JPH0356088A - Controlling method for induction motor, and film taking-up method using its controlling method - Google Patents
Controlling method for induction motor, and film taking-up method using its controlling methodInfo
- Publication number
- JPH0356088A JPH0356088A JP1188553A JP18855389A JPH0356088A JP H0356088 A JPH0356088 A JP H0356088A JP 1188553 A JP1188553 A JP 1188553A JP 18855389 A JP18855389 A JP 18855389A JP H0356088 A JPH0356088 A JP H0356088A
- Authority
- JP
- Japan
- Prior art keywords
- induction motor
- voltage
- phase
- current
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006698 induction Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 10
- 238000004804 winding Methods 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000555745 Sciuridae Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Control Of Ac Motors In General (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は三相誘導モーターのトルク及び回転速度の制御
方法とその制御方法を利用したポリエチレンフィルム、
ポリプロピレンフィルム等のフィルムの捲取り方法に関
するものである.
(従来の技術)
従来に於いては、誘導モーターの回転子に鎖交する磁束
φを検出し、駆動電流のベクトル量を制御する方式が採
用されていたがマイクロコンピューターを用いてきわめ
て複雑な座標変換,ベクトル演算が行われており、その
制御システムの理解は直感的レベルを越えているもので
あり、その取扱い処理のレベルも高く現場には不向きで
あった.
(技術的課題)
而して、本発明は従来技術の欠点に鑑みなされたもので
簡単な構成により安価にしてその回転制御を行うことを
技術的課題とするものである.(技術的手段)
本発明では上記の技術的課題を解決するために、三相誘
導モーターのT型定常等価回路に基き、励磁電流lIo
lを一定に保つための条件
E/f=co = [ (V+ −R+2+ 2tt
fl+ ) 2)/fl ●I1
を満たすような必要な電圧の実効値■,即ちV+ =C
o llf+R+2+ (2πfJl1 ) 2 *
Itを与えるように威してある.
(a)誘導モーターの回路方程式について.一般に、実
用されている誘導モーターは対称三相モーターが多〈そ
の各相の回路定数は等しい.かご形誘導モーターではス
クウイレルゲージのバーの1本ずつが一相に相当してお
り、二次側の相数は三相よりずっと多いが、等価的に三
相の巻線型誘導モーターに置き換えて考えることが出来
る。Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for controlling the torque and rotational speed of a three-phase induction motor, and a polyethylene film using the control method.
This relates to the method of winding up films such as polypropylene film. (Prior technology) Conventionally, a method was adopted in which the magnetic flux φ interlinking with the rotor of an induction motor was detected and the vector amount of the drive current was controlled. Conversion and vector calculations were performed, and the understanding of the control system was beyond an intuitive level, and the level of handling and processing was also high, making it unsuitable for on-site use. (Technical Problem) The present invention was made in view of the shortcomings of the prior art, and its technical problem is to control the rotation of the rotor at low cost with a simple configuration. (Technical means) In order to solve the above technical problem, the present invention uses a T-type steady-state equivalent circuit of a three-phase induction motor to
Condition for keeping l constant E/f=co = [(V+ -R+2+ 2tt
fl+ ) 2)/fl ● Effective value of the necessary voltage that satisfies I1, that is, V+ = C
o llf+R+2+ (2πfJl1) 2 *
I'm trying to force you to give it to me. (a) About the circuit equation of induction motor. In general, most of the induction motors in practical use are symmetrical three-phase motors (the circuit constants of each phase are equal). In a squirrel cage induction motor, each bar on the squirrel gauge corresponds to one phase, and the number of phases on the secondary side is much greater than three phases, but it can be equivalently replaced with a three-phase wound induction motor. I can think.
(第1図参照)
以下に記号の説明をしてお〈.
a,b,c・●●ステーター相(固定子相)r,s,t
●・●ローター相(回転子相)ω.●●・回転子角速度
(rad/see)θ1 ・・●a相とr相の中心軸間
の空間的位置角Ll ・・一次側コイルー相の全自己
インダクタンスL2 ・・二次側コイルー相の全自己
インダクタンスfLi ・●●漏れインダクタンス
M●●●相互インダクタンス
θ●●●電気角 θ= CP/2)θ,P●●・極数
ω●●●電源角周波数(ω=2πf)
S●●●すベリ S=(ω2−ω−e) /ωeωme
=dθ/dt=Pθ
(+)@ =ω/ (P/2)(電気rad/sec)
入d ・・・a相コイルの磁束鎖交数
入9a●●●a相コイルにかかるギャップ中の回転磁界
の鎖交数
入r ●●・r相コイルの磁束鎖交数
入qr●●●r相コイルにかかるギャップ中の回転磁界
の鎖交数
而して、第1図に関し先ず下記の関係を想定する.Ll
=見1 +M
L2 =見2 +M
i, +ib +ic =0 (三相電流は3回対称)
ir +is +tt =0 (三相電流は3回対称)
入d :文1・ia 十入9a
入r =交2・i「 +λqr
入qa=M (ia + ih c o s (
2π/3)+iccos(−2π/3))+M{ir
cosθ+fsCOS(θ+2π/3)+itcos
(θ−2π/3)}
入qr=M (ir + is c o s (
2π/ 3) + i 1cos(−2π/3) }
+M (ia c o s (一〇)+ibcos
(一〇+2π/3)+iccos(一θ−2π/3)}
la=il
i b= i d6−021K/3)= i (
6 −j(2TC/3)ic = i , 6j(
21C/.1) = i l6N2m/3)ir=
i 2
i , = i , 6−j(2TL/3)=
i 2 6 −1(2’lu/3)i t= i
, e4(2TL/3) = i2 6j(
2’tC/3)以上の関係を踏まえて回路方程式を考え
ると、一次a相の回路方程式は
Va =Rl ia +d入./dt (
t)二次r相の回路方程式は
0=R2 ir +ci入,/dt (
2)(エンドリングで短絡している)
となる.
ここに、flla●●一次抵抗
R2 ●●●二次抵抗
D●●●d/dt とする.
前記(1)式及び(2)式は次のように置き換えられる
.
Va =R1 ia +u+ D ia + (
3M/2)D ia(3M/2)D ( ir e
』0) ( 1 )’0=R2 ir +
Jl2 D ir + (3M/2)D ir(3M
/2) (D i.)e−jθ−j(i)ge(3M
/2)i,1 e−iθ (2
)′fr ’ =fr e” とすれば、dejρ
/dt=(dθ/dt) (dei’il/dθ)=
j (d O/dt) ej−= jω●ee
Je
であるから、
D ir ’ = (D ir ) el’ + j
ωseir’ となる従って(ly式及び(2)′式
は
Va =R+ ia + (u+ + (
3M/2))Dia(3M/2)D i%
(1)″0=R2 ir + (文2 + (
3M/ 2)) (D −j ωoe) i r’
+ ( 3 M/ 2) (D jω−e)ia(
2)′
となる.
(1)式(2)式は一次a相、二次r相の各一相のみし
か含まれていない.
よって、a相で一次側三相を、r相で二次側三相を代表
させて考えれば、
(ω2+ω麿=ω1 =ω電源角周波数)Va =V+
, ia = it , ir’= i2 とし
すべりSをS=(ω8−ωIle) /ωeとすれば、
( 1 )′/式(2)4式は
Vl =RI・il+jω2 (文1 + 3 M/
2) i 1+j〜e (3M/ 2) i 2
( 1 )f′0=R2・i2+j S(1
)I! Cl2 +3M/2)i2/1,
+ j Soe (3M/2)i1− (2)となる
.
ここで、次の実ベクトルフェf V + ,I +
+ I 2を導入すると上式は
V,=R+ I+ +j (x+ +xs )I+
’+jXa I2(3)
0= jXs I+ + (R2 /S+ j (X
2 +Xl )’j・I 2
− ( 4 )となる。(See Figure 1) The symbols are explained below. a, b, c・●●Stator phase (stator phase) r, s, t
●・●Rotor phase (rotor phase) ω. ●●・Rotor angular velocity (rad/see) θ1 ・・Spatial position angle Ll between the central axes of the a phase and r phase ・・Total self-inductance of the primary coil phase L2 ・・Total self inductance of the secondary coil phase Self-inductance fLi ・●●Leakage inductance M●●●Mutual inductance θ●●●Electrical angle θ= CP/2) θ, P●●・Number of poles ω●●●Power source angular frequency (ω=2πf) S●●● Suberi S=(ω2-ω-e) /ωeωme
=dθ/dt=Pθ (+) @ =ω/ (P/2) (electrical rad/sec)
Input d...Enter the magnetic flux linkage of the a-phase coil 9a●●●Enter the interlinkage of the rotating magnetic field in the gap applied to the a-phase coil r ●●・Enter the magnetic flux linkage of the r-phase coil qr●●● Regarding the linkage of the rotating magnetic field in the gap applied to the r-phase coil, first assume the following relationship with respect to Figure 1. Ll
=Ki1 +M L2 =Ki2 +M i, +ib +ic =0 (Three-phase current has three-fold symmetry)
ir +is +tt =0 (three-phase current has three-fold symmetry)
Input d: Sentence 1・ia 10in 9a Input r = Intersection 2・i `` +λqr Input qa=M (ia + ih cos (
2π/3)+iccos(-2π/3))+M{ir
cosθ+fsCOS(θ+2π/3)+itcos
(θ−2π/3)} Input qr=M (ir + is cos (
2π/3) + i 1cos(-2π/3) }
+M (ia cos (10)+ibcos
(10+2π/3)+iccos(1θ-2π/3)} la=il i b= i d6-021K/3)=i (
6-j(2TC/3)ic = i, 6j(
21C/. 1) = i l6N2m/3)ir=
i 2 i , = i , 6-j (2TL/3) =
i 2 6 -1(2'lu/3)i t= i
, e4(2TL/3) = i2 6j(
2'tC/3) Considering the circuit equation based on the above relationship, the circuit equation for the primary a phase is Va = Rl ia + d input. /dt (
t) The quadratic r-phase circuit equation is 0=R2 ir +ci, /dt (
2) (Short-circuited at the end ring). Here, fla●● primary resistance R2 ●●● secondary resistance D●●● d/dt. Equations (1) and (2) above can be replaced as follows. Va = R1 ia +u+ D ia + (
3M/2)Dia(3M/2)D(ir e
'0) (1)'0=R2 ir +
Jl2 D ir + (3M/2) D ir (3M
/2) (D i.)e-jθ-j(i)ge(3M
/2)i,1 e−iθ (2
)'fr' = fr e'', then dejρ
/dt=(dθ/dt) (dei'il/dθ)=
j (d O/dt) ej−= jω●ee
Since Je, D ir' = (D ir ) el' + j
ωseir' Therefore, (ly formula and (2)' formula are Va = R+ ia + (u+ + (
3M/2))Dia(3M/2)D i%
(1)″0=R2 ir + (sentence 2 + (
3M/ 2)) (D −j ωoe) i r'
+ (3 M/2) (D jω-e)ia(
2)'. Equations (1) and (2) include only one phase each, the primary a phase and the secondary r phase. Therefore, if we consider that the a phase represents the three phases on the primary side and the r phase represents the three phases on the secondary side, (ω2 + ωmaro = ω1 = ω power supply angular frequency) Va = V +
, ia = it , ir' = i2 and the slip S is S = (ω8-ωIle) /ωe, then
(1)'/Equation (2) and Equation 4 are Vl = RI・il+jω2 (sentence 1 + 3 M/
2) i 1+j~e (3M/2) i 2
(1) f'0=R2・i2+j S(1
)I! Cl2 +3M/2)i2/1, + j Soe (3M/2)i1- (2). Here, the next real vector f V + ,I +
When + I 2 is introduced, the above formula becomes V, = R+ I+ +j (x+ +xs )I+
'+jXa I2(3) 0= jXs I+ + (R2 /S+ j (X
2 +Xl )'j・I 2
−(4).
” Vl =Wl v1 1 ej(ω”’+)=JE
v 1 6 CJtr l =M I I
11 6 j(uJtlデ’) =JE I
l e j’L?2 =J l 1, 1ej(
ωt−%) 4 7 2 6 1+4+tここでX
l =ω交1 ●●●一次漏れリアクタンスx2 =ω
文2 ●●●二次漏れリアクタンスXI1=ω(3M/
2)●●励磁リアクタンスとする.
而して、前記(3)式,(4)式より第2図に示す如く
誘導モーターのT型定常等価回路を得る.因に,回路中
の工0が(Io =I+ +I2 )励磁電流を表わす
ことが理解できる.
第2図のT型定常等価回路で
I+ =v+ / ((R+ +jx+ )+jxa
(R2 S+jx?)/ (R/S+j(X2 +x
.)))■(5)
r2=−jxs xl / (R2 /2+j (X
2 +xs )(6)
IO =I1 +I2 = (R2 /s+jx2 )
I+ / (R2 /s+ j (X2 +Xs )
)(7)
であり、誘導モーターの全二次銅横PcはPc =3R
2 1I2 12
であリギャップを越えて二次側に入る二次電力P?は
P2 =3R2 1 I2 l 2 /
Sとなり、モーターの出力POは
Po =P2−Pc =3R (I S) l I
2 M /Sとなる.
よって、モーターのトルクはPG =ωm T ,ω,
=(1−s) ω/ (P/2)(rad/sec)よ
りT=Po /ωm = (3P/2)(R2 /sω
)I I 2 1 2(N−m)−(8)となる.
ここに、P●●◆極数
ω●●●電源角周波数
ωI ・・・モーターの角回転速度
であり、モーターの同周期速度ω,,。はωsyn
=41)/ (P/2) (rad/sec
)前記(6)X、(7)べよりII を消去してI2
=−jxa Io/(R2 /S+jx2 )
(9)となるから、トルクの(8)式に代入すればT
= (3P/2) (R2 /3ω) { (
Sxs ) 2/ (R22+ (SX2 ) 2))
l IO l2 (N−m)(IO)
を得る.
この(10)式で励磁電!IIolを一定に保てばモー
ターのトルクTはSω(=2πfS).即ち,すべり周
波数(S − f)のみの関数となることが理解できる
.
この(1 0)式のトルクTを周波数fをパラメーター
として、モーターの回転速度の関数として表わしたのが
第3図である.
従って、励磁電流を一定に保つ制御を行えばモーターの
トルクと回転速度との特性曲線はきわめて直線化される
ことが理解できる.
第3図は、3.7kw,3相,200V ,50Hz定
格モーターの特性曲線でlIolを一定にした場合で第
2図のT型定常等価回路に基くものである.前記した3
相,200V,50Hz,3.7kw,4極モーターの
具体的回路定数は次の如くである.x+ =0.408
2 (Ω)4X2 =0 .269 (Ω)Xs=13
.2(Ω)
R+ =0.463 (Ω),R2 =0.432 (
Ω)以上述べた如く励磁電流IIo1を一定に保てばギ
ャップ中の回転磁界の磁束密度が一定に保たれるのでモ
ーターの磁気材料の利用度が略一定に保たれて鉄の飽和
の影響は実用上無視でき、トルクー回転速度特性は直線
性をもつことが理解できる。"Vl = Wl v1 1 ej(ω"'+) = JE
v 1 6 CJtr l = M I I
11 6 j (uJtl de') = JE I
l e j'L? 2 =J l 1, 1ej(
ωt-%) 4 7 2 6 1+4+t where X
l = ω intersection 1 ●●● Primary leakage reactance x2 = ω
Sentence 2 ●●●Secondary leakage reactance XI1=ω(3M/
2) Let ●● excitation reactance. From equations (3) and (4) above, we obtain the T-type steady-state equivalent circuit of the induction motor as shown in Figure 2. Incidentally, it can be understood that 0 in the circuit represents the excitation current (Io = I+ + I2). In the T-type stationary equivalent circuit in Figure 2, I+ = v+ / ((R+ +jx+) + jxa
(R2 S+jx?)/ (R/S+j(X2 +x
.. )))■(5) r2=-jxs xl / (R2 /2+j (X
2 +xs ) (6) IO =I1 +I2 = (R2 /s+jx2)
I+ / (R2 /s+ j (X2 +Xs)
)(7), and the total secondary copper horizontal Pc of the induction motor is Pc = 3R
2 1I2 12 Secondary power P that crosses the re-gap and enters the secondary side? teeth
P2 =3R2 1 I2 l 2 /
S, and the motor output PO is Po = P2 - Pc = 3R (I S) l I
2 M/S. Therefore, the torque of the motor is PG = ωm T , ω,
= (1-s) ω/ (P/2) (rad/sec), T=Po /ωm = (3P/2) (R2 /sω
) I I 2 1 2 (N-m) - (8). Here, P●●◆Number of poles ω●●●Power supply angular frequency ωI...This is the angular rotation speed of the motor, and the same periodic speed of the motor ω,,. is ωsyn
=41)/(P/2) (rad/sec
) Delete the above (6)
=-jxa Io/(R2/S+jx2)
(9), so by substituting it into the torque equation (8), T
= (3P/2) (R2 /3ω) { (
Sxs ) 2/ (R22+ (SX2 ) 2))
We obtain l IO l2 (N-m)(IO). Exciting electric current with this equation (10)! If IIol is kept constant, the motor torque T becomes Sω(=2πfS). In other words, it can be understood that it is a function only of the slip frequency (S - f). Figure 3 shows the torque T in equation (10) expressed as a function of the rotational speed of the motor, using the frequency f as a parameter. Therefore, it can be understood that if control is performed to keep the excitation current constant, the characteristic curve between motor torque and rotational speed will be extremely linear. Figure 3 shows the characteristic curve of a 3.7kW, 3-phase, 200V, 50Hz rated motor, with lIol constant, and is based on the T-type steady-state equivalent circuit of Figure 2. 3 mentioned above
The specific circuit constants of the phase, 200V, 50Hz, 3.7kW, 4-pole motor are as follows. x+ =0.408
2 (Ω)4X2 =0. 269 (Ω)Xs=13
.. 2 (Ω) R+ =0.463 (Ω), R2 =0.432 (
Ω) As mentioned above, if the excitation current IIo1 is kept constant, the magnetic flux density of the rotating magnetic field in the gap is kept constant, so the degree of utilization of the magnetic material of the motor is kept almost constant, and the influence of iron saturation is reduced. It can be understood that this can be ignored in practice, and that the torque-rotation speed characteristic has linearity.
又、3 . 7 kw (4F)のモーターについて励
磁電iiIIolを一定に保った場合のトルクTをすべ
り周波数(S●f)の関数として表わしたのが第4図で
ある.[(10)式より]
この第4図から解かるように定格トルクの3倍位までは
トルクとすべり周波数は正比例する.而して、kを比例
定数として
T=k● (S●f) (1 1)と
して表わされる.
(b)誘導モーターのトルク及び回転速度の制御につい
て.
第2図の三相誘導モーターのT型定常等価回路よりE=
j Xs io = j (2πf)(3M/2)I
oE/f= j3πMIo (12)
及び
E=V1 − (R+ +jx+ )It
=V+ − (R+ +j (2πf)見+
) I+
E/f= (V+ − (R+ +j2πf文
+)I+)/f (
13)が得られる。Also, 3. Figure 4 shows the torque T as a function of the slip frequency (S●f) for a 7 kW (4F) motor when the excitation voltage iiiIol is kept constant. [From equation (10)] As can be seen from Figure 4, torque and slip frequency are directly proportional up to about three times the rated torque. Therefore, it is expressed as T=k● (S●f) (1 1), where k is a constant of proportionality. (b) Control of torque and rotational speed of induction motor. From the T-type steady-state equivalent circuit of the three-phase induction motor in Figure 2, E=
j Xs io = j (2πf) (3M/2)I
oE/f=j3πMIo (12)
and E=V1 − (R+ +jx+)It
=V+ − (R+ +j (2πf) look+
) I+ E/f= (V+ − (R+ +j2πf statement+)I+)/f (
13) is obtained.
(l2)式より励磁電流IIo1を一定に保つためには
(E/f)を一定に保てばよいことが理解できる. そ
して(13)式より、一定にすべき(E/f)の満たす
べき値COはモーターの回路定数より算出すればよい.
即ち、例として3相,200V,3.7kw,(4P)
,50Hzの定格のモーターの制御を考える場合にはモ
ーター回路定数より
f=50 (Hz).R+ =0.463 (Ω)、x
+ =0.4082 (Ω).V+ =200 (V)
I+ =15.4 (A)
がメーカーより与えられているので、E/fの満たすべ
き値Coは、(l3)式に代入することにより求められ
る.
IE/fl= <200−−E丁丁智富)24−石「4
082)2 X15.4}/50=3.81=Co(!
;L+ =0 .4082/ (2π50),′,2
πf見+ =8 . l 64X 1 0−3Xf
(Ω))よって、ある周波数f,電流■1である時
に励磁電流lIolを一定にするために必要な電圧の実
効値Vは
E/f=Co = (V+ −.E下7777「[]了
・II}/f
を満たす電圧■1であればよいから、v1の指定はVl
=Go − f+R+2+ (2 π fJ
l+ ) 2 ・I+ (;Lbト)(l4)
であればよいことが理解できる.
この時、すベリ周波数S◆fに対してモーターの発生ト
ルクは
T=k (S− f) (15)
となる.
而して、上記(14)式及び(l5)式が誘導モーター
の制御の基本である.
実際の制御には駆動電源として正弦波PWM電圧型イン
バーターを用いる.
そして制御演算インターバルをt(seq)であるとし
て一般には1 0ms e c以下としている.(c)
実施例(応用例)(第5図)
本実施例は前記した誘導モーターの制御方法をフイルム
捲取機の捲取り速度及び捲取りテンション制御に応用し
たものである.
lは三相電圧型インバーターで三相誘導モーター2と電
気接続してある.
該三相誘導モーター2の回転軸には捲取りローラー3を
連結してポリエチレンフィルム、ポリプロピレンフィル
ム等のフィルム4を捲き取るように成してある, 2
Aは誘導モーター2の回転速度を計測するためのタコジ
ェネレーターで回転速度現在値周波数信号f @(n−
+)を次回運転周波数指令演算回路7へ入力すべく威し
てある.
又、前記した三相電圧型インバーターlから誘導モータ
ー2の駆動電圧の現在サンプリング周波数信号f e(
n−1)を次回運転周波数指令演算回路7へ入力すべく
威してある.
而して、誘導モーター2の回転速度現在値周波数信号f
*(n−1)と電圧型インバーター1の現在サンプリ
ング周波数信号f e(n−1)より、現在すベリ周波
数信号(S●f ) (n−uは
(S * f) (I+−1) = fe(n−+)−
fern−n−(1 6)である.
この時、H/f=Co(一定値)制御であれば誘導モー
ター2の現在のトルクT r q ( n − 1 )
はTra(n−1) = k (S e f) <n−
+> = k {fe(n−n −f*(n−+))
( 1 7)の比例関係にある.
5はテンションローラーで捲取ローラー3に捲き取られ
て行〈フィルム4のテンションをテンション計6により
検出するものである.
このテンション計6により捲取りテンションの現在値電
圧信号T e n ( n − 1 )が得られる.(
n−1)は現在値を表わすサフィックス、(n)は次回
指令値を表わすサフィックスである.この現在値電圧信
号T e n < n − 1 )は次回運転周波数指
令演算回路7へ入力せしめられる.
ここで、誘導モーター2の現在のトルクT r q (
n − 1)と捲取りテンションの指令値電圧信号T
e n ( s ) とにより、次回の必要なトル
ク指令値T r Q( n )はTrq(n) :Tz
(n−H (Ten(s)十α) / (Ten(n
1)+α) l8)となり、無偏
差、収束型動作指令を有する関数形式を与える.
(ここに、αはテンション用の制御定数である.)これ
は可変ゲインP・工●D操作(比例、積分、微分操作)
に対応した特性を有し本制御の特徴を表わしている.
よって、(l6)式、(l7)式、(l8)式より、次
回指令周波数信号fe(n)を得る.即ち,
f e(n) = ( f l!(IT−1) f
a(n−+)) (Ten(s) + α)/ (
T e n (n − + ) +α) + fa(
n) (1 9)を得る.
一方、フィルム4の速度はピンチローラー8を介してヤ
ード発振器9によりフィルム現在捲取り速度信号U(。From equation (l2), it can be understood that in order to keep the excitation current IIo1 constant, (E/f) should be kept constant. From equation (13), the value CO that should be kept constant (E/f) can be calculated from the circuit constants of the motor. That is, as an example, 3 phase, 200V, 3.7kw, (4P)
, when considering control of a motor rated at 50 Hz, f = 50 (Hz) from the motor circuit constants. R+ =0.463 (Ω), x
+ =0.4082 (Ω). V+ =200 (V)
Since I+ = 15.4 (A) is given by the manufacturer, the value Co that E/f should satisfy can be found by substituting it into equation (l3). IE/fl= <200--E Ding Ding Chitomi) 24-stone "4
082)2 X15.4}/50=3.81=Co(!
;L+=0. 4082/ (2π50),',2
πf+=8. l 64X 1 0-3Xf
(Ω)) Therefore, the effective value V of the voltage required to keep the excitation current lIol constant when the frequency f and the current ■1 is E/f=Co = (V+ −.・V1 is specified as Vl because it is sufficient that the voltage is ■1 that satisfies ・II}/f
=Go − f+R+2+ (2 π fJ
It can be understood that it is sufficient if it is l+ ) 2 ・I+ (;Lbto) (l4). At this time, the torque generated by the motor for the slip frequency S◆f is T=k (S- f) (15)
becomes. Therefore, the above equations (14) and (15) are the basis of control of the induction motor. For actual control, a sine wave PWM voltage type inverter is used as the drive power source. The control calculation interval is assumed to be t (seq), which is generally 10 msec or less. (c)
Embodiment (Application example) (Fig. 5) In this embodiment, the induction motor control method described above is applied to the winding speed and winding tension control of a film winding machine. l is a three-phase voltage type inverter and is electrically connected to the three-phase induction motor 2. A winding roller 3 is connected to the rotating shaft of the three-phase induction motor 2 to wind up a film 4 such as polyethylene film, polypropylene film, etc.
A is a tacho generator for measuring the rotational speed of the induction motor 2, and the rotational speed current value frequency signal f@(n-
+) to be input to the next operating frequency command calculation circuit 7. In addition, the current sampling frequency signal f e (
n-1) to be input to the next operating frequency command calculation circuit 7. Therefore, the current rotational speed frequency signal f of the induction motor 2
*(n-1) and the current sampling frequency signal fe(n-1) of voltage type inverter 1, the current sampling frequency signal (S●f) (nu is (S*f) (I+-1) = fe(n-+)-
fern-n-(1 6). At this time, if H/f=Co (constant value) control, the current torque T rq (n − 1) of the induction motor 2
is Tra(n-1) = k (S e f) <n-
+> = k {fe(n-n -f*(n-+))
There is a proportional relationship of (1 7). A tension meter 6 detects the tension of the film 4 which is wound up by a winding roller 3 using a tension roller 5. This tension meter 6 provides a current value voltage signal T en (n - 1) of the winding tension. (
n-1) is a suffix representing the current value, and (n) is a suffix representing the next command value. This current value voltage signal Ten < n - 1) is input to the next operating frequency command calculation circuit 7. Here, the current torque T r q (
n − 1) and winding tension command value voltage signal T
e n (s), the next required torque command value T r Q ( n ) is Trq (n) : Tz
(n-H (Ten(s) ten α) / (Ten(n
1)+α) l8), which gives a functional form with no deviation and convergent motion command. (Here, α is the control constant for tension.) This is the variable gain P・D operation (proportional, integral, differential operation)
This shows the characteristics of this control. Therefore, the next command frequency signal fe(n) is obtained from equations (l6), (l7), and (l8). That is, f e(n) = ( f l!(IT-1) f
a(n-+)) (Ten(s) + α)/ (
T e n (n − + ) + α) + fa (
n) Obtain (1 9). On the other hand, the speed of the film 4 is determined by a yard oscillator 9 via a pinch roller 8 as a film current winding speed signal U(.
−1)として次回運転周波数指令演算回路7へ入力すべ
く威してある.
フィルム捲取り速度指令値信号をU(s) とすると
、モーターの次回の回転速度指令周波数信号f,(。)
に対して、トルクと同様に次の関数形式を与える.fa
(n)= fs(n−u (U(S)+β)/ (U(
n−n +β)(20)
ここに、βは速度用の制御定数を表わす.よって、(l
9)式、(20)式より、次回運転周波数指令演算回路
7に於いて、
f e(n) = ( f e(n−1) f s(
n−+)) (Ten(s)+ a)/ (Ten(
n−n + a) + f s(n−1) (U(S)
+β) / (U(n−n +β) (21)
が求まる.
即ち、現在のサンプリング情報値((n−1)のサフィ
ックス)より電圧型インバーター1への次回指令周波数
信号fe(n)が求まる.
IOは次回運転電圧指令演算回路で前記した三相電圧型
インバーターlへの次回指令電圧信号V e ( n
)はE/f=CO(励磁電流一定制御)の条件を満たす
べき要請より
Ve(n)=Co fe(n)+R+2+ (2ff
fe(n)Ill ) 2◆I (n−1>
(2 2)と定められる。-1) to be input to the next operating frequency command calculation circuit 7. Letting the film winding speed command value signal be U(s), the motor's next rotational speed command frequency signal f, (.)
As with torque, we give the following functional form. Fa
(n) = fs(n-u (U(S)+β)/(U(
nn + β) (20) Here, β represents the control constant for speed. Therefore, (l
From formulas 9) and (20), in the next operation frequency command calculation circuit 7, f e (n) = ( f e (n-1) f s (
n-+)) (Ten(s)+ a)/ (Ten(
n-n + a) + f s(n-1) (U(S)
+β) / (U(n-n +β) (21)
is found. That is, the next command frequency signal fe(n) to the voltage type inverter 1 is determined from the current sampling information value (suffix of (n-1)). IO is the next operating voltage command calculation circuit and the next command voltage signal V e (n
) is Ve(n)=Co fe(n)+R+2+ (2ff
fe(n)Ill ) 2◆I (n-1>
(2 2).
ここに、R1は誘導モーターに於けるステーターθ巻線
抵抗(一次抵抗)であり、二次抵抗R2の如く温度変化
が少いためその影響は受け難い.I (n−1)は電流
センサーCTより得られる一次側1流の現在値信号であ
り、これは一次漏れリアクタニスXi の存在によりサ
ンプリング時間(talons e c)を考慮すれば
変分は無視できる.而して、(22)式が次回指令電圧
信号Ve(n)を社定する定義式であると考えてよい.
(効 果)
而して,本発明は叙上の如き4s威及び作用を有すZの
で下記の如き効果がある.
請求項lの記載に於いて.
励磁電流IIo1を一定に保つための電圧の実効信■l
を容易に得ることが出来、モーターの制御がねい易い.
請求項2の記載に於いて.
次回指令電圧信号V e (。)を容易に得ることが出
来、きわめて高精度の制御が迅速に出来る.Here, R1 is the stator θ winding resistance (primary resistance) in the induction motor, and like the secondary resistance R2, it is not affected by temperature changes because it is small. I (n-1) is the current value signal of the primary side 1 current obtained from the current sensor CT, and due to the existence of the primary leakage reactor varnish Xi, the variation can be ignored if the sampling time (talons e c) is taken into consideration. Therefore, equation (22) can be considered to be the defining equation for determining the next command voltage signal Ve(n). (Effects) Since the present invention has the above-mentioned 4S power and function, it has the following effects. In the statement of claim l. Effective signal of voltage to keep excitation current IIo1 constant ■l
can be easily obtained, and the motor is easy to control. In the statement of claim 2. The next command voltage signal V e (.) can be easily obtained, and control with extremely high precision can be performed quickly.
第1図は三相捲線型誘導モーターの等価原理図、第2図
は三相誘導モーターのT型定常等価回路図、第3図は周
波数をバラメーターとしたモーターの回転速度とトルク
との関係を示す図,第4図はモーターについて励磁電流
IIolを一定に保った場合のすべり周波数とトルクと
の関係を示す図である。
第5図はフィルム捲取方法を示すブロックダイヤグラム
である.
l・●●三相電圧型インバーター
2●●●三相誘導モーター
4−●Cフィルム
7●●●次回運転周波数指令演算回路
10−●●次回運転電圧指令演算回路
fe(n)・●・次回指令周波数信号
V e ( n )●・・次回指令電圧信号第
2
図Figure 1 is an equivalent principle diagram of a three-phase wound induction motor, Figure 2 is a T-type steady-state equivalent circuit diagram of a three-phase induction motor, and Figure 3 is the relationship between motor rotation speed and torque using frequency as a parameter. FIG. 4 is a diagram showing the relationship between slip frequency and torque when the excitation current IIol of the motor is kept constant. Figure 5 is a block diagram showing the film winding method. l・●●Three-phase voltage type inverter 2●●●Three-phase induction motor 4-●C film 7●●●Next operation frequency command calculation circuit 10-●●Next operation voltage command calculation circuit fe(n)・●・Next time Command frequency signal V e (n)●...Next command voltage signal Fig. 2
Claims (2)
電流|I_0|を一定に保つための条件式▲数式、化学
式、表等があります▼ を満足すべき必要な電圧の実効値V_1を ▲数式、化学式、表等があります▼ なる式で与えた誘導モーターの制御方法(1) Based on the T-type steady-state equivalent circuit of a three-phase induction motor, find the effective value V_1 of the necessary voltage that satisfies the conditional formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ to keep the excitation current |I_0| constant. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ How to control an induction motor given the formula
御を電圧型インバーターを介して誘導モーターにより行
うものに於いて、 フィルム現在捲取速度信号U_(_n_−_1)とフィ
ルム捲取りテンションの現在値電圧信号T_e_n_(
_r_)_(_n_−_1_)とモーターの回転速度現
在値周波数信号f_m_(_n_−_1_)と現在サン
プリング周波数信号f_e_(_n_−_1_)とを夫
々次回運転周波数指令演算回路7へ入力せしめて演算し
、該演算回路7からの次回指令周波数信号f_e_(_
n_)を前記電圧型インバーターへ入力せしめる一方、
該次回指令周波数信号f_e_(_n_)を次回運転電
圧指令演算回路10へ入力せしめて演算し、次回指令電
圧信号V_e_(_n_)を▲数式、化学式、表等があ
ります▼ なる式で電圧型インバーターへ入力せしめて誘導モータ
ーを制御すべく成したフィルム捲取り方法(2) In cases where the film winding speed and tension are controlled by an induction motor via a voltage inverter, the current film winding speed signal U_(_n_-_1) and the current value of the film winding tension are Voltage signal T_e_n_(
_r_)_(_n_-_1_), motor rotational speed current value frequency signal f_m_(_n_-_1_), and current sampling frequency signal f_e_(_n_-_1_) are respectively input to the next operation frequency command calculation circuit 7 and calculated. , the next command frequency signal f_e_(_
n_) to the voltage type inverter, while
The next command frequency signal f_e_(_n_) is input to the next operating voltage command calculation circuit 10 and calculated, and the next command voltage signal V_e_(_n_) is sent to the voltage type inverter using the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A film winding method developed to control an induction motor by inputting it
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1188553A JPH0356088A (en) | 1989-07-20 | 1989-07-20 | Controlling method for induction motor, and film taking-up method using its controlling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1188553A JPH0356088A (en) | 1989-07-20 | 1989-07-20 | Controlling method for induction motor, and film taking-up method using its controlling method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0356088A true JPH0356088A (en) | 1991-03-11 |
Family
ID=16225711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1188553A Pending JPH0356088A (en) | 1989-07-20 | 1989-07-20 | Controlling method for induction motor, and film taking-up method using its controlling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0356088A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8925624B2 (en) | 2010-04-09 | 2015-01-06 | Denso Corporation | Exhaust heat exchanger |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56110496A (en) * | 1980-01-31 | 1981-09-01 | Meidensha Electric Mfg Co Ltd | Controlling system for induction motor |
JPS6331491A (en) * | 1986-07-23 | 1988-02-10 | Mitsubishi Electric Corp | Controller for air conditioner |
-
1989
- 1989-07-20 JP JP1188553A patent/JPH0356088A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56110496A (en) * | 1980-01-31 | 1981-09-01 | Meidensha Electric Mfg Co Ltd | Controlling system for induction motor |
JPS6331491A (en) * | 1986-07-23 | 1988-02-10 | Mitsubishi Electric Corp | Controller for air conditioner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8925624B2 (en) | 2010-04-09 | 2015-01-06 | Denso Corporation | Exhaust heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krishnan | Selection criteria for servo motor drives | |
Boldea et al. | Vector control of AC drives | |
Bose | Scalar decoupled control of induction motor | |
Krishnan | Control and operation of PM synchronous motor drives in the field-weakening region | |
JPS6148350B2 (en) | ||
WO2006027941A1 (en) | Servomotor current control method and servomotor | |
Moreton | Industrial brushless servomotors | |
JPH0356088A (en) | Controlling method for induction motor, and film taking-up method using its controlling method | |
Brockhurst | Performance equations for dc commutatorless motors using salient-pole synchronous-type machines | |
RU2557071C2 (en) | Method of vector control of three-phase machine rotation speed | |
Stefanovic et al. | The speed-torque transfer function of electric drives | |
JP3994419B2 (en) | Vector control method for AC motor | |
Patra | Study of induction motor drive with direct torque control scheme and indirect field oriented control scheme using space vector modulation | |
JP2673724B2 (en) | Induction motor control method and film winding method using the control method | |
JPS60219983A (en) | Drive controller of induction motor | |
Swami et al. | A Novel E/F Contoller for Squirrel Cage Induction Motor Based on Rotor Flux Orientation | |
Lin et al. | Radial force control of a switched reluctance motor with two-phase sinusoidal excitations | |
JP3754740B2 (en) | Torque control method and torque control device for induction motor | |
Subha Lakshmi et al. | A high efficient 33 level inverter for electric vehicle application using PMSM | |
JPH02136096A (en) | Operation system of three-phase wound-rotor induction motor | |
JPS5846883A (en) | Control system of synchronous motor | |
Wilson | Method of obtaining the transfer function of a two-phase servo motor | |
Yan et al. | A Novel Servo Motor Vector Technique for the Control of Industrial Robots | |
Abdel-Halim | Solid-state controlled single-phase induction motor | |
Liu | Modeling and Simulation of PMSM double-loop control system based on Matlab/Simulink |