JPH0349682A - Novel alpha-l-fucosidase and its preparation - Google Patents

Novel alpha-l-fucosidase and its preparation

Info

Publication number
JPH0349682A
JPH0349682A JP18632289A JP18632289A JPH0349682A JP H0349682 A JPH0349682 A JP H0349682A JP 18632289 A JP18632289 A JP 18632289A JP 18632289 A JP18632289 A JP 18632289A JP H0349682 A JPH0349682 A JP H0349682A
Authority
JP
Japan
Prior art keywords
fucosidase
alpha
fucoside
enzyme
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18632289A
Other languages
Japanese (ja)
Inventor
Tatsurokuro Tochikura
栃倉 辰六郎
Yasunobu Tsuji
辻 安信
Kenji Yamamoto
憲二 山本
Taiko Seo
瀬尾 たい子
Hideo Yamaguchi
山口 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Higashimaru Shoyu Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Higashimaru Shoyu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd, Higashimaru Shoyu Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP18632289A priority Critical patent/JPH0349682A/en
Publication of JPH0349682A publication Critical patent/JPH0349682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To advantageously prepare alpha-L-fucosidase useful for the structural analysis of saccharide chains and the research for the functions of saccharides by culturing a specific microorganism belonging to the genus Bacillus. CONSTITUTION:A microorganism belonging to the genus Bacillus having an activity to produce alpha-L-fucosidase outside the cell is cultured and the alpha-L- fucosidase is collected from the cultured product. The microorganism is separated from a soil in Tatsuno city, Hyogo prefecture as the result of an extensive research of the alpha-L-fucosidase-producing activity-having microorganism in the natural field, has a wide aglicone specificity and produces the alpha-L-focosidase capable of acting on both glycoproteins and glycolipids. The alpha-L-fucosidase never acts on synthetic substrates such as p-nitrophenyl alpha-L-fucoside and methyl alpha-L-fucoside. The alpha-L-fucosidase decomposes both of alpha-1 2, alpha-1 3 and alpha-1 4 fucosyl bonds in natural substrates to liberate L-fucose.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バチルス属に属する細菌により生産されるα
一L−フコシダーゼおよびその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides α
-L-fucosidase and its production method.

(従来の技術) 糖タンパク質や糖脂質などの複合糖質の糖鎖の非還元末
端あるいは枝別れ部分には、α−L−フコシル基が頻繁
に見出され、近年、これの代謝と細胞のガン化に深い関
係があることが示唆されている。例えば、CA19−9
などガングリオシド系の腫瘍マーカーの殆どはL−フコ
シル基を含んでいる。また、細胞のガン化に伴い血中の
L−フコース量が増加することが種々のガン患者で観察
されている。α−L−フコシダーゼはこのようなα−L
−フコシル結合を分解する酵素であり、複合糖質の糖鎖
の構造解析や構造と機能との関連を研究する上でフコー
スを特異的にはずす修飾試薬として重要な意味を持って
いる。α一L−フコシダーゼは細菌からカビ、植物、軟
体動物、啼乳類にいたるまで広く分布している。サザエ
やボウシュウボラ(J, Biochem. , 75
, 509. (1974))などの動物由来の酵素は
広いアグリコン特異性を持っており、p−ニトロフェニ
ルα一L−フコシドのような合成基質およびブタ顎下腺
ムチンや2′−フコシルラクト−スなどに存在するα−
1→2フコシル結合、オロソムコイド(α1一酸性糖タ
ンパク質)などに存在するα−1→3フコシル結合、ヒ
ト母乳由来のラクト−N−フコペンタオース■などに存
在するα−1→4フシコル結合あるいはウシイムノグロ
プリンGなどに存在するα−1→6フコシ ル結合を分
解する。しかしながら、これらは材料の安定供給の面で
工業生産には不利である。
(Prior art) α-L-fucosyl groups are frequently found at the non-reducing ends or branched portions of sugar chains of complex carbohydrates such as glycoproteins and glycolipids, and in recent years, studies have been made on the metabolism and cellular functions of this group. It has been suggested that there is a deep relationship with cancer. For example, CA19-9
Most ganglioside tumor markers, such as L-fucosyl group, contain an L-fucosyl group. Furthermore, it has been observed in various cancer patients that the amount of L-fucose in the blood increases as cells become cancerous. α-L-fucosidase is such a α-L
-It is an enzyme that decomposes fucosyl bonds, and has important significance as a modification reagent that specifically removes fucose in the structural analysis of sugar chains of complex carbohydrates and in the study of the relationship between structure and function. α-L-fucosidase is widely distributed from bacteria to fungi, plants, molluscs, and mammals. Turban shells and mullets (J, Biochem., 75
, 509. (1974)) have broad aglycone specificity, and have a broad aglycone specificity for synthetic substrates such as p-nitrophenyl α-L-fucoside and for porcine submandibular gland mucin and 2'-fucosyllactose. α− that exists
1→2 fucosyl bond, α-1→3 fucosyl bond present in orosomucoid (α1 monoacid glycoprotein), α-1→4 fucosyl bond present in lacto-N-fucopentaose derived from human breast milk, or bovine immunofluorescence. Decomposes the α-1→6 fucosyl bond present in glopurin G, etc. However, these are disadvantageous for industrial production in terms of stable supply of materials.

一方、バチルス属(J, Biochem., 74,
 fl41. (1973))、アスペルギルス属(J
, Biol, chem, , 245, 299.
 (1970)、Biochem, Biopb7t 
Res.Con+mon. , 136, 563. 
(1986) )などの微生物由来の酵素およびアーモ
ンド(J.Bin1  .chew., 257 . 
8205. (19g2))の酵素は厳密なアグリコン
特異性を持っており、p−ニトロフェニルα一L−フコ
シドのような合或基質には作用せず、上記結合のうちの
一種類のみを分解する。そのため、結合様式にかかわら
ずフコースをはずしたい場合には非常に不利である。更
に、いずれの起源の酵素も糖脂質に作用するかどうかは
殆ど調べられていない。従って、広いアグリコン特異性
を有し、糖タンパク質および糖脂質のどちらにも作用し
うる微生物由来のα−L−フコシダーゼの開発が望まれ
る。
On the other hand, the genus Bacillus (J, Biochem., 74,
fl41. (1973)), Aspergillus (J
, Biol, chem, , 245, 299.
(1970), Biochem, Biopb7t
Res. Con+mon. , 136, 563.
(1986)) and enzymes derived from microorganisms such as Almond (J. Bin1.chew., 257.
8205. The enzyme (19g2)) has strict aglycone specificity and does not act on synthetic substrates such as p-nitrophenyl α-L-fucoside, but only breaks down one type of bond. Therefore, it is very disadvantageous when it is desired to remove fucose regardless of the binding mode. Furthermore, it has hardly been investigated whether enzymes of either origin act on glycolipids. Therefore, it is desired to develop a microbial-derived α-L-fucosidase that has broad aglycone specificity and can act on both glycoproteins and glycolipids.

(発明が解決しようとする問題点) 近年、コリネバクテリウム属またはフラボバクテリウム
属(特開昭62−155086号公報)およびフザリウ
ム属(特開昭61−58587号公報)に属する微生物
が、p−ニトロフェニルαL−フコシドのような合成基
質に作用するのみならず天然基質にも作用する広い基質
特異性を持つα一L−フコシダーゼを生産することが見
出だされた。しかしながら、前者の生産する酵素は菌体
内酵素であるため工業生産には不利であること、後者の
酵素はp〜ニトロフェニルα一L−フコシドに比べブタ
胃ムチンなどの大分子の基質に対する作用が弱いこと、
更に、両酵素共に糖脂質に作用するかどうかは調べられ
ておらず、共に満足なものではない。
(Problems to be Solved by the Invention) In recent years, microorganisms belonging to the genus Corynebacterium or Flavobacterium (Japanese Unexamined Patent Publication No. 62-155086) and the genus Fusarium (Japanese Unexamined Patent Publication No. 61-58587) have been It has been found to produce α-L-fucosidase with broad substrate specificity, acting not only on synthetic substrates such as -nitrophenyl αL-fucoside, but also on natural substrates. However, the enzyme produced by the former is an intracellular enzyme, which is disadvantageous for industrial production, and the latter enzyme has a weaker effect on large molecular substrates such as porcine gastric mucin than p~nitrophenyl α-L-fucoside. being weak,
Furthermore, it has not been investigated whether both enzymes act on glycolipids, and neither is satisfactory.

(問題点を解決するための手段) 本発明者らはかかる問題点を解決するためにα一L−フ
コシダーゼ生産能を有する微生物を広く自然界より検索
した。その結果、兵庫県竜野市の土壌より分離された細
菌が、広いアグリコン特異性を有し、糖タンパク質およ
び糖脂質のどちらにも作用しうるα一L−フコシダーゼ
を培養液中に生産することを見出し、本発明を完成した
(Means for solving the problem) In order to solve the problem, the present inventors extensively searched the natural world for microorganisms capable of producing α-L-fucosidase. As a result, bacteria isolated from soil in Tatsuno City, Hyogo Prefecture were found to produce α-L-fucosidase in the culture medium, which has broad aglycone specificity and can act on both glycoproteins and glycolipids. The present invention has been completed.

本発明において用いられる菌株は、以下のような菌学的
性質を有する。
The bacterial strain used in the present invention has the following mycological properties.

(形態的所見) 1.細胞の形態、大きさ:桿菌0.5X4−6μm2.
多形性:なし 3.運動性:あり 4.胞 子:あり    l.OX2.57zm5.胞
子の部位:準端 6.グラム染色性:陽性 (生育状態) 1.肉汁寒天平板培養 集落の形状は円形であり、周縁は金縁で、表面隆起は扁
平状である。又、集落の色調は、乳白色〜白黄色である
(Morphological findings) 1. Cell morphology and size: Bacillus 0.5X4-6μm2.
Polymorphism: None3. Motility: Yes4. Spores: Yes l. OX2.57zm5. Spore part: quasi-end 6. Gram staining: Positive (growth status) 1. The shape of the colony cultured on the broth agar plate is circular, the periphery is gold-rimmed, and the surface ridges are flat. The color tone of the village is milky white to white yellow.

2.肉汁液体培養 生育し混濁する。2. Meat juice liquid culture It grows and becomes cloudy.

3.ゼラチン穿刺培養 液化せず。3. Gelatin puncture culture Does not liquefy.

(生理学的性質) 1.蛸酸塩の還元:陰性 2,硫化水素の生成:陰性 3.インドールの生或:陰性 4.デンプンの分解:陽性 5.カゼインの分解:陰性 6.クエン酸の利用:陰性 7.ウレアーゼ:陰性 8.カ タ ラ ー ゼ:陽性 9.オキシダーゼ:陰性 10, M  R  テ ス ト:陰性11.V  P
  テ ス ト:陰性 12.生育温度:10−44°C 至適温度 30−35°C 13.酸素に対する態度;好気性 14.糖類からの酸およびガスの生成 (+:生成、一:生成せず) 酸   ガス D−グルコース    + D−アラビノース     + D−キシロース    + D−マンニトール     + イノシトール      + ソルビトール       + シ  ヨ  糖         十 メリビオース       + トレハロース       + 15.VP培地−(pH6,O) におけるpHpH5
.48 (6日) 16.食塩含有培地における生育 5% 生育する 7% 生育しない 以上の性質から、Bergey’s Manual o
fロeter−minative Bacleriol
og7,第8版を参照し、この菌株をバチルスに属する
菌株と同定し、バチルス スピイシイズ M2 8 (
Bacillus sp. M2g)  と命名した。
(Physiological properties) 1. Reduction of octopus salt: negative 2, production of hydrogen sulfide: negative 3. Presence of indole: Negative 4. Decomposition of starch: Positive 5. Casein degradation: Negative6. Use of citric acid: Negative7. Urease: Negative 8. Catalysis: Positive9. Oxidase: Negative 10, MR test: Negative 11. V P
Test: Negative12. Growth temperature: 10-44°C Optimal temperature 30-35°C 13. Attitude towards oxygen; aerobic14. Production of acids and gases from sugars (+: produced, -: not produced) Acid Gas D-glucose + D-arabinose + D-xylose + D-mannitol + inositol + sorbitol + sugar Decamelibiose + trehalose + 15 .. VP medium - pH in (pH 6, O) pH 5
.. 48 (6th) 16. Due to the above characteristics, 5% growth in salt-containing medium, 7% growth, and no growth, Bergey's Manual o
froeter-minative Bacleriol
og7, 8th edition, this strain was identified as belonging to Bacillus, and Bacillus spicii M2 8 (
Bacillus sp. M2g).

本菌株は、微生物工業技術研究所に微工研菌寄第107
88号として寄託されている。
This strain was submitted to the Institute of Microbial Technology, No. 107.
It has been deposited as No. 88.

次に、本菌株により生産されるα一L−フコシダーゼの
酵素学的および理化学的性質について記述する。
Next, the enzymatic and physicochemical properties of α-L-fucosidase produced by this strain will be described.

!)酵素の作用 本発明酵素はα一L−フコシドを特異的に加水分解して
L−フコースを遊離する。
! ) Action of the enzyme The enzyme of the present invention specifically hydrolyzes α-L-fucoside to liberate L-fucose.

2)基質特異性 本酵素の種々のα一L−フコシド含有基質に対する作用
を第1表に示した。本酵素はp−ニトロフェニルα一L
−フコシドやメチルα一L−フコシドのような合成基質
には全く作用しない。一方、天然基質中のα−1→2、
α−1→3およびα−1−4フコシル結合のいずれをも
分解し、L−フコースを遊離する。更に合成糖脂質であ
るラクトN−フコペンタオースI−PA.(ラクト−N
フコペンタオースIにフェニルアルキル基が結合)やO
型赤血球膜上のO型活性糖脂質をも分解する。従って、
本発明酵素は従来の微生物起源の酵素のみならずあらゆ
る起源のα−L−フコシダーゼとは全く異なる新しいタ
イプのα−I7−フコシダーゼである。
2) Substrate specificity The action of this enzyme on various α-L-fucoside-containing substrates is shown in Table 1. This enzyme is p-nitrophenyl α-L
-It has no effect on synthetic substrates such as fucoside and methyl α-L-fucoside. On the other hand, α-1→2 in the natural substrate,
Both α-1→3 and α-1-4 fucosyl bonds are broken down, liberating L-fucose. Furthermore, the synthetic glycolipid lacto-N-fucopentaose I-PA. (Lact-N
A phenylalkyl group is bonded to fucopentaose I) or O
It also decomposes type O active glycolipids on type red blood cell membranes. Therefore,
The enzyme of the present invention is a new type of α-I7-fucosidase that is completely different from α-L-fucosidase of any origin, not just conventional enzymes of microbial origin.

なお、本発明酵素のブタ胃ムチン、2′−フコシルラク
ト−スおよび3−フコシルラクト−スに対するKm値は
、それぞれ 8.OXIO−’M,6.3X10−4M
および1.2X10−3Mである。
The Km values of the enzyme of the present invention for pig stomach mucin, 2'-fucosyllactose, and 3-fucosyllactose are 8. OXIO-'M, 6.3X10-4M
and 1.2×10 −3 M.

3》力価の測定法 酵素活性の測定はブタ胃ムチンを基質とし、pH6.0
のリン酸カリウム緩衝液中、37℃で10分間反応を行
い、沸騰浴中3分間加熱して反応を停止した後、遠心し
、その上清中の遊離Lフコース量をブタ肝由来のL−フ
コースデヒドロゲナーゼを用いて測定することにより行
った。酵素の単位は1分間に1μmolのL−フコース
を遊離する酵素量を1ユニットとした。
3》Measurement method for titer Enzyme activity was measured using porcine gastric mucin as a substrate, pH 6.0.
The reaction was carried out for 10 minutes at 37°C in a potassium phosphate buffer of This was done by measuring using fucose dehydrogenase. The enzyme unit was defined as the amount of enzyme that releases 1 μmol of L-fucose per minute.

ヒトO型赤血球膜上に存在するO型活性糖脂質に対する
作用は、O型赤血球に本発明酵素を37℃で1時間作用
させた後、赤血球より糖脂質を抽出し、抗I−1活性を
持つモノクローナル抗体と+2″l−プロテインAを用
いるTLC−イムノステイニング法により確認した。p
−ニトロフェニルグリコシドを基質とした場合には、p
I−T6.0のリン酸カリウム緩衝液中、37℃で反応
を行い、ホウ酸緩衝液(pH9.8)を加えて反応を停
止させた後、遊離のp−ニトロフェノールの量を400
nmの吸光度を測定することにより行った。また、種々
の天然基質や合成糖脂質に対する作用は、ブタ胃ムチン
に準じて行った。
The effect on O-type active glycolipids present on the membrane of human O-type red blood cells was determined by treating O-type red blood cells with the enzyme of the present invention at 37°C for 1 hour, extracting the glycolipids from the red blood cells, and expressing the anti-I-1 activity. This was confirmed by the TLC-immunostaining method using a monoclonal antibody and +2'' l-Protein A.p
- When nitrophenyl glycoside is used as a substrate, p
The reaction was carried out at 37°C in I-T6.0 potassium phosphate buffer, and the reaction was stopped by adding borate buffer (pH 9.8), and the amount of free p-nitrophenol was reduced to 400°C.
This was done by measuring the absorbance at nm. In addition, the effects on various natural substrates and synthetic glycolipids were performed in the same manner as for pig stomach mucin.

4)至適pHおよび安定pH範囲 至適p Hは第1図に示すとおり pI15.5−6.
5であり、安定pH範囲は4℃、63時間の処理条件の
場合、第2図に示すとおりpH4.  5−9.5であ
った。なお、第↑図および第2図において使用した緩衝
液をクエン酸−tlcl:○○、酢酸:▲−▲、クエン
酸二〇一〇、リン酸カリウム●−●、トリスーHCI:
△−△、グリシンーNaOH:■−■で示した。
4) Optimal pH and stable pH range The optimal pH is pI 15.5-6 as shown in Figure 1.
5, and the stable pH range is pH 4.5 as shown in Figure 2 under treatment conditions of 4°C and 63 hours. It was 5-9.5. The buffers used in Figures ↑ and 2 were citric acid-tlcl: ○○, acetic acid: ▲-▲, citric acid 2010, potassium phosphate ●-●, tris-HCI:
Indicated by △-△, glycine-NaOH: ■-■.

5)反応至適温度および安定温度範囲 反応の至適温度は50℃であった。安定温度範囲はpH
7.0.10mMリン酸緩衝液中に各温度で10分間保
温して残存活性を測定した。その結果、本発明酵素は第
3図に示したように、45℃まで安定であり、50℃で
約50%の残存活性を示した。
5) Optimal reaction temperature and stable temperature range The optimal temperature for the reaction was 50°C. Stable temperature range is pH
7. The remaining activity was measured by incubating in 0.10 mM phosphate buffer at each temperature for 10 minutes. As a result, as shown in FIG. 3, the enzyme of the present invention was stable up to 45°C and showed about 50% residual activity at 50°C.

6)精製方法 本発明酵素の精製は、塩析法、各種クロマトグラフ法等
を適宜に組み合わせて行うことができる。
6) Purification method The enzyme of the present invention can be purified by appropriately combining salting-out methods, various chromatographic methods, and the like.

精製の具体例は実施例に示すとおりである。Specific examples of purification are as shown in Examples.

7)分子量 本発明酵素の分子量はトヨパール}IW65Fを用いる
ゲル濾過法により約285、000と測定された。
7) Molecular Weight The molecular weight of the enzyme of the present invention was determined to be approximately 285,000 by gel filtration using Toyopearl IW65F.

8)ポリアクリルアミド電気泳動 精製された酵素は、ポリアクリルアミド電気泳動におい
て単一のバンドを示した。
8) Polyacrylamide electrophoresis The purified enzyme showed a single band in polyacrylamide electrophoresis.

9)阻害剤等の影響 本酵素に対する種々の添加物質の影響について検討した
ところ、水銀(1mM)により著しく阻害されたが、そ
の他の金属イオン(1mM)やS1I試薬(1mM)お
よび糖(10mM)によりほとんど影響を受けなかった
9) Effects of inhibitors, etc. When we investigated the effects of various additives on this enzyme, it was found that it was significantly inhibited by mercury (1mM), but other metal ions (1mM), S1I reagent (1mM), and sugar (10mM) was hardly affected.

次に本発明をより具体的に説明する。Next, the present invention will be explained in more detail.

本発明に使用する微生物は、バチルス属に属し、上記性
質を有するα一L−フコシダーゼを生産する能力を持つ
ものであればいかなるものでも良い。
The microorganism used in the present invention may be any microorganism as long as it belongs to the genus Bacillus and has the ability to produce α-L-fucosidase having the above properties.

それらのうち好ましい菌株は、本発明者らにより土壌か
ら分離された M28  株があげられる。
Among them, a preferred strain is M28 strain, which was isolated from soil by the present inventors.

本菌を用いてα−L−フコシダーゼを生産するには、通
常の微生物の培養に用いられるものであれば特に限定さ
れない。
In order to produce α-L-fucosidase using this bacterium, there is no particular limitation as long as it is used for the cultivation of ordinary microorganisms.

炭素源としては例えば、グルコース、フコース、アラビ
ノース、シュークロース、可溶性デンプン、デキストリ
ン、糖蜜、ヒト母乳、プタ胃ムチンなどの糖質、窒素源
としては、ペプトン、酵母エキス、肉エキス、カザミノ
酸、コーンスチープリ力、各種アンモニウム塩、各種哨
酸塩、尿素等が用いられる。また、ブタ胃ムチンのみを
含むものも培地として用いることができる。本発明のα
L−フコシダーゼは、誘導酵素であるゆえ、ブタ胃ムチ
ンやヒト母乳より調製したオリゴ糖などのα−L−フコ
シドを含む糖質を培地に添加すれば、著しく酵素生産量
が増大する。例えば、ブタ胃ムチンを1.0%添加する
ことにより、グルコースを添加した場合に比べ、約15
0倍の本発明αL−フコシダーゼが生産される。培養は
、培地を通常の方法で滅菌し、本発明の菌株を接種し、
25−35℃、pI{6.0−7. 0で2−3日間振
とうまたは通気攪拌により好気的に行う。本酵素は培養
後の菌体を用いた誘導生産によっても得ることができる
Examples of carbon sources include carbohydrates such as glucose, fucose, arabinose, sucrose, soluble starch, dextrin, molasses, human breast milk, and puta gastric mucin. Examples of nitrogen sources include peptone, yeast extract, meat extract, casamino acids, and corn. Steeply force, various ammonium salts, various salt salts, urea, etc. are used. Furthermore, a medium containing only porcine gastric mucin can also be used as a medium. α of the present invention
Since L-fucosidase is an inducible enzyme, if carbohydrates containing α-L-fucoside, such as oligosaccharides prepared from pig stomach mucin or human breast milk, are added to the medium, the amount of enzyme produced can be significantly increased. For example, by adding 1.0% pig stomach mucin, compared to adding glucose, the amount of
0 times more αL-fucosidase of the present invention is produced. For culturing, the medium is sterilized by a conventional method, and the strain of the present invention is inoculated.
25-35°C, pI{6.0-7. It is carried out aerobically by shaking or aerating at 0 for 2-3 days. This enzyme can also be obtained by induced production using cultured bacterial cells.

培養終了後、培養液から、α一L−フコシダーゼを採取
、精製するには既知の方法を組合わせて行うことができ
る。本酵素は培養液中に生産されるので、遠心分離等に
より菌体を除いた培養上澄液を硫安分画後、イオン交換
、ゲル濾過、吸着等のクロマトグラフィーを行い精製す
ることができる。
After completion of the culture, α-L-fucosidase can be collected from the culture solution and purified by a combination of known methods. Since this enzyme is produced in the culture solution, it can be purified by removing the bacterial cells by centrifugation, etc., and fractionating the culture supernatant with ammonium sulfate, followed by chromatography such as ion exchange, gel filtration, or adsorption.

以下、実施例により詳しく説明するが、本発明がこれに
限定されるものではない。
Examples will be described in detail below, but the present invention is not limited thereto.

(実施例) 実施例1 グルコース1%、ペプトン0.5%、酵母エキス0.5
%、塩化ナトリウム0.  5% (pl16.5)を
含む培地を500ml容振とうフラスコに100ml分
注し、滅菌した後、バチルス スビイシイズ M28を
接種し30゜Cで振とう培養し種培養とした。ついでブ
タ胃ムチン2。0%、ペプトン0.5%、酵母エキス0
.  5%、塩化ナトリウム0。
(Example) Example 1 Glucose 1%, peptone 0.5%, yeast extract 0.5
%, sodium chloride 0. 100 ml of a medium containing 5% (pl 16.5) was dispensed into a 500 ml shaking flask, and after sterilization, Bacillus subicii M28 was inoculated and cultured with shaking at 30°C to prepare a seed culture. Next, pig stomach mucin 2.0%, peptone 0.5%, yeast extract 0
.. 5%, 0 sodium chloride.

5%(pII6.5)からなる培地8LをIOL容ジャ
ーファーメンターに入れ、120℃、30分間殺菌した
。冷却後、上記の種培養液を接種し、30℃で3日間、
毎分3.5Lの通気量と毎分350回転の攪拌速度の条
件で培養した。培養終了後、遠心分離により菌体および
不溶物を除き、培養濾液を得た。この濾液をO−4℃に
保ちながら硫安を添加し、33−80%飽和の間の沈殿
画分を採取した。得られた沈殿を10mMリン酸緩衝液
 (pH7.0)に溶解し、同緩衝液で一夜透析した。
8 L of a medium consisting of 5% (pII 6.5) was placed in an IOL jar fermenter and sterilized at 120° C. for 30 minutes. After cooling, inoculate the above seed culture solution and incubate at 30°C for 3 days.
Culture was carried out under conditions of an aeration rate of 3.5 L/min and a stirring speed of 350 revolutions/min. After completion of the culture, bacterial cells and insoluble matter were removed by centrifugation to obtain a culture filtrate. Ammonium sulfate was added to the filtrate while keeping it at O-4°C, and a precipitate fraction between 33 and 80% saturation was collected. The obtained precipitate was dissolved in 10 mM phosphate buffer (pH 7.0) and dialyzed against the same buffer overnight.

この透析内液を同緩衝液で予め平衡化したDEAE−セ
ル口ファインAM力ラム(5.6X45cm)に通し、
同緩衝液で非吸着画分に溶出された活住画分を集め、硫
安を35%飽和になるように加えた。生成した沈殿を遠
心分離により除き、35%飽和硫安を含む10mMリン
酸緩衝液(p}17.0)で平衡化したトヨパールlI
W65Cカラム(6.OX26cm)に通し、吸着した
酵素を10%(w/ v )硫安を含む同緩衝液で溶出
した。活性画分を集め、硫安を80%飽和になるように
加えた。生成した沈殿を1mMリン酸緩衝液(pI−1
7.0)に溶解し、同緩衝液で一夜透析した。この透析
内液を同緩衝液で予め平衡化したハイドロキシルアパタ
イト力ラム(2.6X16cm)に通し、吸着した酵素
をリン酸緩衝液(p117.O)1−200mMのリニ
アーグラジェント法で溶出した。溶出された活性画分を
集めて濃縮し、予め10mMリン酸緩衝液(pH?,O
)で平衡化したトヨパールHW65Fカラム(1,5X
120cm)を用いてゲル濾過を行った。活性画分を集
めて濃縮した後、20%(w/v)硫安を含む10mM
リン酸緩衝液(pl{7.  0)に対して一夜透析し
た。透析内液を同緩衝液で予め平衡化したプチルトヨパ
ール650カラム(1.2X16cm)に通し、20−
O%(W/V)硫安のリニアーグラジエント法で溶出し
た。活性画分を集めて濃縮した後、10mMリン酸緩衝
液(pH7.0)に対して一夜透析し、α−L−フコシ
ダ−ゼの精製製品700μg (比活性20units
/mg,収率0.9%)を得た。
This dialysate solution was passed through a DEAE-cell fine AM force ram (5.6 x 45 cm) that had been equilibrated with the same buffer solution.
The active fraction eluted from the non-adsorbed fraction with the same buffer was collected, and ammonium sulfate was added to achieve 35% saturation. The generated precipitate was removed by centrifugation, and Toyopearl I was equilibrated with 10 mM phosphate buffer (p}17.0) containing 35% saturated ammonium sulfate.
It was passed through a W65C column (6.OX26 cm), and the adsorbed enzyme was eluted with the same buffer containing 10% (w/v) ammonium sulfate. The active fractions were collected and ammonium sulfate was added to achieve 80% saturation. The generated precipitate was diluted with 1mM phosphate buffer (pI-1
7.0) and dialyzed against the same buffer overnight. This dialyzed solution was passed through a hydroxylapatite force column (2.6 x 16 cm) equilibrated in advance with the same buffer, and the adsorbed enzyme was eluted using a linear gradient method from 1 to 200 mM phosphate buffer (p117.O). . The eluted active fractions were collected and concentrated, and prepared in advance with 10 mM phosphate buffer (pH?, O
) equilibrated with Toyopearl HW65F column (1,5X
Gel filtration was performed using a filter (120 cm). After collecting and concentrating the active fractions, 10 mM containing 20% (w/v) ammonium sulfate
Dialyzed overnight against phosphate buffer (pl{7.0). The dialyzed fluid was passed through a Butil Toyopearl 650 column (1.2 x 16 cm) that had been equilibrated with the same buffer solution, and 20-
Elution was performed using a linear gradient method using O% (W/V) ammonium sulfate. After collecting and concentrating the active fractions, they were dialyzed overnight against 10 mM phosphate buffer (pH 7.0) to obtain 700 μg of purified α-L-fucosidase (specific activity: 20 units).
/mg, yield 0.9%).

実施例2 グルコース0.5%、ペプトン0.5%、酵母エキス0
.  5%、塩化ナトリウム0.5%(pH6.5)を
含む培地500mlを2L容振とうフラスコに分注し、
120℃、20分間滅菌した後、同じ組或の培地で前培
養したバチルス スピイシイズ M28の種菌を5ml
接種し、30℃、一夜振とう培養した。培養終了後、遠
心により菌体を集菌し、生理食塩水で充分洗浄した後、
500mlの2%ブタ胃ムチンを含む20mMリン酸緩
衝液に懸濁し、30℃、24時間振とうし、酵素を誘導
生産した。誘導終了後遠心により菌体を除き、0.  
0 9units/mlの活性を持つ誘導酵素液を得た
Example 2 Glucose 0.5%, peptone 0.5%, yeast extract 0
.. Dispense 500 ml of a medium containing 5% sodium chloride and 0.5% (pH 6.5) into a 2 L shake flask,
After sterilizing at 120°C for 20 minutes, add 5 ml of Bacillus spicii inoculum precultured in the same medium.
It was inoculated and cultured overnight at 30°C with shaking. After culturing, collect the bacterial cells by centrifugation, wash thoroughly with physiological saline,
The enzyme was suspended in 500 ml of 20 mM phosphate buffer containing 2% pig stomach mucin and shaken at 30°C for 24 hours to induce enzyme production. After the induction, the bacterial cells were removed by centrifugation, and the
An induced enzyme solution with an activity of 0.9 units/ml was obtained.

(発明の効果) 以上、説明したように本発明のα一L−フコシダーゼは
糖タンパク質のみならず糖脂質にも作用しかつ広いアグ
リコン特異性を有しているため糖鎖の構造解析や機能の
研究に極めて有用である。
(Effects of the Invention) As explained above, the α-L-fucosidase of the present invention acts not only on glycoproteins but also on glycolipids and has broad aglycone specificity, so it can be used for structural analysis and functional analysis of sugar chains. Extremely useful for research.

また、本発明酵素は菌体外に分泌されるため、フコース
を特異的にはずす修飾試薬として大量かつ安価な供給が
可能である。
Furthermore, since the enzyme of the present invention is secreted outside the bacterial cells, it can be supplied in large quantities and at low cost as a modification reagent that specifically removes fucose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本酵素の至適p I−1を示すグラフ、第2図
は本酵素の安定pHを示すグラフ、第3図は本酵素の安
定温度をしめずグラフである。
FIG. 1 is a graph showing the optimum p I-1 of this enzyme, FIG. 2 is a graph showing the stable pH of this enzyme, and FIG. 3 is a graph showing the stable temperature of this enzyme.

Claims (2)

【特許請求の範囲】[Claims] (1)次の酵素学的性質を有するα−L−フコシダーゼ 〔1〕作用 糖タンパク質や糖脂質などの複合糖質のα−L−フコシ
ド結合に良く作用し、L−フコースを遊離する。 〔2〕基質特異性 本酵素はp−ニトロフェニルα−L−フコシドやメチル
α−L−フコシドのような合成基質には全く作用しない
。一方、天然基質中のα−1→2、α−1→3およびα
−1→4フコシル結合のいずれをも分解し、L−フコー
スを遊離する。更に合成糖脂質であるラクト−N−フコ
ペンタオースI−PA_3(ラクト−N−フコペンタオ
ースIにフェニルアルキル基が結合)やO型赤血球膜上
のO型活性糖脂質をも分解する。 〔3〕至適pHおよび安定pH範囲 至適pHはpH5.5−6.5であり、安定pH範囲は
4℃、63時間の保持条件においてpH4.5−9.5
である。 〔4〕反応至適温度および安定温度範囲 反応の至適温度は50℃であり、pH7.0で10分間
処理した時、45℃まで安定であり、60℃以上で失活
する。 〔5〕分子量 ゲル濾過法により測定した分子量は約285,000で
ある。 〔6〕阻害剤等の影響 水銀により著しく阻害されるが、その他の金属イオンや
SH試薬および糖によりほとんど影響を受けない。
(1) α-L-fucosidase [1] action having the following enzymatic properties It acts well on the α-L-fucoside bonds of complex carbohydrates such as glycoproteins and glycolipids, and liberates L-fucose. [2] Substrate specificity This enzyme does not act at all on synthetic substrates such as p-nitrophenyl α-L-fucoside and methyl α-L-fucoside. On the other hand, α-1→2, α-1→3 and α in natural substrates
- Breaks any of the 1→4 fucosyl bonds, liberating L-fucose. Furthermore, it also decomposes the synthetic glycolipid lacto-N-fucopentaose I-PA_3 (a phenylalkyl group is bonded to lacto-N-fucopentaose I) and the O-type active glycolipid on the O-type red blood cell membrane. [3] Optimal pH and stable pH range The optimal pH is pH 5.5-6.5, and the stable pH range is pH 4.5-9.5 under the holding conditions of 4°C and 63 hours.
It is. [4] Optimal reaction temperature and stable temperature range The optimal temperature for the reaction is 50°C, and when treated at pH 7.0 for 10 minutes, it is stable up to 45°C and is inactivated at 60°C or higher. [5] Molecular weight The molecular weight measured by gel filtration is approximately 285,000. [6] Influence of inhibitors, etc. Although it is significantly inhibited by mercury, it is hardly affected by other metal ions, SH reagents, and sugars.
(2)バチルス属に属し、菌体外にα−L−フコシダー
ゼを生産する能力を有する微生物を培養し、培養物より
α−L−フコシダーゼを採取することを特徴とするα−
L−フコシダーゼの生産方法。
(2) α-L-fucosidase is characterized by culturing a microorganism belonging to the genus Bacillus and having the ability to produce α-L-fucosidase extracellularly, and collecting α-L-fucosidase from the culture.
Method for producing L-fucosidase.
JP18632289A 1989-07-18 1989-07-18 Novel alpha-l-fucosidase and its preparation Pending JPH0349682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18632289A JPH0349682A (en) 1989-07-18 1989-07-18 Novel alpha-l-fucosidase and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18632289A JPH0349682A (en) 1989-07-18 1989-07-18 Novel alpha-l-fucosidase and its preparation

Publications (1)

Publication Number Publication Date
JPH0349682A true JPH0349682A (en) 1991-03-04

Family

ID=16186310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18632289A Pending JPH0349682A (en) 1989-07-18 1989-07-18 Novel alpha-l-fucosidase and its preparation

Country Status (1)

Country Link
JP (1) JPH0349682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741536B1 (en) 1999-02-01 2004-05-25 Matsushita Electric Industrial Co., Ltd. Optical disk drive including a first base portion and a movable second base portion
EP0919237A4 (en) * 1996-01-26 2004-10-13 Takara Bio Inc Apoptosis inducers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919237A4 (en) * 1996-01-26 2004-10-13 Takara Bio Inc Apoptosis inducers
US6741536B1 (en) 1999-02-01 2004-05-25 Matsushita Electric Industrial Co., Ltd. Optical disk drive including a first base portion and a movable second base portion
US6886176B2 (en) 1999-02-01 2005-04-26 Matsushita Electric Industries Co., Ltd. Optical disk drive including a first base portion and a movable second base portion

Similar Documents

Publication Publication Date Title
Boyer et al. Extracellular alkaline amylase from a Bacillus species
JPH0236230B2 (en)
EP0798376B1 (en) Novel keratan sulfate hydrolase
Bakunina et al. α-N-Acetylgalactosaminidase from Marine Bacterium Arenibacter latericius KMM 426 T Removing Blood Type Specificity of A-Erythrocytes
JPH0349682A (en) Novel alpha-l-fucosidase and its preparation
EP0771868B1 (en) Novel deaminoneuraminidase and process for producing the same
JPH04126078A (en) New alpha-l-fucosidase and production thereof
JPH0198485A (en) Production of alpha-n-acetylgalactosaminidase by fungus
JPH067161A (en) New endoglycoceramidase
JPH04200386A (en) Beta-fructofuranosidase and production thereof
JPH04360685A (en) New alpha-l-fucosidase and production thereof
JP2664586B2 (en) Enzymes capable of synthesizing polyphenol glycosides
JPH0795947B2 (en) Method for producing α-1,3-glucanase
US4990450A (en) Method of producing endo-α-N-acetylgalactosaminidase from microorganisms
JPH0568239B2 (en)
JP3617688B2 (en) β-N-acetylglucosaminidase
JPH07184646A (en) New alpha-l-fusidase and its production
JP2623509B2 (en) Method for producing branched maltooligosaccharides
US5968806A (en) Bacillus circulans KsT202 produces keratan sulfate hydrolase
JP3025974B2 (en) Novel enzyme, method for producing the same, and method for producing maltooligosaccharide using the same
JPS63273476A (en) Beta-n-acetylhexosaminidase and production thereof
JPH10201472A (en) Production of alpha-galactosidase and galactooligosaccharide
JPH0154035B2 (en)
JPS61265088A (en) Endo-beta-n-acetylglucosaminidase and production thereof
JPH0251595B2 (en)