JPH0363229B2 - - Google Patents

Info

Publication number
JPH0363229B2
JPH0363229B2 JP56012313A JP1231381A JPH0363229B2 JP H0363229 B2 JPH0363229 B2 JP H0363229B2 JP 56012313 A JP56012313 A JP 56012313A JP 1231381 A JP1231381 A JP 1231381A JP H0363229 B2 JPH0363229 B2 JP H0363229B2
Authority
JP
Japan
Prior art keywords
type
amorphous silicon
layer
silane
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56012313A
Other languages
Japanese (ja)
Other versions
JPS57126175A (en
Inventor
Yoshihiro Hamakawa
Yoshihisa Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56012313A priority Critical patent/JPS57126175A/en
Priority to US06/253,141 priority patent/US4385199A/en
Priority to US06/266,064 priority patent/US4388482A/en
Priority to CA000391378A priority patent/CA1176740A/en
Priority to DE8181110111T priority patent/DE3176919D1/en
Priority to AT81110111T priority patent/ATE38296T1/en
Priority to EP81110111A priority patent/EP0053402B1/en
Priority to AU78224/81A priority patent/AU558650B2/en
Publication of JPS57126175A publication Critical patent/JPS57126175A/en
Priority to US06/420,711 priority patent/US4385200A/en
Priority to SG65589A priority patent/SG65589G/en
Priority to HK796/89A priority patent/HK79689A/en
Publication of JPH0363229B2 publication Critical patent/JPH0363229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルフアスシリコンカーバイト/
アモルフアスシリコンヘテロ接合光電素子の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to amorphous silicon carbide/
The present invention relates to a method for manufacturing an amorphous silicon heterojunction photoelectric device.

〔従来の技術〕[Conventional technology]

シラン(SiH4)のプラズマ分解法で得られる
アモルフアスシリコンは、W・E・Spear等によ
つて、PH3やB2H6でドープする事により、その
伝導度を大きく変える事ができることが発見され
(1976年)、D.E.Carlson等によつてアモルフアス
シリコンを用いた太陽電池が試作(1976年)され
て以来注目を集め、アモルフアスシリコン薄膜太
陽電池の効率を改善する研究が活発に行なわれて
いる。
W. E. Spear et al. reported that the conductivity of amorphous silicon obtained by plasma decomposition of silane (SiH 4 ) can be greatly changed by doping it with PH 3 or B 2 H 6 . Since its discovery (1976) and the prototype production of a solar cell using amorphous silicon by DE Carlson et al. (1976), it has attracted attention, and research has been actively conducted to improve the efficiency of amorphous silicon thin-film solar cells. ing.

これまでの研究により、アモルフアスシリコン
薄膜光電素子の構造としては、シヨツトキーバリ
ヤー型、pin型、MIS型、ヘテロ接合型があり、
そのうち前三者が高効率太陽電池として有望視さ
れている。シヨツトキーバリヤー型で5.5%(D.
E.カールソン他、1977年)、MIS型で4.8%(J.I.
B.ウイルソン他、1978年)pin型で4.5%(浜川圭
弘、1978)の変換効率が達成されている。
According to previous research, the structures of amorphous silicon thin film photoelectric devices include shot key barrier type, pin type, MIS type, and heterojunction type.
Of these, the first three are considered promising as high-efficiency solar cells. 5.5% (D.
E. Carlson et al., 1977), 4.8% for MIS type (JI
B. Wilson et al., 1978) A conversion efficiency of 4.5% (Keihiro Hamakawa, 1978) has been achieved in the pin type.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

pinジヤクシヨン型太陽電池の場合、p型又は
n型アモルフアスシリコンではキヤリヤーの寿命
が短かく、有効なキヤリヤーにならず、また光の
吸収係数がi層に比べて大きい事から、p層での
光の吸収ロスが大きい点に問題があつた。
In the case of pin-junction type solar cells, p-type or n-type amorphous silicon has a short carrier life and cannot be used as an effective carrier, and the light absorption coefficient is larger than that of the i-layer. The problem was that the absorption loss of light was large.

このような欠点を改良する為にインバーテイド
pin型の光電素子が提案されている。これは、n
型アモルフアスシリコン側から光を照射する素子
である。この素子はp型に比べると光の吸収係数
が比較的小さい為にやや有利と考えられる。しか
しこのn型アモルフアスシリコンでも光の吸収ロ
スがある点ではp型と変りない。
Inverted to improve these shortcomings
A pin-type photoelectric element has been proposed. This is n
This is an element that irradiates light from the amorphous silicon side. This element is considered to be somewhat advantageous because it has a relatively small light absorption coefficient compared to the p-type element. However, this n-type amorphous silicon is no different from the p-type in that there is light absorption loss.

更に、この光を照射するp又はn層における光
の吸収ロスを少なくする方法として、この層にア
モルフアスシリコンよりも光学的エネルギーバン
ドギヤツプEgの大なる半導体を用いるという考
え方がある。それは、以下の根拠によるものであ
る。すなわち、半導体は、そのEgよりも大きい
エネルギーを有する光のみを吸収するので、Eg
大なる半導体は、光を照射するp又はn層の材料
として有用であると考えるからである。
Furthermore, as a method of reducing light absorption loss in the p- or n-layer to which this light is irradiated, there is an idea of using a semiconductor with a larger optical energy band gap E g than amorphous silicon for this layer. This is based on the following grounds. That is, a semiconductor absorbs only light with energy greater than its E g , so E g
This is because large semiconductors are considered to be useful as materials for p- or n-layers that irradiate light.

例えば米国特許第4109271号明細書には、Eg
2.2〜3.2eVのa−SiCをp又はn層に用いるpin結
合素子が示されている。しかしながら、ここで用
いられているa−SiCは、電気伝導度が極めて低
いため、p又はn層がa−Siである場合よりも低
い変換効率の光起電力素子となつている。
For example, US Pat. No. 4,109,271 states that E g
A pin-coupled device using 2.2-3.2 eV a-SiC in the p or n layer is shown. However, since the a-SiC used here has extremely low electrical conductivity, the photovoltaic element has a lower conversion efficiency than when the p or n layer is made of a-Si.

本発明は、上記課題を解決するものであつて、
アモルフアスシリコンカーバイド薄膜を含有する
窓材を用い、pin型光電変換の効率の向上を図つ
たアモルフアスシリコンカーバイド/アモルフア
スシリコンヘテロ接合光電素子の製造方法を提供
することを目的とするものである。
The present invention solves the above problems, and includes:
The object of the present invention is to provide a method for manufacturing an amorphous silicon carbide/amorphous silicon heterojunction photoelectric device that uses a window material containing an amorphous silicon carbide thin film and improves the efficiency of pin-type photoelectric conversion. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、pin型光電変換の効率を改善する
為に鋭意研究した結果、シラン若しくはその誘導
体、又はフツ化シラン若しくはその誘導体から選
ばれる少なくとも一種以上のガスと、メタンとの
混合物をプラズマ分解して得られるアモルフアス
シリコンカーバイトには、価電子制御が可能な領
域があり、その電気伝導度を10-8(Ω・cm)-1以上
にすることが可能であること、また、電気伝導度
を10-8(Ω・cm)-1以上にしたものをpin接合光電
素子のp又はn層の少なくとも一方に用いる事に
より効率を大幅に改善できることを見い出したも
ので、太陽電池や光スイツチ等の光電素子として
用いることができる。以下にその詳細を説明をす
る。
As a result of intensive research to improve the efficiency of pin-type photoelectric conversion, the present inventor discovered that a mixture of methane and at least one gas selected from silane or its derivatives, fluorinated silane or its derivatives, and methane were subjected to plasma decomposition. The amorphous silicon carbide obtained by It was discovered that efficiency can be greatly improved by using a material with conductivity of 10 -8 (Ω cm) -1 or more in at least one of the p or n layer of a pin junction photoelectric element, and is used in solar cells and photovoltaic devices. It can be used as a photoelectric device such as a switch. The details will be explained below.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

太陽電池の基本構成は、図−1a,bに代表例
が示される。aはp側から光を照射するタイプ
で、例えばガラス−透明電極−p−i−n−Al
の構成、bはn側から光を照射するタイプで、例
えばステンレス−p−i−n−透明電極の構成で
ある。その他、p層と透明電極の間に薄い絶縁層
をつけたり、薄い金属層をつけた構造でもよい。
要はpin接合を基本とするものであればいかなる
構成でもよい。この場合、シラン若しくはその誘
導体、フツ化シラン若しくはその誘導体、又はこ
れらの混合物のグロー放電分解で得られる約10-7
秒以上のキヤリアー寿命で約1017cm-3eV-1以下の
局在準位密度および10-3cm2/V以上の易動度をも
つ真性アモルフアスシリコン(以下、i型a−si
という)をi層として、p型とn型ドープ半導体
で接合したpin接合構造にするわけであるが、本
発明では、p層又はn層の少なくとも一方で、光
を照射する側に10-8(Ω・cm)-1以上の電気伝導度
を有するアモルフアスシリコンカーバイトを用い
る事を特徴とする。電気伝導度を10-8(Ω・cm)-1
以上にすることによつて、良好な変換効率が得ら
れる。勿論、p層とn層の両方に用いてもよい。
そして、アモルフアスシリコンカーバイトを用い
ないドープ層は、上記i型a−Siをp型で用いる
場合は周期率表族の元素でドープし、n型で用
いる場合は周期率表族の元素でドープすればよ
い。
Typical examples of the basic configuration of solar cells are shown in Figures 1a and 1b. A is a type that irradiates light from the p side, for example, glass-transparent electrode-p-i-n-Al
The structure b is a type in which light is irradiated from the n side, for example, a stainless steel pin transparent electrode structure. In addition, a structure in which a thin insulating layer or a thin metal layer is provided between the p-layer and the transparent electrode may be used.
In short, any configuration based on a pin connection may be used. In this case, about 10 -7 obtained by glow discharge decomposition of silane or its derivative, fluorinated silane or its derivative, or a mixture thereof.
Intrinsic amorphous silicon (hereinafter referred to as i - type a - si
This is a pin junction structure in which the p-type and n-type doped semiconductors are connected to each other by using the i-layer as the i-layer, but in the present invention, at least one of the p-layer or the n-layer has 10 -8 on the side to which light is irradiated. (Ω・cm) It is characterized by using amorphous silicon carbide which has an electrical conductivity of -1 or more. Electrical conductivity 10 -8 (Ω・cm) -1
By doing the above, good conversion efficiency can be obtained. Of course, it may be used for both the p layer and the n layer.
The doped layer that does not use amorphous silicon carbide is doped with an element from the periodic table group when the i-type a-Si is used as a p-type, and doped with an element from the periodic table group when used as an n-type. Just dope.

アモルフアスシリコンは、シラン(SiH4)若
しくはその誘導体、フツ化シラン若しくはその誘
導体、又はこれらの混合物と、水素又は水素で希
釈したアルゴン、ヘリウム等の不活性ガスとの混
合ガスを、容量結合法又は誘導結合法による高周
波グロー分解又は直流グロー放電分解することに
より得られる。この場合の混合ガス中のシランの
濃度は、通常0.5〜50%、好ましくは1〜20%で
ある。
Amorphous silicon is manufactured using a capacitive coupling method using a mixed gas of silane (SiH 4 ) or its derivatives, fluorinated silane or its derivatives, or a mixture thereof and hydrogen or an inert gas such as argon or helium diluted with hydrogen. Alternatively, it can be obtained by high frequency glow decomposition or direct current glow discharge decomposition using an inductive coupling method. The concentration of silane in the mixed gas in this case is usually 0.5 to 50%, preferably 1 to 20%.

本発明のアモルフアスシリコンカーバイトは、
シラン若しくはその誘導体、又はフツ化シラン若
しくはその誘導体から選ばれる少なくとも一種以
上のガスと、ハイドロカーボン、フツ化ハイドロ
カーボン、アルキルシラン若しくはフツ化アルキ
ルシラン、又はその誘導体から選ばれる少なくと
も一種以上のガスとの混合物をプラズマ分解、好
ましくはグロー放電分解して得られるものであ
る。
The amorphous silicon carbide of the present invention is
At least one gas selected from silane or a derivative thereof, or a fluorinated silane or a derivative thereof, and at least one gas selected from a hydrocarbon, a fluorinated hydrocarbon, an alkylsilane, a fluorinated alkylsilane, or a derivative thereof. It is obtained by plasma decomposition, preferably glow discharge decomposition of a mixture of

この場合に用いるシリコン化合物としては、シ
ランSiH4若しくはSioH2o+2で示されるシラン誘
導体、又はSiFnH4-n(m=1〜4)で示される誘
導体及びSioFnH2n+2-nで示される誘導体で代表
されるシリコンの水素及び/又はフツ化物などが
ある。炭素化合物としては、フツ化メタンCF4
若しくはCoFnH2o+2-nで示されるフロロハイドロ
カーボン誘導体、又はその不飽和誘導体がある。
ハイドロカーボンとしては、飽和脂肪族ハイドロ
カーボン(CoH2o+2)、不飽和脂肪族ハイドロカ
ーボン(例えばエチレン、プロピレン等の一般式
CoH2o)がある。要はアモルフアスシリコンカー
バイトを得るためのシリコン源としては、Siの水
素及び/又はフツ素誘導体で蒸気圧のあるもの、
また炭素源としては、Cの水素及び/又はフツ素
誘導体で蒸気圧のあるものでありさえすればいか
なるものでもよいのである。
The silicon compounds used in this case include silane SiH 4 or a silane derivative represented by Si o H 2o+2 , or a derivative represented by SiF n H 4-n (m=1 to 4) and Si o F n H 2n Examples include hydrogen and/or fluoride of silicon, typified by derivatives represented by +2-n . Examples of carbon compounds include fluorinated methane CF 4 ,
Alternatively, there are fluorohydrocarbon derivatives represented by C o F n H 2o+2-n , or unsaturated derivatives thereof.
Hydrocarbons include saturated aliphatic hydrocarbons (C o H 2o+2 ), unsaturated aliphatic hydrocarbons (e.g. ethylene, propylene, etc.)
C o H 2o ). In short, silicon sources for obtaining amorphous silicon carbide include hydrogen and/or fluorine derivatives of Si with vapor pressure;
Furthermore, any carbon source may be used as long as it is a hydrogen and/or fluorine derivative of C and has a vapor pressure.

シリコンカーバイトの組成については、グロー
放電分解して得られる膜の組成を用い、Si原子数
とC原子数の比a−Si(1-x)C(x)で示す。例えば、
膜中のC原子とSi原子の割合が1:1の場合a−
Si(0.5)C(0.5)と示す。膜中のC原子やSi原子の組成
比は、IMA、SIMS、オージエ、エスカ等の電子
分光によつて求める事ができる。又、a−Si(1-x)
C(x)のアトミツクフラクシヨンxは、約0.05から
約0.95である事が好ましい。本発明では、このよ
うなa−Si(1-x)C(x)をドーピングしてn型又はp
型として用いる。
The composition of silicon carbide is expressed by the ratio of the number of Si atoms to the number of C atoms, a-Si (1-x) C (x) , using the composition of a film obtained by glow discharge decomposition. for example,
When the ratio of C atoms to Si atoms in the film is 1:1, a-
Indicated as Si (0.5) C (0.5) . The composition ratio of C atoms and Si atoms in the film can be determined by electron spectroscopy such as IMA, SIMS, Augier, and Esca. Also, a-Si (1-x)
Preferably, the atomic fraction x of C (x) is from about 0.05 to about 0.95. In the present invention, such a-Si (1-x) C (x) is doped to form n-type or p-type
Used as a mold.

n型の場合は、上記のようにリン等の周期率表
族の元素でドーピングする。具体的には、a−
Si(1-x)C(x)を作る際にPH3を、例えばシラン、メ
タンと共に混合してグロー放電分解して得られ
る。ドーピング濃度は、室温での電気伝導度が約
10-7(Ω・cm)-1以上、好ましくは10-6(Ω・cm)-1
以上になるようにコントロールすれば良い。通常
はa−Si(1-x)C(x)中に約0.001atom%から10atom
%、好ましくは0.005atom%から2.0atom%が用
いられる。
In the case of n-type, doping is performed with an element of the periodic table group such as phosphorus as described above. Specifically, a-
When making Si (1-x) C (x) , it is obtained by mixing PH 3 with, for example, silane and methane and decomposing it by glow discharge. The doping concentration is such that the electrical conductivity at room temperature is approximately
10 -7 (Ω・cm) -1 or more, preferably 10 -6 (Ω・cm) -1
It is better to control it so that it becomes more than that. Usually about 0.001atom% to 10atom in a-Si (1-x) C (x)
%, preferably from 0.005 atom % to 2.0 atom %.

p型の場合は、上記のようにボロン等の周期率
表族の元素でドーピングする。具体的には、a
−Si(1-x)C(x)を作る際にB2H6を、例えばシラン、
メタンと共に混合してグロー放電分解して得られ
る。ドーピング濃度は、室温での電気伝導度が約
10-8(Ω・cm)-1以上、好ましくは10-7(Ω・cm)-1
以上になるようにコントロールすればよい。通常
はa−Si(1-x)C(x)中に約0.001atom%から10atom
%、好ましくは0.005atom%から2.0atom%が用
いられる。
In the case of p-type, doping is performed with an element of the periodic table group such as boron as described above. Specifically, a
-When making Si (1-x) C (x) , B 2 H 6 is used, for example, silane,
It is obtained by mixing it with methane and decomposing it by glow discharge. The doping concentration is such that the electrical conductivity at room temperature is approximately
10 -8 (Ω・cm) -1 or more, preferably 10 -7 (Ω・cm) -1
All you have to do is control it so that it is above that. Usually about 0.001atom% to 10atom in a-Si (1-x) C (x)
%, preferably from 0.005 atom % to 2.0 atom %.

本発明のa−Si(1-x)C(x)において、H又はFが
重要な役割をしている。これは、フツ化シラン、
シランのグロー放電分解で得られるアモルフアス
シリコン中のH又はFと同様に、ダングリングボ
ンドのターミネーターとして働らく為と考えられ
る。H及び/又はFの濃度は、基板温度等の製作
条件で大きく変るが、本発明では、基板温度は
200℃〜350℃が好ましく、この場合、3atom%か
ら約20atom%が膜中に含まれる。なお、基板に
は、透明電極(ITO、SnO2等)を蒸着したガラ
スや高分子フイルム、金属等、太陽電池の構成に
必要なあらゆる基板が含まれる。
In a-Si (1-x) C (x) of the present invention, H or F plays an important role. This is fluorinated silane,
This is thought to be because it acts as a terminator for dangling bonds, similar to H or F in amorphous silicon obtained by glow discharge decomposition of silane. The concentration of H and/or F varies greatly depending on manufacturing conditions such as substrate temperature, but in the present invention, the substrate temperature is
The temperature is preferably 200°C to 350°C, in which case 3 atom% to about 20 atom% is contained in the film. Note that the substrate includes any substrate necessary for the construction of a solar cell, such as glass on which a transparent electrode (ITO, SnO 2, etc.) is vapor-deposited, polymer film, metal, etc.

上述したa−Si(1-x)C(x)とa−Siのヘテロ接合
光電素子について具体的に説明すると、次の通り
である。
The above-mentioned a-Si (1-x) C (x) and a-Si heterojunction photoelectric device will be specifically explained as follows.

本発明の光電素子の代表的な構造は、図−1に
示すような透明電極/p型a−Si(1-x)C(x)/i型
a−Si/n型a−Si/電極の構造であり、透明電
極側から光を照射する。透明電極はITOやSnO2
特にSnO2が好ましく、ガラス基板にあらかじめ
蒸着して用いたり、p型−a−Si(1-x)C(x)上に直
接蒸着してもよい。
A typical structure of the photoelectric element of the present invention is as shown in Figure 1: transparent electrode/p-type a-Si (1-x) C (x) /i-type a-Si/n-type a-Si/electrode. The structure is such that light is irradiated from the transparent electrode side. The transparent electrode is ITO or SnO 2 ,
SnO 2 is particularly preferred, and may be used by being vapor-deposited on a glass substrate in advance, or may be directly vapor-deposited onto p-type-a-Si (1-x) C (x) .

p型−a−Si(1-x)C(x)層の厚みは、約30Å〜300
Å、好ましくは50Å〜200Å、i型a−Si層の厚
みは、本発明の場合限定されないが約2500Å〜
10000Åが用いられる。n型a−Si層は、オーミ
ツクコンタクトをとるための層で、厚みは限定さ
れないが約150Å〜600Åが用いられる。又このn
型a−Siの代わりに本発明のn型a−Si(1-x)C(x)
を用いてもよい。
The thickness of the p-type-a-Si (1-x) C (x) layer is approximately 30 Å to 300 Å.
Å, preferably 50 Å to 200 Å, and the thickness of the i-type a-Si layer is, in the case of the present invention, approximately 2500 Å to
10000 Å is used. The n-type a-Si layer is a layer for making ohmic contact, and although the thickness is not limited, it is approximately 150 Å to 600 Å. Also this n
n-type a-Si (1-x) C (x) of the present invention instead of type a-Si
may also be used.

もう1つの代表的な構造は、透明電極/n型a
−Si(1-x)C(x)/i型a−Si/p型a−Si/電極の
構造で、透明電極側から光を照射するものであ
る。ここで、n型a−Si(1-x)C(x)の厚みは、約30
Å〜300Å、好ましくは50Å〜200Å、1型a−Si
層の厚みは限定されないが約2500Å〜10000Åが
通常用いられる。p型a−Si層の厚みは限定され
ないが約150Å〜600Åが用いられる。又このp型
a−Siの代わりに本発明のp型a−Si(1-x)C(x)
用いても良い。透明電極の素材及び蒸着法につい
ては前同様である。
Another typical structure is transparent electrode/n-type a
-Si (1-x) C (x) /i-type a-Si/p-type a-Si/electrode structure, and light is irradiated from the transparent electrode side. Here, the thickness of n-type a-Si (1-x) C (x) is approximately 30
Å~300Å, preferably 50Å~200Å, type 1 a-Si
Although the thickness of the layer is not limited, a thickness of about 2,500 Å to 10,000 Å is usually used. The thickness of the p-type a-Si layer is not limited, but approximately 150 Å to 600 Å is used. Moreover, p-type a-Si (1-x) C (x) of the present invention may be used instead of this p-type a-Si. The material and vapor deposition method for the transparent electrode are the same as before.

〔発明の効果〕〔Effect of the invention〕

次に実施例により本発明の効果について説明す
る。
Next, the effects of the present invention will be explained with reference to Examples.

グロー放電分解は、内径11cmの石英反応管を用
いて14.56MHzの高周波で行つた。i型a−Siは、
水素で希釈したシランを2〜10Torrでグロー放
電分解して得た。同様にn型a−Siは、水素で希
釈したシランとフオスフイン(PH3)(PH3
SiH4=0.5モル%)をグロー放電分解して得、p
型a−Si(1-x)C(x)は、同様に水素で希釈したシラ
ン、メタン(CH4)、ジボラン(B2H6)(B/
(Si+C)=0.10atom%)をグロー放電分解して
得た。なお、a−Si(1-x)C(x)は、グロー放電時の
ガス組成を変量してそのアトミツクフラクシヨン
xが0.85〜0.05になるようにした。
Glow discharge decomposition was performed at a high frequency of 14.56 MHz using a quartz reaction tube with an inner diameter of 11 cm. I-type a-Si is
It was obtained by glow discharge decomposition of silane diluted with hydrogen at 2 to 10 Torr. Similarly, n-type a-Si is prepared using silane diluted with hydrogen and phosphine (PH 3 ) (PH 3 /
SiH 4 = 0.5 mol%) obtained by glow discharge decomposition, p
Type a-Si (1-x) C (x) is composed of silane, methane (CH 4 ), diborane (B 2 H 6 ) (B/
(Si+C)=0.10 atom%) was obtained by glow discharge decomposition. Note that for a-Si (1-x) C (x) , the gas composition during glow discharge was varied so that the atomic fraction x was 0.85 to 0.05.

太陽電池の構成は、25Ω/□のSoO2薄膜のつい
たガラス基板のSoO2面にp型a−Si(1-x)C(x)、i
型a−Si、n型a−Siの順に堆積し、最後に3.3
mm2のアルミニウムを蒸着してAM−1(100mW/
cm2)のソーラーシユミレーターで太陽電池特性を
調べた。グロー放電時の基板温度は250℃で行つ
た。又、i層は5000Å、n層は500Å、p型a−
Si(1-x)C(x)層の厚みは135Åである。
The solar cell has a p - type a - Si ( 1-x) C (x) , i
Deposited in the order of type a-Si, n-type a-Si, and finally 3.3
AM- 1 (100mW/
cm 2 ) solar simulator to investigate solar cell characteristics. The substrate temperature during glow discharge was 250°C. Also, the i-layer is 5000 Å, the n-layer is 500 Å, and the p-type a-
The thickness of the Si (1-x) C (x) layer is 135 Å.

上記p型a−Si(1-x)C(x)の膜組成による太陽電
池特性を示したのが図−2であり、1が短絡電流
(Jsc)、2がフイルフアクタ(FF)、3が解放電
圧(Voc)、4が変換効率(η)である。この図
−2からシラン100%(Si1C0)の場合はηが4.6
%であるのに対して、本発明のa−Si(1-x)C(x)
用いると、x=0.05でもη=5.4%に増加し、x
=0.2ではη=7.1%にも改善されることが判る。
さらにx=0.4ではη=7.2%にも達し、シラン
100%の時に比し極めて高いηの値が得られる。
Figure 2 shows the solar cell characteristics depending on the film composition of the above p-type a-Si (1-x) C (x) , where 1 is short circuit current (Jsc), 2 is film factor (FF), and 3 is The open voltage (Voc) and 4 are the conversion efficiency (η). From this figure-2, in the case of 100% silane (Si 1 C 0 ), η is 4.6.
%, but when using a-Si (1-x) C (x) of the present invention, even when x = 0.05, it increases to η = 5.4%, and x
It can be seen that when = 0.2, the improvement is also improved to η = 7.1%.
Furthermore, when x = 0.4, η = 7.2%, and silane
An extremely high value of η can be obtained compared to when it is 100%.

なお、変換効率ηは、xが0.5以上で低下傾向
を示すが、これは、p型a−Si(1-x)C(x)の抵抗が
大きくなる事によるフイルフアクタFFの低下で
あり、短絡電流Jscはほとんど変りなく、本発明
のa−Si(1-x)C(x)を用いる事によつて、p層での
光吸収ロスの減少による短絡電流Jscの増加と開
放電圧Vocの増加により変換効率ηの改良ができ
たものと考えられる。
Note that the conversion efficiency η shows a decreasing tendency when x is 0.5 or more, but this is due to a decrease in the film factor FF due to the increase in the resistance of the p-type a-Si (1-x) C (x) . The current Jsc remains almost unchanged, but by using the a-Si (1-x) C (x) of the present invention, the short circuit current Jsc and open circuit voltage Voc increase due to the decrease in light absorption loss in the p layer. It is considered that the conversion efficiency η was improved by this.

これらの結果は、SiF4とCH4を用いても全く同
様であつた。
These results were exactly the same even when SiF 4 and CH 4 were used.

次にa−Si(0.6)C(0.4)の組成でB(ボロン)のドー
プ量をB/(Si+C)で0.005atom%から
2.0atom%と変えて太陽電池を作り同様の測定を
行つた。その結果を示したのが図−3であり、5
がJsc、6がFF、7がVoc、8がηである。又P
型a−Si(0.6)C(0.4)の室温における電気伝導度のボ
ロンドープ量依存性の変化を示したのが図−4で
あり、9がボロンドープの場合である。
Next, in the composition of a-Si (0.6) C (0.4), the doping amount of B (boron) is changed from 0.005 atom% to B/(Si+C).
A solar cell was made with the concentration changed to 2.0 atom% and similar measurements were made. Figure 3 shows the results.
is Jsc, 6 is FF, 7 is Voc, and 8 is η. Also P
Figure 4 shows the change in the electrical conductivity of type a-Si (0.6) C (0.4) at room temperature depending on the amount of boron doping, and 9 is the case of boron doping.

図−3によればドープ量が少ない時はFFと
Vocが低いが、0.5%以上のドープ量でP型a−
Siの時よりもはるかに良いηの値を示している。
又Jscはドープ量が0.5%以上になると低下する
が、これはBを高濃度にドープすると光の吸収係
数が増大する為である。このように太陽電池特性
でP型a−Siの時よりはるかに良いη値を得るに
は、図−4ボロンドープの場合9に示すp型a−
Si(0.6)C(0.4)膜の室温での電気伝導度のBドープ量
依存性によれば、10-8(Ω・cm)-1以上の電気伝導
度になるようにするのが好ましいと言える。つま
り、従来のものより良好な変換効率を得るには、
Bのドープ量を制御して10-8(Ω・cm)-1以上の電
気伝導度にすればよいことが判る。
According to Figure 3, when the amount of doping is small, it is called FF.
Although Voc is low, P type a- with doping amount of 0.5% or more
It shows a much better η value than that of Si.
Furthermore, Jsc decreases when the doping amount exceeds 0.5%, and this is because the light absorption coefficient increases when B is doped at a high concentration. In this way, in order to obtain a much better η value in terms of solar cell characteristics than in the case of P-type a-Si, it is necessary to
According to the dependence of the electrical conductivity of the Si (0.6) C (0.4) film at room temperature on the amount of B doping, it is preferable to have an electrical conductivity of 10 -8 (Ω・cm) -1 or more. I can say it. In other words, to obtain better conversion efficiency than the conventional one,
It can be seen that the electrical conductivity can be adjusted to 10 -8 (Ω·cm) -1 or more by controlling the amount of B doped.

次にn型a−Si(1-x)C(x)を用いる実施例につい
て説明する。
Next, an example using n-type a-Si (1-x) C (x) will be described.

p型a−Si(1-x)C(x)を用いた例と同様、ステン
レス基板上にB2H6を1モル%ドープしたp型a
−Siを200Å、その上にi型a−Siを5000Å、さ
らにPH3でドープしたn型a−Si(1-x)C(x)を100
Å、グロー放電分解して堆積させる。a−Siは、
シランSiH4を、a−Si(1-x)C(x)はSiH4とCH4
夫々用いてグロー放電分解した。さらにITOを電
子ビーム蒸着して同様に太陽電池特性を調べた。
n型a−Si(1-x)C(x)のPのドープ量をP/(Si+
C)=0.5atom%としてアトミツクフラクシヨン
xを0.05から0.85まで変量した場合の太陽電池特
性を示したのが図−5であり、11がJsc、12
がFF、13がVoc、14がηである。図−5に
よればxが0.5まではほぼ連続的にJscが増加し、
FF、Vocも増加する。一方FFはxÅ0.5で低下し
ている為にηも低下するが、x=0.5では変換効
率ηが7.3%にも改良されている。図−5中x=
0としたn型a−Siの場合のη=4.9%に対し、
x=0.05〜0.95の間で著しい改良を示している。
Similar to the example using p-type a-Si (1-x) C (x) , p-type a doped with 1 mol% of B 2 H 6 on a stainless steel substrate.
-200 Å of -Si, 5000 Å of i-type a-Si on top of it, and 100 Å of n-type a-Si (1-x) C (x) doped with PH 3 .
Å, glow discharge decomposition and deposition. a-Si is
Silane SiH 4 and a-Si (1-x) C (x) were decomposed by glow discharge using SiH 4 and CH 4 , respectively. Furthermore, ITO was deposited by electron beam evaporation and the solar cell characteristics were similarly investigated.
The P doping amount of n-type a-Si (1-x) C (x) is P/(Si+
Figure 5 shows the solar cell characteristics when the atomic flux x is varied from 0.05 to 0.85 with C) = 0.5atom%, where 11 is Jsc, 12
is FF, 13 is Voc, and 14 is η. According to Figure 5, Jsc increases almost continuously until x reaches 0.5.
FF and Voc also increase. On the other hand, since FF decreases at x 0.5, η also decreases, but at x=0.5, the conversion efficiency η is improved to 7.3%. x= in Figure-5
Compared to η = 4.9% in the case of n-type a-Si, which is set to 0,
Significant improvement is shown between x=0.05 and 0.95.

又、n型a−Si(0.6)C(0.4)でのPのドープ量を
P/(Si+C=0.005〜2atom%まで変えた時の
太陽電池特性を示したのが図−6であり、15が
Jsc、16がFF、17がVoc、18がηである。
図−6からドープ量の増加と共にJsc、FF、Voc
が増加しているのが判る。そして、図−4のPド
ープの場合10に示すn型a−Si(0.6)C(0.4)の室温
での電気伝導度のドープ量依存性によれば、図−
6に示す良好な特性を得るには、Pのドープ量を
電気伝導度が10-7(Ω・cm)-1以上であるようにす
るのが好ましいと言える。
In addition, Figure 6 shows the solar cell characteristics when the amount of P doped in n-type a-Si (0.6) C (0.4) was changed from P/(Si + C = 0.005 to 2 atom%, 15 but
Jsc, 16 is FF, 17 is Voc, and 18 is η.
From Figure 6, as the amount of doping increases, Jsc, FF, and Voc
It can be seen that the number is increasing. According to the doping amount dependence of the electrical conductivity at room temperature of n-type a-Si (0.6) C (0.4) shown in Figure 10 in the case of P doping in Figure 4, Figure
In order to obtain the good characteristics shown in No. 6, it is preferable to dope the P in an amount such that the electrical conductivity is 10 -7 (Ω·cm) -1 or more.

ところで、シランのグロー放電分解でメタン、
エタン等のハイドロカーボンを混合してグロー放
電分解してアモルフアスシリコンカーバイトの得
られる事は既に知られている〔例えばD.A.
Anderson and W.E.Spear、Phil.Mag.35、1
(1977)〕。
By the way, glow discharge decomposition of silane produces methane,
It is already known that amorphous silicon carbide can be obtained by mixing hydrocarbons such as ethane and decomposing them by glow discharge [for example, DA
Anderson and WESpear, Phil.Mag.35, 1
(1977)].

しかしながら、シランとメタンで得られるa−
Si(1-x)C(x)を真性領域に用いた太陽電池では、D.
E.Carlsonらの実験により、変換効率が、メタン
を含まない場合には2.27%であるのに対し、10%
のメタンを含むと1.4%に低下し、さらに30%の
メタンを含むと0.08%と極端に低下してしまう事
が知られていた〔例えばTopics in Applied
Physics Vol36、Amorphous Semiconductors
p=311(M.H.Brodsky、Spring−Verlag Berlin
Heidelberg刊1979年)〕。従つて、従来はメタン
等のハイドロカーボンは不純物として好ましくな
いとされていた。
However, the a-
In solar cells using Si (1-x) C (x) in the intrinsic region, D.
Experiments by E. Carlson et al. showed that the conversion efficiency was 10% compared to 2.27% without methane.
It was known that if methane was included, the drop would drop to 1.4%, and if 30% methane was included, the drop would be extremely low to 0.08% [for example, Topics in Applied
Physics Vol36, Amorphous Semiconductors
p=311 (MHBrodsky, Spring-Verlag Berlin
Heidelberg (1979)]. Therefore, hydrocarbons such as methane were conventionally considered to be undesirable impurities.

このような従来の定説を破つて、本発明者は、
アモルフアスシリコンカーバイトをp型又はn型
にドープしてpin接合光電素子の窓材料に利用し、
変換効率の大幅な改善を実現したものであり、そ
の効果は驚くべきものである。
Breaking away from this conventional theory, the present inventors
Amorphous silicon carbide is doped with p-type or n-type and used as a window material for pin junction photoelectric elements.
The conversion efficiency has been significantly improved, and the effect is surprising.

【図面の簡単な説明】[Brief explanation of drawings]

図−1aはp層側から光を照射するタイプの光
電素子を示す構造図、同bはn層側から光を照射
するタイプの光電素子を示す構造図である。図−
2はp型a−Si(1-x)C(x)/i−na−Siヘテロ接合
光電素子においてB(ボロン)のドープ量をB/
(Si+C)=0.1atom%とした時のxの変化による
太陽電池特性を示すグラフである。図−3はp型
a−Si(0.6)C(0.4)/i−na−Siヘテロ接合光電素子
において、Bのドープ量を(Si+C)に対して
0.005〜2.0atom%と変えた時の太陽電池特性を示
すグラフである。図−4はa−Si(0.6)C(0.4)膜にお
いてP又はBのドープ量変化による室温での電気
伝導度の変化を示すグラフである。図−5はn型
a−Si(1-x)C(x)/i−pa−Siヘテロ接合光電素子
においてP(リン)のドープ量をP/(Si+C)=
0.5atom%とした時のxによる太陽電池特性の変
化を示すグラフである。図−6はn型a−Si(0.6)
C(0.4)/i−pa−Siヘテロ接合光電素子において
P(リン)のドープ量を(Si+C)に対して0.005
〜2.0atom%変化させた時の太陽電池特性を示す
グラフである。 1,5,11,15……短絡電流Jsc(mA/
cm2)、2,6,12,16……フイルフアクタ
FF、3,7,13,17……開放電圧Voc
(volts)、4,8,14,18……変換効率η
(%)、9……ボロン(B)ドープの場合、10…
…リン(P)ドープの場合、19……ガラス、2
0……透明電極、21……p型a−Si(1-x)C(x)
22……i型a−Si、23……n型半導体(例え
ばn型a−Si)、24……電極、25……電極基
板、26……p型a−Si、27……i型a−Si、
28……n型a−Si(1-x)C(x)、29……透明電極。
Figure 1a is a structural diagram showing a type of photoelectric element that irradiates light from the p-layer side, and Figure 1b is a structural diagram showing a type of photoelectric element that irradiates light from the n-layer side. Figure-
2 is the doping amount of B (boron) in the p-type a-Si (1-x) C (x) /i-na-Si heterojunction photoelectric device.
It is a graph showing solar cell characteristics depending on changes in x when (Si+C)=0.1 atom%. Figure 3 shows the doping amount of B versus (Si+C) in a p-type a-Si (0.6) C (0.4) /i-na-Si heterojunction photoelectric device.
It is a graph showing solar cell characteristics when changing from 0.005 to 2.0 atom%. FIG. 4 is a graph showing changes in electrical conductivity at room temperature due to changes in the amount of P or B doped in an a-Si (0.6) C (0.4) film. Figure 5 shows the doping amount of P (phosphorus) in an n-type a-Si (1-x) C (x) /i-pa-Si heterojunction photoelectric device as P/(Si+C)=
It is a graph showing changes in solar cell characteristics depending on x when the concentration is 0.5 atom%. Figure-6 is n-type a-Si (0.6)
C (0.4) / i-pa-Si heterojunction photoelectric device, the doping amount of P (phosphorus) is 0.005 to (Si + C)
It is a graph showing solar cell characteristics when changing by ~2.0 atom%. 1, 5, 11, 15...Short circuit current Jsc (mA/
cm 2 ), 2, 6, 12, 16... film actor
FF, 3, 7, 13, 17...Open voltage Voc
(volts), 4, 8, 14, 18... Conversion efficiency η
(%), 9... In the case of boron (B) doping, 10...
...In the case of phosphorus (P) doping, 19...Glass, 2
0...Transparent electrode, 21...p-type a-Si (1-x) C (x) ,
22...I type a-Si, 23...n type semiconductor (e.g. n type a-Si), 24...electrode, 25...electrode substrate, 26...p type a-Si, 27...i type a −Si,
28...n-type a-Si (1-x) C (x) , 29... transparent electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 アモルフアスシリコンカーバイト薄膜を少な
くとも光を照射する側の層に用いたアモルフアス
シリコンカーバイト/アモルフアスシリコンヘテ
ロ接合光電素子の製造方法であつて、アモルフア
スシリコンカーバイト薄膜を、350℃以下の基板
温度においてa−Si(1-x)C(x)で示すシリコンの原
子数と炭素の原子数の比xを0.05〜0.85、ドーピ
ング濃度を0.005atom%〜2.0atom%とする範囲
でシリコン化合物のガス、メタンからなる炭素化
合物のガス、及びドーパントガスの混合物をグロ
ー放電し、室温における電気伝導度がp型では
10-8(Ω・cm)-1以上に、n型では10-7(Ω・cm)-1
以上になるようにドーピング濃度を制御し堆積せ
しめることを特徴とするアモルフアスシリコンカ
ーバイト/アモルフアスシリコンヘテロ接合光電
素子の製造方法。
1. A method for manufacturing an amorphous silicon carbide/amorphous silicon heterojunction photoelectric device using an amorphous silicon carbide thin film at least as a layer on the side to which light is irradiated, wherein the amorphous silicon carbide thin film is heated at 350°C or lower. Silicon at a substrate temperature of 0.05 to 0.85 and a doping concentration of 0.005 atom % to 2.0 atom%. A mixture of a compound gas, a carbon compound gas consisting of methane, and a dopant gas is glow-discharged, and the electrical conductivity at room temperature is p-type.
10 -8 (Ω・cm) -1 or higher, 10 -7 (Ω・cm) -1 for n-type
A method for manufacturing an amorphous silicon carbide/amorphous silicon heterojunction photoelectric device, characterized in that the doping concentration is controlled and deposited so as to achieve the above.
JP56012313A 1980-12-03 1981-01-29 Amorphous silicon carbide/amorophous silicon hetero junction optoelectric element Granted JPS57126175A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP56012313A JPS57126175A (en) 1981-01-29 1981-01-29 Amorphous silicon carbide/amorophous silicon hetero junction optoelectric element
US06/253,141 US4385199A (en) 1980-12-03 1981-04-10 Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
US06/266,064 US4388482A (en) 1981-01-29 1981-05-19 High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
CA000391378A CA1176740A (en) 1980-12-03 1981-12-02 High-voltage photovoltaic cell having a hetero junction of amorphous semiconductor and amorphous silicon
AT81110111T ATE38296T1 (en) 1980-12-03 1981-12-03 PIN TYPE PHOTOVOLTIC CELL WITH HETEROJUNION BETWEEN AN AMORPHOUS SILICON COMPOUND AND AMORPHEN SILICON.
DE8181110111T DE3176919D1 (en) 1980-12-03 1981-12-03 Pin photovoltaic cell having a hetero junction of amorphous siliconcompound and amorphous silicon
EP81110111A EP0053402B1 (en) 1980-12-03 1981-12-03 Pin photovoltaic cell having a hetero junction of amorphous siliconcompound and amorphous silicon
AU78224/81A AU558650B2 (en) 1980-12-03 1981-12-03 Amorphous semiconductor high-voltage photovoltaic cell
US06/420,711 US4385200A (en) 1980-12-03 1982-09-21 Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
SG65589A SG65589G (en) 1980-12-03 1989-09-20 Pin photovoltaic cell having a hetero junction of amorphous silicon compound and amorphous silicon
HK796/89A HK79689A (en) 1980-12-03 1989-10-05 Pin photovoltaic cell having a hetero junction of amorphous silicon compound and amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56012313A JPS57126175A (en) 1981-01-29 1981-01-29 Amorphous silicon carbide/amorophous silicon hetero junction optoelectric element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58044692A Division JPS58217414A (en) 1983-03-16 1983-03-16 Novel amorphous silicon carbide

Publications (2)

Publication Number Publication Date
JPS57126175A JPS57126175A (en) 1982-08-05
JPH0363229B2 true JPH0363229B2 (en) 1991-09-30

Family

ID=11801821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56012313A Granted JPS57126175A (en) 1980-12-03 1981-01-29 Amorphous silicon carbide/amorophous silicon hetero junction optoelectric element

Country Status (1)

Country Link
JP (1) JPS57126175A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPH0673371B2 (en) * 1984-05-23 1994-09-14 セイコーエプソン株式会社 Solid-state image sensor
JPS60251275A (en) * 1984-05-29 1985-12-11 Mitsui Toatsu Chem Inc Manufacture of thin silicon fluoride film
US6794255B1 (en) 1997-07-29 2004-09-21 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6936849B1 (en) 1997-07-29 2005-08-30 Micron Technology, Inc. Silicon carbide gate transistor
EP1056139A3 (en) 1999-05-28 2007-09-19 Sharp Kabushiki Kaisha Method for manufacturing photoelectric conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) * 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) * 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Also Published As

Publication number Publication date
JPS57126175A (en) 1982-08-05

Similar Documents

Publication Publication Date Title
US4385199A (en) Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US10763386B2 (en) Heterostructure germanium tandem junction solar cell
US4450316A (en) Amorphous silicon photovoltaic device having two-layer transparent electrode
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
US4544423A (en) Amorphous silicon semiconductor and process for same
US20050092357A1 (en) Hybrid window layer for photovoltaic cells
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4396793A (en) Compensated amorphous silicon solar cell
US4710786A (en) Wide band gap semiconductor alloy material
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPH0363229B2 (en)
JPH0544198B2 (en)
JPH0340515B2 (en)
US4703336A (en) Photodetection and current control devices
JPH0122991B2 (en)
JPH0447453B2 (en)
Ohashi et al. High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane
JP2530408B2 (en) Method of manufacturing amorphous silicon photoelectric device
JPH041511B2 (en)
JPH0445991B2 (en)
JPH0554272B2 (en)