the semiconductor substrate to selectively cover regions where impurity introduction is avoided, and the resist pattern is The method includes the step of performing ion implantation using a mask and causing charges generated on the ion irradiated surface during the ion implantation to flow into the semiconductor substrate through an opening in the exposed field insulating film on the semiconductor substrate. A method for manufacturing a featured semiconductor device.
JP1202172A 1989-08-03 1989-08-03 Manufacture of semiconductor device Pending JPH0364913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202172A JPH0364913A (en) 1989-08-03 1989-08-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202172A JPH0364913A (en) 1989-08-03 1989-08-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0364913A true JPH0364913A (en) 1991-03-20

Family

ID=16453160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202172A Pending JPH0364913A (en) 1989-08-03 1989-08-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0364913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289094A (en) * 1998-04-04 1999-10-19 Toshiba Corp Semiconductor device and its manufacture
JP2002208705A (en) * 2001-01-09 2002-07-26 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289094A (en) * 1998-04-04 1999-10-19 Toshiba Corp Semiconductor device and its manufacture
JP2002208705A (en) * 2001-01-09 2002-07-26 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US5783850A (en) Undoped polysilicon gate process for NMOS ESD protection circuits
US5532178A (en) Gate process for NMOS ESD protection circuits
US6077736A (en) Method of fabricating a semiconductor device
US6306711B1 (en) Method of fabricating a high-voltage lateral double diffused metal oxide semiconductor
US5879995A (en) High-voltage transistor and manufacturing method therefor
US5482888A (en) Method of manufacturing a low resistance, high breakdown voltage, power MOSFET
TW200306667A (en) Transistor of semiconductor device, and method for forming the same
JPH0364913A (en) Manufacture of semiconductor device
JPH05304154A (en) Semiconductor device
US7344963B2 (en) Method of reducing charging damage to integrated circuits during semiconductor manufacturing
US8329548B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
JP2557206B2 (en) Method for manufacturing semiconductor device
JPS62262462A (en) Semiconductor device
US6469316B1 (en) Test structure to monitor the effects of polysilicon pre-doping
JP3526090B2 (en) Method for manufacturing semiconductor device
JPH0515069B2 (en)
US7157346B2 (en) Method of reducing charging damage to integrated circuits during semiconductor manufacturing
JPH0521368A (en) Manufacture of semiconductor device
JP2569809B2 (en) Method for manufacturing semiconductor device
JPH0371625A (en) Manufacture of semiconductor device
JPH0964193A (en) Manufacture of semiconductor device
JPH0465132A (en) Manufacture of double diffusion type mos fet
JP2002208694A (en) Semiconductor device and manufacturing method thereof
JPH04237119A (en) Manufacture of semiconductor device
JPS63114129A (en) Manufacture of semiconductor device