JPH03278341A - Fine probe electrode employed recording/reproducing device - Google Patents

Fine probe electrode employed recording/reproducing device

Info

Publication number
JPH03278341A
JPH03278341A JP7706390A JP7706390A JPH03278341A JP H03278341 A JPH03278341 A JP H03278341A JP 7706390 A JP7706390 A JP 7706390A JP 7706390 A JP7706390 A JP 7706390A JP H03278341 A JPH03278341 A JP H03278341A
Authority
JP
Japan
Prior art keywords
recording
electrode
microprobe
recording medium
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7706390A
Other languages
Japanese (ja)
Other versions
JP2703643B2 (en
Inventor
Suomi Kurihara
栗原 須生美
Isaaki Kawade
一佐哲 河出
Kiyoshi Takimoto
瀧本 清
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2077063A priority Critical patent/JP2703643B2/en
Priority to DE69127379T priority patent/DE69127379T2/en
Priority to EP91100321A priority patent/EP0437275B1/en
Priority to CA 2034297 priority patent/CA2034297C/en
Publication of JPH03278341A publication Critical patent/JPH03278341A/en
Priority to US08/240,538 priority patent/US5390161A/en
Application granted granted Critical
Publication of JP2703643B2 publication Critical patent/JP2703643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

PURPOSE:To record and reproduce a recording medium having a rugged surface by specifying a fine probe electrode in shape. CONSTITUTION:The fine probe electrode 3 possesses a probe shaft part whose cross-sectional area changing rate is continuously <=10% along the axial direction of the fine probe electrode 3 by >=5 nm, and a tip part is formed at an end part of the probe shaft part. In order not to allow the fine probe electrode 3 to contact or remarkably approach with its part other than the tip to the rugged recording medium, this can be realized by equalizing all the cross-sectional shapes in the vicinity of the tip of the fine probe electrode positioned within a height of a rugged part of the recording medium. By this method, even on such a recording medium having raggedness, the recording and reproducing of information can accurately be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプローブ電極を用いて、記録媒体に対する電気
的な記録・再生を行なう記録・再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording/reproducing apparatus that performs electrical recording/reproducing on a recording medium using probe electrodes.

〔従来の技術〕[Conventional technology]

近年、メモリ素fの用途は、コンピュータおよびその関
連機器、ビデオディスク、ディジタルオーティオディス
ク等のエレクトロニクス産業の中核をなすものであり、
その開発も極めて活発に進んでいる。
In recent years, the use of memory element f has become the core of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc.
Its development is also progressing very actively.

メモリ素子に要求される性能は用途により異なるが、一
般的には ■高密度で記録容量か大きい ■記録再生の応答速度が速い ■消費電力が少ない ■生産性が高く価格が安い 等が挙げられる。
The performance required of memory devices varies depending on the application, but in general, they include: ■ High density and large storage capacity ■ Fast response speed for recording and playback ■ Low power consumption ■ High productivity and low price. .

従来までは磁性体や半導体を素材とした半導体メモリや
磁気、メモリが主てあったが、近年レーザー技術の進展
にともない有機色素、フォトポリマーなどの有機薄膜を
用いた光メモリによる安価で高密度な記録媒体か登場し
てきた。
Until now, semiconductor memory, magnetism, and memory were mainly made of magnetic materials and semiconductors, but in recent years, with the advancement of laser technology, inexpensive and high-density optical memory using organic thin films such as organic dyes and photopolymers has been developed. Recording media has appeared.

一方、最近、導体の表面原子の電子構造を直接観察てき
る走査型トンネル顕微鏡(ScanningTunne
l Microscope :以後、STMと略す。)
か開発され(G、B1nn1g et al、、 He
1vetica PhysicaActa、 55.7
26 (1982) ) 、単結晶、非晶質を問わず実
空間像の高い分解能の測定ができるようになり、しかも
記録媒体に、電流による損傷を与えずに低電力で観測て
きる利点をも有し、さらに大気中でも動作し種々の劇料
に対して用いることかできるため広範囲な応用が期待さ
れている。
On the other hand, scanning tunneling microscopes (Scanning Tunnel Microscopes), which can directly observe the electronic structure of surface atoms of conductors, have recently been developed.
l Microscope: Hereinafter abbreviated as STM. )
was developed (G, B1nn1g et al., He
1vetica Physica Acta, 55.7
26 (1982)), it became possible to measure real space images with high resolution regardless of whether they were single crystal or amorphous, and it also had the advantage of being able to observe with low power without damaging the recording medium due to current. Furthermore, it is expected to have a wide range of applications because it can operate even in the atmosphere and can be used for various harmful substances.

STMは金属の探針(プローブ電極)と導電性物質の間
に電圧を加えて1r+a+程度の距離まで近づけるとト
ンネル電流が流れることを利用している。この電流は両
者の距離変化に非常に敏感であり、トンネル電流を一定
に保つようにプローブ電極を走査することにより実空間
の表面構造を描くことがてきると同時に表面原子の全電
子雲に関する種々の情報をも読み取ることができる。こ
の際の記録・再生方法としては、粒子線(′N、子線、
イオン線)或いはX線等の高エネルキー電磁波及び可視
・紫外光等のエネルギー線を用いて適当な記録媒体の記
録層の表面状態を変化させて記録を行ない、STMで再
生する方法や、記録層として電圧電流のスイッチンク特
性に対してメモリ効果をもつ材料、例えばπ電子系有機
化合物やカルコゲン化物類の薄膜層を用いて、記録・再
生を、STMを用いて行なう方法等が提案されている(
特開昭63−161552号公報、同63−16155
3号公報、同63−204531号公報等)。
STM utilizes the fact that when a voltage is applied between a metal probe (probe electrode) and a conductive substance and the probe is brought close to a distance of about 1r+a+, a tunnel current flows. This current is very sensitive to changes in the distance between the two, and by scanning the probe electrode while keeping the tunneling current constant, it is possible to draw the surface structure in real space, and at the same time to draw various information about the total electron cloud of surface atoms. Information can also be read. In this case, the recording/reproducing method is particle beam ('N, sagittal beam,
ion beams) or high-energy electromagnetic waves such as X-rays and energy rays such as visible and ultraviolet light to change the surface condition of the recording layer of a suitable recording medium to perform recording and playback with STM. As a method for recording and reproducing data using STM, a thin film layer of materials such as π-electron based organic compounds and chalcogenides, which have a memory effect on the switching characteristics of voltage and current, has been proposed. (
JP 63-161552, JP 63-16155
Publication No. 3, Publication No. 63-204531, etc.).

このような記録・再生の方法で用いられるプローブ電極
の一例を第8図に示す。
FIG. 8 shows an example of a probe electrode used in such a recording/reproducing method.

第8図はプローブ電極81が、表面に凹凸部を有する記
録媒体82に接近した状態を示しており、このようなプ
ローブ電極81においては、先端部の曲率半径が小さい
ほとプローブ電極としての分解能か高いとされている。
FIG. 8 shows a state in which a probe electrode 81 approaches a recording medium 82 having an uneven surface. In such a probe electrode 81, the smaller the radius of curvature of the tip, the better the resolution as a probe electrode. It is said to be expensive.

従来、このような目的で用いられる曲率半径か小さい先
端部をもつプローブ電極は、切削および電解研摩法を用
いて製造されている。切削法では、時計旋盤を用いて繊
維状結晶の線材を切削し、曲率半径5〜10μmの微小
先端部をもつプローブ電極の製造か可能てあり、またタ
イスによる線引加工によれば、曲率半径10μm以下の
ものも可能である。また、電解研摩法は、プローブ電極
となる直径1mm以下の線材を真直に矯正し、垂直にた
てて電解液へ1〜2mm程度浸漬させ、プローブ電極に
電圧を印加して電解液を適宜かくはんしながら、0.5
〜2.0秒間隔で通電を断続させ、プローブ電極を研摩
するものである。この方法によれば先端の曲率半径は0
.05μm程度の小さいものも製造可能となっている。
Conventionally, probe electrodes with tips with small curvature radii used for such purposes have been manufactured using cutting and electrolytic polishing methods. In the cutting method, it is possible to manufacture a probe electrode with a minute tip with a radius of curvature of 5 to 10 μm by cutting a fibrous crystal wire using a watch lathe. A thickness of 10 μm or less is also possible. In addition, the electrolytic polishing method involves straightening a wire rod with a diameter of 1 mm or less that will serve as the probe electrode, standing it vertically and immersing it in an electrolyte solution for about 1 to 2 mm, and applying a voltage to the probe electrode to stir the electrolyte solution as needed. While doing so, 0.5
The probe electrode is polished by intermittent energization at intervals of ~2.0 seconds. According to this method, the radius of curvature at the tip is 0
.. It is now possible to manufacture products as small as 0.05 μm.

また、最近では結晶のファセットに囲まれた尖頭部を用
いたり(特願昭63−226420号)、field 
evaporationの手法(H,W、Fink、 
IBMJournal of Re5earch an
d Development 30.460(+986
))を用いて、プローブ電極の先端の原子数が1個ない
し数個程度の、理論的にも最小の曲率半径を持つプロー
ブ電極が用いられている(R,^1lenspach 
and A、B15chof、^ppHed Phys
icsLetters 54.587 (+989))
Recently, a point surrounded by crystal facets has been used (Patent Application No. 63-226420),
Evaporation method (H, W, Fink,
IBM Journal of Research an
d Development 30.460 (+986
)), a probe electrode is used that has the theoretically smallest radius of curvature, with one to several atoms at the tip of the probe electrode (R, ^1lenspach).
and A, B15chof, ^ppHed Phys
icsLetters 54.587 (+989))
.

このような曲率半径が小さいプローブ電極を用いれば原
子オーダー(数人)での高密度な記録・再生を行なうこ
とができる。
If such a probe electrode with a small radius of curvature is used, high-density recording and reproduction on the atomic order (several people) can be performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のような従来用いられた方法で製造されたプローブ
電極のうち、先端の曲率半径か極めて微小なプローブ電
極を用いれば、完全に平滑な表面を持つ記録媒体に対し
ては極めて高密度に情報を正確に記録することかできる
。しかし、実際には平滑な記録媒体は得難く、記録媒体
表面に大きな凹凸があることが多い。そのような場合、
従来のプローブ電極を用いると、第8図の矢印で示すよ
うに、プローブ電極81と記録媒体82の表面はプロー
ブ電極81の先端以外の部分でも接触あるいは著しく接
近し、該プローブ電極81が記録媒体82の誤った位置
に情報を記録してしまう。このため、上述のようなプロ
ーブ電極で情報を記録した場合、記録した情報か再生で
きなくなったり、プローブ電極の先端の曲率半径にみあ
う記録密度が得られないという問題点がある。従って、
今までは記録媒体表面のごく限られた平滑領域のみが利
用できるに留まっていたため、非常に歩留まりが悪かっ
た。また、第4図のようにトラッキングとして凹凸の溝
をつけた記録媒体を用いた場合、トラッキングの幅を狭
めて記録密度を一層げようとすると、摩擦などによって
破壊されにくい凹部に記録ビットを正確に作成すること
が、前記の理由により難しくなり、逆に、摩擦などによ
って破壊されやすい凸部に、情報を書き込まざるを得な
いという問題点がある。
Among the probe electrodes manufactured by the conventional methods described above, if a probe electrode with an extremely small radius of curvature at the tip is used, it is possible to transfer information at extremely high density to a recording medium with a completely smooth surface. can be recorded accurately. However, in reality, it is difficult to obtain a smooth recording medium, and the surface of the recording medium often has large irregularities. In such a case,
When a conventional probe electrode is used, as shown by the arrow in FIG. 8, the surfaces of the probe electrode 81 and the recording medium 82 come into contact with or come very close to each other in areas other than the tip of the probe electrode 81, and the surface of the probe electrode 81 is connected to the recording medium 82. Information is recorded in the wrong position of 82. For this reason, when information is recorded using the probe electrode as described above, there are problems in that the recorded information cannot be reproduced or a recording density matching the radius of curvature of the tip of the probe electrode cannot be obtained. Therefore,
Until now, only a limited smooth area on the surface of the recording medium could be used, resulting in extremely poor yields. In addition, when using a recording medium with uneven grooves for tracking as shown in Figure 4, if you try to increase the recording density by narrowing the tracking width, it is difficult to accurately place the recording bits in the recesses that are less likely to be destroyed by friction. Due to the above-mentioned reasons, it is difficult to create a disk drive, and on the other hand, there is a problem in that information must be written on a convex portion that is easily destroyed by friction or the like.

本発明は、上記従来の技術の有する問題点に鑑みてなさ
れたもので、表面に凹凸のある記録媒体に対しても、正
確な情報の記録および再生を可能とする、微小プローブ
電極を用いた記録・再生装置を提供することを目的とす
る。
The present invention has been made in view of the problems of the above-mentioned conventional techniques, and uses a microprobe electrode that enables accurate recording and reproduction of information even on recording media with uneven surfaces. The purpose is to provide recording/playback equipment.

[課題を解決するための手段] 本発明の、微小プローブ電極を用いた記録・再生装置は
、 微小プローブ電極と、該微小プローブ電極を介して、電
気メモリ効果を有する記録媒体に電圧を印加する書き込
み電圧印加手段と、前記記録媒体に流れる電流量の変化
を読み取る読み取り手段とを備え、前記微小プローブ電
極を、該微小プローブ電極の先端部と前記記録媒体とを
所定の距離に保ちながら、該記録媒体上で走査して該記
録媒体に対する情報の記録および再生を行なう、微小プ
ローブ電極を用いた記録・再生装置において、前記微小
プローブ電極が、その断面の面積変化率か該微小プロー
ブ電極の軸方向に沿って5nm以上連続して10%以内
であるプローブ軸部を有し、該プローブ軸部の端部に前
記先端部か形成されているものてあり、 微小プローブ電極の、断面の面積変化率が該微小プロー
ブ電極の軸方向に沿って5nm以上連続して10%以内
であるプローブ軸部が、円柱状あるいは角柱状であるも
の、 微小プローブ電極のプローブ軸部の断面の直径あるいは
差し渡しが1nm〜1μmであるもの、微小プローブ電
極が、単結晶体で形成されたもの、 微小プローブ電極が、支持体上に結晶成長されたもの、 微小プローブ電極が、支持体に温度勾配を設けることに
より結晶成長されたもの、 微小プローブ’KPjが、一部開口してレジスト層て被
覆された支持体の、前記開口した部分に結晶成長された
ものがある。
[Means for Solving the Problems] A recording/reproducing device using a microprobe electrode of the present invention includes: a microprobe electrode; and a voltage is applied via the microprobe electrode to a recording medium having an electric memory effect. The apparatus includes a writing voltage applying means and a reading means for reading a change in the amount of current flowing through the recording medium, and the microprobe electrode is moved while the tip of the microprobe electrode and the recording medium are kept at a predetermined distance. In a recording/reproducing device using a microprobe electrode that scans on a recording medium to record and reproduce information on the recording medium, the microprobe electrode has a cross-sectional area change rate or an axis of the microprobe electrode. The micro probe electrode has a probe shaft portion that is continuous for 5 nm or more and within 10% along the direction, and the tip portion is formed at the end of the probe shaft portion, and the cross-sectional area change of the micro probe electrode The probe shaft has a cylindrical or prismatic shape, and the cross-sectional diameter or width of the probe shaft of the microprobe electrode is within 10% continuously for 5 nm or more along the axial direction of the microprobe electrode. 1 nm to 1 μm, the micro probe electrode is formed of a single crystal, the micro probe electrode is grown as a crystal on a support, the micro probe electrode is formed by providing a temperature gradient on the support. There is one in which the microprobe 'KPj is partially opened and the crystal is grown in the open part of a support coated with a resist layer.

[作用] 本発明は、鵞小プローブ電極の先端と記録媒体との距離
を一定に保つことで、該微小プローブ電極と記録媒体と
の間に生じるトンネル電流を一定にして、該記録媒体に
対する記録・再生を行なうものである。
[Function] The present invention maintains the distance between the tip of the microprobe electrode and the recording medium constant, thereby keeping the tunnel current generated between the microprobe electrode and the recording medium constant, and recording on the recording medium.・It performs playback.

この微小プローブ電極が、凹凸のある記録媒体に対して
も、先端以外で記録媒体と接触あるいは著しく接近する
ことかないようにするためには、第2図に示すように、
記録あるいは再生を行なう際、該記録媒体の凹凸部の高
さ内に位置する微小プローブ電極の先端付近の断面の形
状をすべて等しくすることで実現される。ただし、微小
プローブ電極の全ての断面が完全に等しい状態になくて
も等しい状態に近ければ、微小プローブ電極と記録媒体
表面が微小プローブ電極先端以外で接触あるいは著しく
接近する可能性は小さくなる。このような形状とは、す
なわち円柱、角柱あるいはそれらに近い形状である。ま
た、微小プローブ電極の先端部の曲率半径は、該微小プ
ローブ電極先端の断面の半径または最長の差し渡しの半
分の長さを越えることはないので、微小プローブ電極の
断面の面積を小さくすれば、先端部の曲率半径も自動的
に小さくなり、十分な分解能を得ることができる。した
がって、微小プローブ電極の先端と、記録あるいは再生
を行なう際、記録媒体表面の凹凸部の高さ内に位置する
微小プローブ電極の先端部分の断面の直径または差し渡
しの最大値は、使用する記録媒体表面の凹凸の程度にも
よるが、望ましくは1r+m〜1μmであり、さらに望
ましくは1 nrn〜10 nrnである。
In order to prevent this microprobe electrode from coming into contact with or significantly approaching a recording medium other than the tip, even with uneven recording media, as shown in FIG.
When recording or reproducing, this is achieved by making all the shapes of the cross sections near the tips of the micro probe electrodes located within the height of the uneven portion of the recording medium equal. However, even if all the cross sections of the microprobe electrode are not completely equal, if they are close to being equal, the possibility that the microprobe electrode and the surface of the recording medium will come into contact or come very close to each other at a point other than the tip of the microprobe electrode is reduced. Such a shape is a cylinder, a prism, or a shape close to these. In addition, the radius of curvature of the tip of the microprobe electrode does not exceed the radius of the cross section of the tip of the microprobe electrode or half the longest length, so if the area of the cross section of the microprobe electrode is reduced, The radius of curvature of the tip is also automatically reduced, making it possible to obtain sufficient resolution. Therefore, when recording or reproducing, the maximum cross-sectional diameter or width of the tip of the microprobe electrode located within the height of the uneven portion of the surface of the recording medium is determined by the recording medium used. Although it depends on the degree of surface unevenness, it is preferably 1r+m to 1 μm, and more preferably 1 nrn to 10 nrn.

上述のような形状の微小プローブ電極を実現する場合、
該微小プローブ電極を、支持体上に、結晶成長によって
形成したものがある。この場合、支持体表面に無制限に
成長させるよりは、支持体表面の目的とする場所だけに
ごく少数の結晶を成長させた方が後の作業が容易である
。本発明では、結晶成長の領域を限定するため、主とし
て次の2つの方法により形成した微小プローブ電極を用
いることもできる。
When realizing a microprobe electrode with the shape described above,
There is one in which the microprobe electrode is formed on a support by crystal growth. In this case, later operations are easier if a very small number of crystals are grown only at desired locations on the surface of the support, rather than allowing them to grow unlimitedly on the surface of the support. In the present invention, in order to limit the region of crystal growth, microprobe electrodes formed mainly by the following two methods can also be used.

■微小プローブ電極の支持体に温度勾配を設けて、所定
の領域のみが結晶成長条件となるようにする。
(2) A temperature gradient is provided on the support of the microprobe electrode, so that only a predetermined region is subject to crystal growth conditions.

■結晶成長の領域を残して他の表面を適当なレジスト層
で被覆する。
(2) Cover the other surfaces with a suitable resist layer, leaving the area for crystal growth.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

[実施例1] 第1図は本発明の、微小プローブ電極を用いた記録・再
生装置の一実施例を示すブロック図である。
[Embodiment 1] FIG. 1 is a block diagram showing an embodiment of a recording/reproducing apparatus using a microprobe electrode according to the present invention.

この記録・再生装置は、初期状態で高抵抗状態(オフ状
態)となっている、記録媒体2の記録層7の両端に書込
み電圧を印加して、選択的に低抵抗部分(オン状態)を
つ〈フてデータを記録し、再生時には、スイッチング閾
値電圧より小さい電圧を印加して後述するプローブ1か
らトンネル電流を検出することにより、データの再生を
行なうものである。
This recording/reproducing device applies a write voltage to both ends of the recording layer 7 of the recording medium 2, which is in a high resistance state (off state) in the initial state, to selectively change the low resistance portion (on state). Then, data is recorded, and during reproduction, data is reproduced by applying a voltage smaller than the switching threshold voltage and detecting a tunnel current from a probe 1, which will be described later.

この記録・再生装置において、記録媒体2は、基板5、
基板電極6、記録層7とからなり、台座部8上に載置、
固定されている。粗動機構9は、記録媒体2と、プロー
ブ1の支持体4に固定された微小プローブ電極3との距
離を所定の値に保つために、記録媒体2の垂直方向の位
置を粗動制御するためのもので、粗動駆動回路10によ
り駆動される。粗動機構9の下には、さらにXYステー
ジ11か設けられており、記録媒体2の位置をXY力方
向移動可能である。パルス電源12は、微小プローブ電
極3と基板室8i6との間に記録/消去用のパルス電圧
を印加するためのものである。
In this recording/reproducing device, the recording medium 2 includes a substrate 5,
Consisting of a substrate electrode 6 and a recording layer 7, placed on a pedestal 8,
Fixed. The coarse movement mechanism 9 coarsely controls the vertical position of the recording medium 2 in order to maintain the distance between the recording medium 2 and the microprobe electrode 3 fixed to the support 4 of the probe 1 at a predetermined value. It is driven by the coarse movement drive circuit 10. An XY stage 11 is further provided below the coarse movement mechanism 9, and the position of the recording medium 2 can be moved in the XY force directions. The pulse power source 12 is for applying a pulse voltage for recording/erasing between the microprobe electrode 3 and the substrate chamber 8i6.

プローブ電流増幅器13は、微小プローブ電極3のプロ
ーブ電流を増幅してサーボ回路14に送出し、サーボ回
路工4は、プローブ電流増幅器13からの電流か所望の
値になるように微動制御機構15の垂直方向における移
動を制御する。微動制御機構15はXY走査駆動回路1
6によりXY力方向移動が制御される。上述の各回路は
マイクロコンピュータ−17により統括制御され、マイ
クロコンピュータ−17の処理情報は表示装置18に表
示される。
The probe current amplifier 13 amplifies the probe current of the minute probe electrode 3 and sends it to the servo circuit 14, and the servo circuit engineer 4 controls the fine movement control mechanism 15 so that the current from the probe current amplifier 13 reaches a desired value. Controls movement in the vertical direction. The fine movement control mechanism 15 is the XY scanning drive circuit 1
6 controls movement in the XY force directions. The above-mentioned circuits are collectively controlled by a microcomputer 17, and processing information of the microcomputer 17 is displayed on a display device 18.

ここで、本実施例の記録・再生装置に用いたブローブ1
について説明する。
Here, probe 1 used in the recording/reproducing apparatus of this embodiment
I will explain about it.

プローブ1は、第2図に示すように、支持体4に針状の
単結晶体であるウィスカを生成して微小プローブ電極3
としたものであり、その製造方法について第3図を参照
して説明する。
As shown in FIG. 2, the probe 1 generates whiskers, which are needle-shaped single crystals, on the support 4 to form microprobe electrodes 3.
The manufacturing method will be explained with reference to FIG. 3.

まず、1mmφのタングステン線を電解研磨して、突起
部4aを有する支持体4を準備し、該支持体4を、該突
起部4aを突出させてコイル状のヒーター20内に挿入
する。さらに、支持体4の突起部4aの上方に設置した
、タングステンフィラメント21内に、該タングステン
フィラメント21に接するように装入されたウィスカ形
成材料22であるCuを配置する。
First, a support 4 having a protrusion 4a is prepared by electrolytically polishing a 1 mmφ tungsten wire, and the support 4 is inserted into the coil-shaped heater 20 with the protrusion 4a protruding. Further, Cu, which is a whisker-forming material 22, is placed in the tungsten filament 21 placed above the projection 4a of the support 4 so as to be in contact with the tungsten filament 21.

そして、上述の支持体4およびウィスカ形成材料22を
高真空中(10−9mmHg程度)に置き、支持体4を
ヒーター20で加熱する。
Then, the support 4 and the whisker-forming material 22 described above are placed in a high vacuum (about 10 −9 mmHg), and the support 4 is heated with the heater 20 .

このとき、ヒーター20付近の支持体4の温度は約80
0℃、支持体4の先端である突起部4a付近は約600
℃になっており、支持体4内に温度差か生じている。
At this time, the temperature of the support 4 near the heater 20 is approximately 80°C.
At 0°C, the temperature near the protrusion 4a, which is the tip of the support 4, is approximately 600°C.
℃, and there is a temperature difference within the support 4.

次に、支持体4の上部に配置したタングステンフィラメ
ント21を約1000℃に熱し、該タングステンフィラ
メント21に接して配置したウィスカ形成材料22であ
るCuを約IO分間熱発させたところ、他の部分より温
度の低い支持体4の突起部4aの先端付近にウィスカ3
が成長した。
Next, the tungsten filament 21 placed on the top of the support 4 was heated to about 1000°C, and Cu, which is the whisker-forming material 22 placed in contact with the tungsten filament 21, was heated for about 10 minutes. A whisker 3 is formed near the tip of the protrusion 4a of the support 4 which has a low temperature.
has grown.

同条件で数個の支持体にウィスカを成長させ、第3図の
微小プローブ電8i3のように上方に向かって1本だけ
ウィスカが成長している支持体4をプローブ1として選
んだ。このウィスカは太さ約5nm、長さ10μたった
。また、その形状は円柱状あるいは角柱状のものであっ
た。
Whiskers were grown on several supports under the same conditions, and the support 4 on which only one whisker had grown upward, as shown in the microprobe electrode 8i3 in FIG. 3, was selected as the probe 1. This whisker was approximately 5 nm thick and 10 μm long. Moreover, the shape was cylindrical or prismatic.

本実施例では、凹凸のある記録媒体の凹部にも情報を書
き込むことを可能とするため、上述のように、微小プロ
ーブ電8i3を針状の単結晶体であるウィスカ(Whi
sker)で形成したものであり、このウィスカは下記
のような特徴を有するものである。
In this embodiment, in order to make it possible to write information even in the concave portions of a recording medium having concavities and convexities, the micro probe electrode 8i3 is attached to a whisker (whisker), which is a needle-like single crystal, as described above.
sker), and this whisker has the following characteristics.

・ウィスカは極めて細くかつ太さか−様な針状結晶であ
る。
・Whiskers are extremely thin and thick needle-like crystals.

・結晶条件を整えれば、直径は5〜20nm以内にする
ことができるため、微小プローブ電極先端部の曲率半径
も該範囲の半分に収まる。
- If the crystal conditions are adjusted, the diameter can be made within 5 to 20 nm, so the radius of curvature of the tip of the microprobe electrode also falls within half of this range.

・Au、Pt、W等電極に良く用いられる金属を始めと
して、多くの金属、絶縁物がウィスカになりつる。
・Many metals and insulators, including metals commonly used for electrodes such as Au, Pt, and W, become whiskers.

・ウィスカは一般の単結晶より格子欠陥が著しく小さい
単結晶であるため、細長い形状をしているにも関わらず
、極めて優れた機械的強度を持っている。
・Since whiskers are single crystals with significantly smaller lattice defects than ordinary single crystals, they have extremely high mechanical strength despite their elongated shape.

・研磨等のプローブ電極の表面が汚染されやすい手段は
特に必要としない。
・Measures that easily contaminate the surface of the probe electrode, such as polishing, are not particularly required.

以上に説明した記録・再生装置の性能を調べるため、記
録媒体2には第4図に示すように記録層7に凹凸の筋状
構造があり、凹凸の大きさが以下のように異なる4種類
を用いた。
In order to investigate the performance of the recording/reproducing device described above, the recording medium 2 has a striated structure of unevenness on the recording layer 7 as shown in FIG. was used.

(1)凹部の幅=10nm、凹部の深さ=10nm、凸
部の幅=1OnI11 (2)凹部の幅= 20 nm、凹部の深さ=10nm
、凸部の幅=10nm (3)凹部の幅= 50 nm、凹部の深さ= 20 
nm、凸部の幅=20nm (4)凹部の幅=10OnII11、凹部の深さ=30
r+m、凸部の幅=5Or+m 以上の4種類の記録媒体2について、XYステージ11
及び微動制御機構15を制御してプローブ1の微小プロ
ーブ電極3を凹部に沿って動かし、同時に微動制御機構
15で微小プローブ電極3の先端と記録層7の距離を一
定(r+mオーダー)に保ちつつ、記録層7に記録パル
ス電圧を印加して記録を行ない、その後、正確に再生で
きるかとうかを調べた。
(1) Width of recess = 10 nm, depth of recess = 10 nm, width of protrusion = 1OnI11 (2) Width of recess = 20 nm, depth of recess = 10 nm
, Width of convex portion = 10 nm (3) Width of concave portion = 50 nm, Depth of concave portion = 20
nm, width of convex portion = 20 nm (4) width of concave portion = 10OnII11, depth of concave portion = 30
r+m, width of convex portion=5Or+m For the above four types of recording media 2, the XY stage 11
The micro-probe electrode 3 of the probe 1 is moved along the recess by controlling the fine-movement control mechanism 15, while at the same time keeping the distance between the tip of the micro-probe electrode 3 and the recording layer 7 constant (r+m order) using the fine-movement control mechanism 15. A recording pulse voltage was applied to the recording layer 7 to perform recording, and it was then examined whether accurate reproduction could be performed.

その結果、上述のような微小プローブ電極3を用いた記
録・再生装置は、上述の4種全ての記録媒体2について
、凹部に正確に記録することができ、かつ凹部に記録し
た情報を正確に再生できることがわかった。
As a result, the recording/reproducing device using the microprobe electrode 3 described above can accurately record in the recesses of all the four types of recording media 2 described above, and can accurately record information recorded in the recesses. I found out that it can be played.

なお、実施例1で用いた微小プローブ電極3は、使用中
に操作を誤フて試料面にぶつけ、ウィスカの先端を欠い
てしまったが、前記のウィスヵ成長の操作をプローブ1
の支持体4に施したところ、ウィスカの残っている部分
からウィスカが再生し、再び微小プローブ電極として利
用することができた。
Note that the microprobe electrode 3 used in Example 1 was misoperated during use and hit the sample surface, resulting in the tip of the whisker being chipped.
When applied to the support 4, whiskers were regenerated from the remaining portions of the whiskers, and the whiskers could be used again as microprobe electrodes.

ところで、成長したウィスカの直径が希望する大きさに
ならないことがある。しかし、該ウィスカの直径が希望
する値より大きい場合には、ウィスカが単結晶であると
いう利点を生かし、該ウィスカを、ウィスカの先端部の
結晶面より側面の結晶面の方が早く溶融解あるいは蒸発
する条件におけば、希望の大きさの直径に縮めることが
可能である。
By the way, the diameter of the grown whisker may not be as large as desired. However, if the diameter of the whisker is larger than the desired value, taking advantage of the fact that the whisker is a single crystal, the whisker can be melted faster or Under evaporation conditions, it can be reduced to the desired diameter.

また、ウィスカの先端部の形状は必ずしもなめらかでは
ないが、そのような場合には先端部のみをごく短時間電
解液につけるかあるいは高温にする等のなめらかな形状
にする手段をとれば良い。
Further, the shape of the tip of the whisker is not necessarily smooth, but in such a case, it is sufficient to take measures to make it smooth, such as by immersing only the tip in an electrolytic solution for a very short time or heating it to a high temperature.

本実施例のように、微小プローブ電極を、針状の単結晶
体であるウィスカて形成することにより、該微小プロー
ブ電極が極めて細く、かつ、太さか−様なものとなるの
で、表面に凹凸のある記録媒体に対しても、記録および
再生を正確に行なうことができ、記録・再生装置の信頼
性が向上する。また、ウィスカは機械的強度が高いので
、微小プローブ電極としての寿命が長くなるとともに、
誤フて先端部を欠いた場合であっても再成長が可能であ
るので、経済的に有利である。また、ウィスカを支持体
の所定の領域のみに成長させることができるので、微小
プローブ電極の製造か容易なものとなる。
As in this example, by forming the microprobe electrode with whiskers, which are needle-shaped single crystals, the microprobe electrode becomes extremely thin and has a thickness similar to that of the needle, so that the surface is uneven. Recording and reproduction can be performed accurately even on a certain recording medium, and the reliability of the recording/reproducing apparatus is improved. In addition, whiskers have high mechanical strength, so they have a long lifespan as microprobe electrodes, and
Even if the tip is accidentally cut off, regrowth is possible, which is economically advantageous. Furthermore, since the whiskers can be grown only in a predetermined region of the support, manufacturing of the microprobe electrode becomes easy.

[実施例2] 次に、本発明の記録・再生装置に用いるプローブの第2
実施例について、第5図を参照して説明する。
[Example 2] Next, the second probe used in the recording/reproducing apparatus of the present invention will be described.
An example will be described with reference to FIG.

本実施例のプローブ51は、支持体54がAgの単結晶
で、その」二部の而52は結晶面(1,11)が2面、
(100)か2面の4面からなっている。
In the probe 51 of this embodiment, the support 54 is made of a single crystal of Ag, and the second part 52 has two crystal planes (1, 11).
It consists of four sides, two of which are (100).

このプローブ51の支持体54に対して、前述の実施例
1の場合と同様なウィスカ成長の操作を施した。たたし
、本実施例の場合、蒸発させたウィスカ形成材料22が
Agであり、タングステンフィラメント21の加熱温度
を約800℃にした点が異なっている。この操作の結果
、各2面ずつの(111)面(100)面に囲まれた支
持体54の尖頭部に<110>の成長方位を持つAgの
ウィスカがエピタキシャル成長した。成長したウィスカ
の太さは約10nm、長さは15μmであった。
The support 54 of this probe 51 was subjected to the same whisker growth operation as in Example 1 described above. However, this embodiment differs in that the evaporated whisker-forming material 22 is Ag and the heating temperature of the tungsten filament 21 is approximately 800°C. As a result of this operation, Ag whiskers having a <110> growth direction were epitaxially grown on the pointed end of the support 54 surrounded by two (111) planes and (100) planes. The grown whiskers had a thickness of about 10 nm and a length of 15 μm.

上述のようにウィスカが成長したプローブ51を実施例
1と同様に、第1図の記録・再生装置のプローブlとし
て組み込んだ。このようにして作成した装置を用いて実
施例1と同様に凹凸部の形状が(1)〜(4)の4種の
記録媒体について記録を行ない、その後、正確に再生で
きるかどうかを調べた。
The probe 51 on which whiskers have grown as described above was incorporated as the probe 1 in the recording/reproducing apparatus shown in FIG. 1 in the same manner as in Example 1. Using the device created in this manner, recording was performed on four types of recording media with uneven portion shapes (1) to (4) in the same manner as in Example 1, and it was then examined whether accurate reproduction could be performed. .

その結果、本実施例のプローブ51を用いた場合、記録
媒体(2)、(3)、(4)については、該記録媒体の
凹部に正確に記録することができ、かっ凹部に記録した
情報を正確に再生できた。しかし、記録媒体(1)につ
いては、該記録媒体の凹部に正確に記録することができ
ず、また、実施例1で説明したプローブ1を用いて記録
媒体(1)の凹部に正確に記録した情報を、再生するこ
ともできなかった。
As a result, when the probe 51 of this embodiment is used, recording media (2), (3), and (4) can be accurately recorded in the recesses of the recording media, and the information recorded in the recesses in parentheses can be recorded accurately. could be played accurately. However, regarding the recording medium (1), it was not possible to accurately record on the concave portions of the recording medium, and it was not possible to accurately record on the concave portions of the recording medium (1) using the probe 1 described in Example 1. The information could not be reproduced.

また、本実施例で作成したプローブ51に関して実施例
1と同様にウィスカの再生を試みたところ、これは成功
した。
In addition, an attempt was made to regenerate whiskers in the same manner as in Example 1 with respect to the probe 51 produced in this example, and this was successful.

[実施例3] 次に、本発明の記録・再生装置に用いるプローブの第3
実施例について説明する。
[Example 3] Next, the third example of the probe used in the recording/reproducing apparatus of the present invention will be described.
An example will be explained.

第6図に本実施例のプローブ61を示す。FIG. 6 shows the probe 61 of this embodiment.

本実施例のプローブ61は、第6図に示すように、Si
基板64上に、先端にAu−Si合金部65を有するウ
ィスカから成る微小プローブ電極63を備えたもので、
Si基板64および微小プローブ電極63の表面はAu
−Pd層62でコーティングされて導電性を有するもの
となっている。
The probe 61 of this embodiment is made of Si as shown in FIG.
A micro probe electrode 63 made of a whisker having an Au-Si alloy portion 65 at the tip is provided on a substrate 64.
The surfaces of the Si substrate 64 and the microprobe electrode 63 are made of Au.
- It is coated with a Pd layer 62 and has electrical conductivity.

本実施例では、上述の微小プローブ電$463としての
ウィスカを形成するために、v x= s ?j=(R
,5JAGNERand W、C,ELLIS:  ^
PPLIED PHYSIGSLETTER54(19
86)、89)と呼ばれるウィスカ作成法を利用した。
In this example, in order to form a whisker as the above-mentioned micro probe voltage $463, v x= s ? j=(R
,5JAGNERand W,C,ELLIS: ^
PPLIED PHYSIGSLETTER54 (19
A whisker creation method called 86), 89) was used.

このVLS法の原理は、Si基板上に融解したAu−S
i合金の液滴を作り、5iC14の雰囲気下におくと気
体中のSiがAu−Si液滴に溶けて過飽和状態になり
、SiがAu−Si液滴の下で析出するので、Au−S
i液滴を持ち上げるようにSiからなるウィスカが成長
するというものである。
The principle of this VLS method is that Au-S is melted on a Si substrate.
When a droplet of i alloy is made and placed in an atmosphere of 5iC14, Si in the gas dissolves into the Au-Si droplet, resulting in a supersaturated state, and Si precipitates under the Au-Si droplet.
A whisker made of Si grows to lift the i-droplet.

以下にVLS法を応用したプローブ作成法を、第7図を
参照して説明する。
A method for producing a probe using the VLS method will be described below with reference to FIG.

ます、支持体としてはSi単結晶のSi基板64を用意
し、その(i i i)面上にレジストを塗布してレジ
スト層66を形成する。次に、電子線を用いてレジスト
層66に約1μmφの穴67を5111m間隔に開け、
その上部からAuをごく少量蒸着し、レジスト層66を
Si基板64から剥離した。Auの蒸着量は水晶振動子
の膜厚計によると0.2nmだったが、蒸着されたAu
はその膜厚の薄膜になったわけではなく、実際には平均
の直径が20nmのAu粒子68になっていて、レジス
ト層66の8穴67に該粒子が1〜数個蒸着されていた
First, a Si single-crystal Si substrate 64 is prepared as a support, and a resist layer 66 is formed by applying a resist onto the (i ii ) plane thereof. Next, holes 67 with a diameter of about 1 μm are opened in the resist layer 66 at intervals of 5111 m using an electron beam.
A very small amount of Au was deposited on top of the resist layer 66, and the resist layer 66 was peeled off from the Si substrate 64. The amount of Au deposited was 0.2 nm according to the thickness meter of the crystal resonator, but the amount of Au deposited was 0.2 nm.
The film was not as thin as that, but in fact, it was Au particles 68 with an average diameter of 20 nm, and one to several of these particles were deposited in the eight holes 67 of the resist layer 66.

次に、このSi基板64を5II1m角に切り、高分解
能走査型電子顕微鏡(Scanning  Elect
ronMicroscope:SEM)で見て、直径1
0r+m程度のAu粒子68が1個だけ蒸着されている
Si基板64を選んだ。そのSi基板64を炉に入れ、
1000℃の高温にしてAu粒子68を融解した後、約
400℃にして5iC14とH2の混合気体を送り込ん
だところ、3日後に、前述のAuSi合金部合金全65
に持つ、平均の太さが約10nmのウィスカが成長した
。最後に、ウィスカが生成したSi基板64の表面にス
パッタリングによってAu−Pdを厚さ5r+mコーテ
ィングしてAu−Pd層62を形成し、導電性を持たせ
、プローブ61とした。
Next, this Si substrate 64 was cut into 5II 1m square pieces and subjected to a high-resolution scanning electron microscope (Scanning Elect
The diameter is 1 when viewed with a ronMicroscope (SEM).
A Si substrate 64 on which only one Au particle 68 of about 0r+m was evaporated was selected. Put the Si substrate 64 into a furnace,
After melting the Au particles 68 at a high temperature of 1000°C, the temperature was raised to about 400°C and a mixed gas of 5iC14 and H2 was introduced.
Whiskers with an average thickness of about 10 nm grew. Finally, the surface of the Si substrate 64 on which whiskers were generated was coated with Au--Pd to a thickness of 5r+m by sputtering to form an Au--Pd layer 62 to provide conductivity, thereby forming the probe 61.

本実施例では非導電性の材料からなるウィスカに導電性
を持たせるため、Au−Pdをスパッタリングによって
、該ウィスカにコーティングしたが、他にAuやpt等
を用いることができ、また、コーチインク手段もスパッ
タリングに限らず、メツキ、蒸着等がある。
In this example, in order to make the whiskers made of a non-conductive material conductive, Au-Pd was coated on the whiskers by sputtering, but other materials such as Au and PT can be used. The method is not limited to sputtering, but also includes plating, vapor deposition, etc.

上述のようにして作成したプローブ61を実施例!と同
様に、第1図に示した記録・再生装置のプローブとして
組み込み、実施例1と同様に、凹凸部の形状が(1)〜
(4)の4種の記録媒体について記録を行ない、その後
、正確に再生できるかどうかを調べた。
An example of the probe 61 created as described above! Similarly, it is incorporated as a probe in the recording/reproducing apparatus shown in FIG.
Recording was performed on the four types of recording media (4), and then it was examined whether accurate reproduction could be performed.

その結果、本実施例のプローブ61を用いた記録・再生
装置は、記録媒体(2)、(3)、(4)については、
該記録媒体の凹部に正確に記録することかでき、かつ凹
部に記録した情報を正確に再生できた。しかし、記録媒
体(1)については記録媒体の凹部に正確に記録するこ
とができず、また、実施例1で説明したプローブlを用
いて記録媒体(])の凹部に正確に記録した情報を再生
することもてきなかった。
As a result, the recording/reproducing apparatus using the probe 61 of this embodiment has the following characteristics for recording media (2), (3), and (4):
It was possible to accurately record information in the recessed portions of the recording medium, and to reproduce the information recorded in the recessed portions accurately. However, regarding the recording medium (1), it was not possible to accurately record information in the recesses of the recording medium, and information that was accurately recorded in the recesses of the recording medium (]) using the probe l described in Example 1 could not be recorded accurately. I couldn't even play it.

[比較例] つづいて、前述した各実施例1,2.3と比較するため
、1mmφのタングステンを、従来のように電解研磨し
、第8図に示すような形状にしたものを、第1図に示し
た記録・再生装置のプローブ1として組み込み、実施例
1と同様に(1)〜(4)の記録媒体について記録を行
ない、その後、正確に再生できるかどうかを調べた。
[Comparative Example] Next, in order to compare with each of Examples 1 and 2.3 described above, tungsten with a diameter of 1 mm was electrolytically polished in the conventional manner and shaped as shown in Fig. 8. It was incorporated as the probe 1 of the recording/reproducing apparatus shown in the figure, and recording was performed on the recording media (1) to (4) in the same manner as in Example 1, and then it was examined whether accurate reproduction could be performed.

その結果、比較例で作成したプローブ′rL極を用いた
記録・再生装置では、記録媒体(4)については該記録
媒体の凹部に正確に記録することかでき、かつ凹部に記
録した情報を正確に再生てきた。しかし、記録媒体(1
)、(2)、(3)については、該記録媒体の凹部に正
確に記録することができず、また実施例1の装置を用い
て記録媒体(1)、(2)、(3)の凹部に正確に記録
した情報を再生することもできなかった。
As a result, in the recording/reproducing device using the probe 'rL pole made in the comparative example, it was possible to accurately record in the recessed part of the recording medium (4), and to accurately record the information recorded in the recessed part. It has been played. However, the recording medium (1
), (2), and (3), it was not possible to accurately record on the concave portions of the recording medium, and the recording medium (1), (2), and (3) could not be recorded using the apparatus of Example 1. It was also not possible to reproduce the information accurately recorded in the recesses.

ここで、前述の実施例1.2.3および比較例による記
録および再生動作の調査結果を表1に示す。
Here, Table 1 shows the investigation results of the recording and reproducing operations according to the above-mentioned Examples 1.2.3 and Comparative Example.

表 1 ○:正確に記録及び再生のできた紹合せ×:正確に記録
又は再生のできなかった組合せ(1):凹部の幅=10
nm、凹部の深さ=10nm、凸部の幅=10nm (2):凹部の幅=20nm、凹部の深さ=10r++
n、凸部の幅=10nm (3):凹部の幅= 50 nn+、凹部の深さ= 2
0 nm、凸部の幅=20nm (4):凹部の幅=]00r+n+、凹部の深さ= 3
0 nm、凸部の幅=50nm 〔発明の効果〕 以上説明したように本発明によれば、断面の面積変化率
か小さいプローブ軸部に連続して先端部を形成するので
、微小プローブ電極の先端付近で、記録媒体の凹凸の高
さ内に位置する部分の形状がほぼ等しいものとなり、先
端部以外の箇所で記録媒体と接触あるいは著しく接近す
ることがなくなる。それによって、凹凸を有するような
記録媒体に対しても、正確に情報の記録および再生を行
なうことが可能となる。
Table 1 ○: Introducing combinations that could be recorded and reproduced accurately ×: Combinations that could not be recorded or reproduced accurately (1): Width of recess = 10
nm, depth of recess = 10 nm, width of protrusion = 10 nm (2): Width of recess = 20 nm, depth of recess = 10r++
n, Width of convex portion = 10 nm (3): Width of concave portion = 50 nn+, Depth of concave portion = 2
0 nm, width of convex portion = 20 nm (4): Width of concave portion =]00r+n+, depth of concave portion = 3
0 nm, width of convex portion = 50 nm [Effects of the Invention] As explained above, according to the present invention, since the tip portion is formed continuously to the probe shaft portion with a small cross-sectional area change rate, the tip portion of the microprobe electrode is In the vicinity of the tip, the shapes of the portions located within the height of the unevenness of the recording medium are approximately equal, and there is no possibility of contacting or coming very close to the recording medium at any location other than the tip. This makes it possible to accurately record and reproduce information even on a recording medium that has unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の記録・再生装置の一実施例を示すブロ
ック図、第2図は本発明の記録・再生装置に組込まれる
プローブの断面図、第3図は第2図に示すプローブの作
成方法を説明するための図、第4図は記録媒体の形状の
一例を示す斜視図、第5図は本発明の記録・再正装値に
組込まれるプローブの第2実施例を示す斜視図、第6図
は本発明の記録・再生装置に組込まれるプローブの第3
実施例を示す断面図、第7図は第6図に示すプローブの
作成方法を説明するための図、第8図は従来のプローブ
を示す断面図である。なお、第2図および第8図中の矢
印は、プローブから記録媒体へ電流か流れる、プローブ
上の位置を示している。 1.51.61−−・プローブ、 2・・・記録媒体、 3.53.63−・・微小プローブ電極、4.54・・
・支持体、 5・・・基板、     6・一基板電極、7・・・記
録層、    8・・・台座部、9・・・粗動機構、 
 10−・・粗動機構駆動回路、11−XYスf−シ、
  12−パルス電源、13−・・プローブ電流増幅器
、 14−・・サーボ回路、  15・・・微動制御機構、
16・・・XY走査駆動回路、 17・・・マイクロコンピュータ− 18・・・表示装置、   20−・・ヒーター21・
・・タングステンフィラメント、22・・・ウィスカ形
成材料、 52−・・結晶面、   62 =−A u −P d
層、64・・・Si基板、 65・−Au−Si合金部、 66・・・レジスト層、 67・・・穴、 68− A u粒子。
FIG. 1 is a block diagram showing an embodiment of the recording/reproducing apparatus of the present invention, FIG. 2 is a sectional view of a probe incorporated in the recording/reproducing apparatus of the present invention, and FIG. 3 is a cross-sectional view of the probe shown in FIG. 2. FIG. 4 is a perspective view showing an example of the shape of a recording medium; FIG. 5 is a perspective view showing a second embodiment of a probe incorporated in the recording/re-dressing value of the present invention; FIG. 6 shows the third probe incorporated in the recording/reproducing apparatus of the present invention.
FIG. 7 is a cross-sectional view showing an embodiment, FIG. 7 is a view for explaining a method of manufacturing the probe shown in FIG. 6, and FIG. 8 is a cross-sectional view showing a conventional probe. Note that the arrows in FIGS. 2 and 8 indicate positions on the probe where current flows from the probe to the recording medium. 1.51.61--Probe, 2...Recording medium, 3.53.63--Minute probe electrode, 4.54...
-Support, 5...Substrate, 6-One-substrate electrode, 7...Recording layer, 8...Pedestal part, 9...Coarse movement mechanism,
10--Coarse movement mechanism drive circuit, 11-XY S-F-S,
12-pulse power supply, 13--probe current amplifier, 14--servo circuit, 15--fine movement control mechanism,
16...XY scan drive circuit, 17...Microcomputer-18...Display device, 20-...Heater 21.
...Tungsten filament, 22...Whisker forming material, 52-...Crystal plane, 62 =-A u -P d
layer, 64--Si substrate, 65--Au-Si alloy part, 66-- resist layer, 67-- hole, 68--Au particle.

Claims (7)

【特許請求の範囲】[Claims] (1)微小プローブ電極と、該微小プローブ電極を介し
て、電気メモリ効果を有する記録媒体に電圧を印加する
書き込み電圧印加手段と、前記記録媒体に流れる電流量
の変化を読み取る読み取り手段とを備え、前記微小プロ
ーブ電極を、該微小プローブ電極の先端部と前記記録媒
体とを所定の距離に保ちながら、該記録媒体上で走査し
て該記録媒体に対する情報の記録および再生を行なう、
微小プローブ電極を用いた記録・再生装置において、 前記微小プローブ電極が、その断面の面積変化率が該微
小プローブ電極の軸方向に沿って5nm以上連続して1
0%以内であるプローブ軸部を有し、該プローブ軸部の
端部に前記先端部が形成されていることを特徴とする、
微小プローブ電極を用いた記録・再生装置。
(1) A microprobe electrode, a writing voltage applying means for applying a voltage to a recording medium having an electric memory effect via the microprobe electrode, and a reading means for reading a change in the amount of current flowing through the recording medium. , recording and reproducing information on the recording medium by scanning the microprobe electrode over the recording medium while maintaining a predetermined distance between the tip of the microprobe electrode and the recording medium;
In a recording/reproducing device using a microprobe electrode, the microprobe electrode has a cross-sectional area change rate of 5 nm or more continuously along the axial direction of the microprobe electrode.
0% or less, and the tip portion is formed at the end of the probe shaft,
Recording/reproducing device using micro probe electrodes.
(2)微小プローブ電極の、断面の面積変化率が該微小
プローブ電極の軸方向に沿って5nm以上連続して10
%以内であるプローブ軸部が、円柱状あるいは角柱状で
あることを特徴とする請求項1記載の、微小プローブ電
極を用いた記録・再生装置。
(2) The area change rate of the cross section of the microprobe electrode is 100 nm or more continuously along the axial direction of the microprobe electrode.
2. The recording/reproducing device using a microprobe electrode according to claim 1, wherein the probe shaft portion within % is cylindrical or prismatic.
(3)微小プローブ電極のプローブ軸部の断面の直径あ
るいは差し渡しが1nm〜1μmであることを特徴とす
る請求項1あるいは2記載の、微小プローブ電極を用い
た記録・再生装置。
(3) A recording/reproducing device using a microprobe electrode according to claim 1 or 2, wherein the cross-sectional diameter or span of the probe shaft portion of the microprobe electrode is 1 nm to 1 μm.
(4)微小プローブ電極が、単結晶体で形成されたこと
を特徴とする請求項1、2あるいは3記載の、微小プロ
ーブ電極を用いた記録・再生装置。
(4) A recording/reproducing device using a microprobe electrode according to claim 1, 2 or 3, wherein the microprobe electrode is formed of a single crystal.
(5)微小プローブ電極が、支持体上に結晶成長された
ものであることを特徴とする請求項1、2、3あるいは
4記載の、微小プローブ電極を用いた記録・再生装置。
(5) A recording/reproducing device using a microprobe electrode according to claim 1, 2, 3 or 4, wherein the microprobe electrode is crystal-grown on a support.
(6)微小プローブ電極が、支持体に温度勾配を設ける
ことにより結晶成長されたものであることを特徴とする
請求項5記載の、微小プローブ電極を用いた記録・再生
装置。
(6) A recording/reproducing device using a microprobe electrode according to claim 5, wherein the microprobe electrode is crystal-grown by providing a temperature gradient on the support.
(7)微小プローブ電極が、一部開口してレジスト層で
被覆された支持体の、前記開口した部分に結晶成長され
たものであることを特徴とする請求項5記載の、微小プ
ローブ電極を用いた記録・再生装置。
(7) The microprobe electrode according to claim 5, wherein the microprobe electrode is formed by growing crystals on the open portion of a support that is partially opened and covered with a resist layer. Recording/playback device used.
JP2077063A 1990-01-11 1990-03-28 Recording / reproducing device using micro probe electrode Expired - Fee Related JP2703643B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2077063A JP2703643B2 (en) 1990-03-28 1990-03-28 Recording / reproducing device using micro probe electrode
DE69127379T DE69127379T2 (en) 1990-01-11 1991-01-11 Micro probe, manufacturing method for manufacturing the same and information input and / or output device using the same
EP91100321A EP0437275B1 (en) 1990-01-11 1991-01-11 Microprobe, method for producing the same, and information input and/or output apparatus utilizing the same
CA 2034297 CA2034297C (en) 1990-03-28 1991-01-16 Information record/reproducing apparatus and information recording apparatus
US08/240,538 US5390161A (en) 1990-01-11 1994-05-10 Microprobe, method for producing the same, and information input and/or output apparatus utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077063A JP2703643B2 (en) 1990-03-28 1990-03-28 Recording / reproducing device using micro probe electrode

Publications (2)

Publication Number Publication Date
JPH03278341A true JPH03278341A (en) 1991-12-10
JP2703643B2 JP2703643B2 (en) 1998-01-26

Family

ID=13623337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077063A Expired - Fee Related JP2703643B2 (en) 1990-01-11 1990-03-28 Recording / reproducing device using micro probe electrode

Country Status (2)

Country Link
JP (1) JP2703643B2 (en)
CA (1) CA2034297C (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222348A (en) * 1987-03-11 1988-09-16 Canon Inc Device and method for recording
JPS63222347A (en) * 1987-03-11 1988-09-16 Canon Inc Method and device for reproduction
JPH01116940A (en) * 1987-10-29 1989-05-09 Hitachi Ltd Method for recording and reproducing information
JPH01151035A (en) * 1987-12-09 1989-06-13 Hitachi Ltd High density reproducing device and recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222348A (en) * 1987-03-11 1988-09-16 Canon Inc Device and method for recording
JPS63222347A (en) * 1987-03-11 1988-09-16 Canon Inc Method and device for reproduction
JPH01116940A (en) * 1987-10-29 1989-05-09 Hitachi Ltd Method for recording and reproducing information
JPH01151035A (en) * 1987-12-09 1989-06-13 Hitachi Ltd High density reproducing device and recording and reproducing device

Also Published As

Publication number Publication date
JP2703643B2 (en) 1998-01-26
CA2034297C (en) 1997-12-16
CA2034297A1 (en) 1991-09-29

Similar Documents

Publication Publication Date Title
US5390161A (en) Microprobe, method for producing the same, and information input and/or output apparatus utilizing the same
EP0526237B1 (en) Information processing apparatus, and electrode substrate and information recording medium used in the apparatus
WO1992012528A1 (en) Surface atom machining method and apparatus
JPH06187675A (en) Information processor and information processing method using the same
US20180336924A1 (en) Recording medium, method of manufacturing fullerene thin film, recording reproducing apparatus, information recording method, and information reading method
JPH03278341A (en) Fine probe electrode employed recording/reproducing device
JPH01312753A (en) Recording and reproducing device
JP3127341B2 (en) Electrode substrate, method of manufacturing the same, recording medium, and information processing device
JP2603241B2 (en) Recording device and playback device
JP2942013B2 (en) Recording and / or playback device
EP0860816A1 (en) Magnetic recording medium and system
JPH0783942A (en) Probe for scanning probe microscope, its manufacture, recording and reproducing apparatus and fine working apparatus using the probe
JPH02146128A (en) Recording and reproducing device
JP3005077B2 (en) Recording and / or reproducing method and apparatus
JP2872662B2 (en) Recording medium and its erasing method
JPH05234156A (en) Structural body for probe, recorder, information detector, reproducing device and recording and reproducing device
JPH03263633A (en) Device and method for recording/reproducing/erasing
JPH02201753A (en) Recording and reproducing device
JPH06302431A (en) Thin film comprising superfine particle array
KR100693855B1 (en) Polycrystal structure film and method for producing the same
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JP2992908B2 (en) Method for manufacturing substrate electrode and method for manufacturing recording medium
JPH0714224A (en) Recording medium and information processor
JPH09219043A (en) Recording and reproducing device and recording and reproducing method
KR20060023967A (en) Method for making a nano-particualte medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees