JPH03275560A - Light transmissive sintered body of yttrium, aluminum and garnet and production thereof - Google Patents

Light transmissive sintered body of yttrium, aluminum and garnet and production thereof

Info

Publication number
JPH03275560A
JPH03275560A JP7380690A JP7380690A JPH03275560A JP H03275560 A JPH03275560 A JP H03275560A JP 7380690 A JP7380690 A JP 7380690A JP 7380690 A JP7380690 A JP 7380690A JP H03275560 A JPH03275560 A JP H03275560A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum
yttrium
garnet
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7380690A
Other languages
Japanese (ja)
Inventor
Kenichiro Shibata
柴田 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7380690A priority Critical patent/JPH03275560A/en
Publication of JPH03275560A publication Critical patent/JPH03275560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the sintered body having a high purity, high density and excellent light transmissivity by subjecting the high-density sintered body, which is obtd. by molding the high-purity fine powder of yttrium, aluminum and garnet, then sintering the molding, further to an HIP treatment. CONSTITUTION:The high-purity fine powder of the yttrium, aluminum and garnet (hereafter referred to as YAG) is molded is then sintered to have the higher density; thereafter, the molding is subjected to the hot isostatic pressurization treatment under >=500kg/cm<2> at 1500 to 1800 deg.C. The resultant light transmissive sintered body of the YAG has >=75% linear transmissivity of 3mm thickness by IR light of 3 to 4mum wavelength. The YAG powder having >=99.6% purity and >=3m<2>/g specific surface area is more desirable. The molding of the YAG powder is executed by isostatic molding of >=1ton/cm<2> pressure and the sp. gr. of the molding is preferably at >=2.5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は透光性にすぐれた多結晶イットリウム・アル
ミニウム・ガーネット(以下、YAGという)焼結体お
よびその製造方法に係り、特に波長2〜4μmの中赤外
領域での赤外光透過窓として好適な高密度のYAG焼結
体およびその製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a polycrystalline yttrium aluminum garnet (hereinafter referred to as YAG) sintered body with excellent translucency and a method for manufacturing the same, particularly for wavelengths 2 to 2. The present invention relates to a high-density YAG sintered body suitable as a 4 μm infrared light transmitting window in the mid-infrared region, and a method for manufacturing the same.

〈従来の技術〉 Y A G (YsAj sO□)は結晶型が立方晶で
あるため、粒界散乱が起こりにくく、従来各種の製法に
よって透光性焼結体を得る試みがなされている。
<Prior Art> Since YAG (YsAj sO□) has a cubic crystal type, grain boundary scattering is less likely to occur, and attempts have been made to obtain translucent sintered bodies using various manufacturing methods.

例えば特開昭63−260856号公報に示されるよう
に、Zr化合物(ZrO* )を添加して不活性雰囲気
中あるいは水素中において焼結する方法が知られている
。この所謂、常圧焼結法(無加圧焼結法)では、焼結助
剤を添加することが必要であり、上記のZr0mのほか
に酸化マグネシウム(Mg0)あるいは酸化ケイ素(S
ins)も有効であることが知られている。
For example, as shown in JP-A No. 63-260856, a method is known in which a Zr compound (ZrO*) is added and sintered in an inert atmosphere or in hydrogen. In this so-called pressureless sintering method (pressureless sintering method), it is necessary to add a sintering aid, and in addition to the above Zr0m, magnesium oxide (Mg0) or silicon oxide (S
ins) is also known to be effective.

(発明が解決しようとする課題〉 上記した従来の透光性YAG焼結体の製造方法において
は、何れも粉末成形体の無加圧焼結によるものであり、
粒成長のコントロールが難しいために、空孔が残留しや
すく、例えば体積比でlO〜1100ppの空孔が残留
することにより、光が散乱され、直線透過率が低下し、
吸収係数に換算して0、5cm−’程度が限界であった
(Problems to be Solved by the Invention) The above-described conventional methods for producing a translucent YAG sintered body are all based on pressureless sintering of a powder compact,
Since it is difficult to control grain growth, pores tend to remain. For example, if pores with a volume ratio of 10 to 1100 pp remain, light is scattered and the in-line transmittance decreases.
The limit was about 0.5 cm-' in terms of absorption coefficient.

また、緻密化を促進するために焼結助剤を添加する方法
は、焼結助剤が第2相として出現しやすいために組織的
不均一性により光が散乱されたり、焼結助剤自身の不純
物吸収により透光性が低下しやすいため、透光性のレベ
ルが低く、直線透過率が更に低下し、吸収係数が大きく
なる欠点があった。
In addition, the method of adding a sintering aid to promote densification is such that the sintering aid tends to appear as a second phase, which may cause light to be scattered due to structural non-uniformity, or the sintering aid itself may Since the light transmittance tends to decrease due to the absorption of impurities, the light transmittance level is low, the linear transmittance further decreases, and the absorption coefficient increases.

このように、従来の方法で製造された透光性YAG焼結
体では直線透過率が試料厚さ3111111で70%程
度(吸収係数にして0.5cm−’程度)が最大であり
、試料厚さ3mm以上で使用される赤外透過窓の材料に
用いるためには更に直線透過率の向上(即ち、吸収係数
にして0.2〜0.1 cm−’以下)が必要であった
In this way, for the translucent YAG sintered body manufactured by the conventional method, the in-line transmittance is maximum at about 70% (absorption coefficient is about 0.5 cm-') at a sample thickness of 3111111, and In order to use it as a material for an infrared transmission window used at a diameter of 3 mm or more, it was necessary to further improve the in-line transmittance (ie, the absorption coefficient is 0.2 to 0.1 cm-' or less).

この発明は、かかる従来の事情に鑑み、高純度かつ高密
度で透光性のレベルが高く、特に厚さ3mm以上の赤外
透過窓材として好適な直線透過率(吸収係数)を有する
透光性YAG焼結体、およびその製造方法を提供するこ
とを目的とする。
In view of the above-mentioned conventional circumstances, the present invention provides a light-transmitting material having high purity, high density, and a high level of light-transmitting properties, and having a straight-line transmittance (absorption coefficient) particularly suitable as an infrared-transmitting window material with a thickness of 3 mm or more. The object of the present invention is to provide a YAG sintered body and a method for manufacturing the same.

〈課題を解決するための手段〉 この発明は上記従来法の課題を解決するべく検討の結果
、−旦焼結した高密度YAG焼結体を、さらに高温高圧
で熱間静水圧(HIP)処理することにより、さらに高
密度化を促進し、厚内材料でも透光性にすぐれたYAG
焼結体を製造する方法を見出したのである。
<Means for Solving the Problems> As a result of studies to solve the above-mentioned problems of the conventional method, the present invention is based on the following: - A high-density YAG sintered body that has been sintered is further subjected to hot isostatic pressure (HIP) treatment at high temperature and high pressure. By doing so, it is possible to further increase the density of YAG, which has excellent translucency even in thick materials.
They discovered a method for manufacturing sintered bodies.

即ち、この発明は純度99.6%以上、比表面積3m+
”/g(BET値)以上の高純度で、かつ微細なYAG
粉末を圧力1.0ton/cm”以上で静圧成形し、成
形比重を2.5以上の成形体としたのち、真空または水
素またはヘリウムの雰囲気中で1500〜1800℃の
範囲で2〜24時間焼結して理論密度の95%以上に高
密度化し、次いでこの焼結体をさらに1500〜180
0℃、圧力500〜2000kg/cm”の高圧の・窒
素ガス、アルゴンガスまたは酸素ガスを混合した窒素ガ
スまたはアルゴンガスの雰囲気下でHIP処理すること
によりさらに高密度で透光性にすぐれた透光性YAG焼
結体を提供するものである。
That is, this invention has a purity of 99.6% or more and a specific surface area of 3 m+.
”/g (BET value) or higher purity and fine YAG
The powder is statically molded at a pressure of 1.0 ton/cm" or more to form a compact with a specific gravity of 2.5 or more, and then molded in a vacuum or hydrogen or helium atmosphere at a temperature of 1500 to 1800°C for 2 to 24 hours. The density is increased to 95% or more of the theoretical density by sintering, and then this sintered body is further heated to a density of 1500 to 180%.
By performing HIP treatment in an atmosphere of nitrogen gas, argon gas, or oxygen gas mixed at high pressure of 500 to 2000 kg/cm'' at 0°C, a transparent material with higher density and excellent translucency can be obtained. A photosensitive YAG sintered body is provided.

〈作用〉 この発明において、HIP処理は焼結により95%以上
に高密度化したYAG焼結体の表面を1500〜180
0℃の高温下、500〜2000kg/cm”の高圧で
等方向に圧縮する方向に加圧するため、塑性変形および
拡散機構による空孔の除去が促進され、さらに高密度化
が達成される。これが透光性の向上に有効に寄与するの
である。HIP処理前の密度が95%未満の場合には残
留空孔の多くが所謂開気孔状態となって高圧ガスが焼結
体内部に侵入してしまうため、HIP処理による高密度
化が十分に進行しない。
<Function> In this invention, the HIP treatment reduces the surface of the YAG sintered body, which has been densified to 95% or more by sintering, to a
Because the pressure is applied in the same direction at a high pressure of 500 to 2000 kg/cm'' at a high temperature of 0°C, removal of pores by plastic deformation and diffusion mechanism is promoted, and higher density is achieved. This effectively contributes to improving translucency.If the density before HIP treatment is less than 95%, most of the remaining pores become so-called open pores, allowing high pressure gas to enter the inside of the sintered body. As a result, densification through HIP processing does not proceed sufficiently.

HIP処理における高圧ガスはYAG焼結体に対して等
方向に働くため、従来のホットプレス法による上下方向
のみの加圧よりも均一に高密度化が進行し、透光性の均
一な焼結体が得られる。
Because the high-pressure gas in the HIP process acts on the YAG sintered body in the same direction, the density progresses more uniformly than when pressurizing only in the vertical direction using the conventional hot press method, resulting in uniform sintering with translucency. You get a body.

また焼結時に発生した組成的不均一相も均一化する効果
がある。
It also has the effect of homogenizing the compositionally heterogeneous phases generated during sintering.

高圧ガスの圧力は500〜2000kg/cm”と高圧
であるため、従来のホットプレス法(1000kg/a
m”が限度)よりも空孔の除去効果が大きく、すぐれた
透光性の焼結体が得られる。
Because the pressure of high-pressure gas is as high as 500 to 2000 kg/cm, the conventional hot press method (1000 kg/a
The effect of removing pores is greater than that of the sintered body (limited to m''), and a sintered body with excellent translucency can be obtained.

高圧ガスの種類はアルゴンガスまたは窒素ガスまたは酸
素ガスを混合したアルゴンガスまたは窒素ガスが望まし
く、若干の酸素ガスの混合ガスを使用した場合、HIP
処理時のYAG焼結体からの脱酸素による透光性の低下
を防止できる効果を有する。
The type of high-pressure gas is preferably argon gas, nitrogen gas, or argon gas mixed with oxygen gas, or nitrogen gas, and if a mixed gas with some oxygen gas is used, HIP
This has the effect of preventing a decrease in translucency due to deoxidation from the YAG sintered body during processing.

高圧ガス投入前の焼結は、YAG成形体の焼結による高
密度化過程に於て残留空孔の内部に窒素、アルゴン等の
分子径の大きなガスが取込まれることは以後の高密度化
を阻害するので、この焼結は真空雰囲気または分子径の
小さな水素やヘリウム雰囲気が望ましい。
During sintering before high-pressure gas is introduced, gases with large molecular diameters such as nitrogen and argon may be taken into the residual pores during the densification process by sintering the YAG compact, which will occur during subsequent densification. Therefore, this sintering is preferably performed in a vacuum atmosphere or in a hydrogen or helium atmosphere with a small molecular diameter.

そして焼結条件としては1500〜1800℃で2〜2
4時間が好ましく、第1段階の焼結で理論密度の95%
以上に高密度化される。
The sintering conditions are 1500~1800℃ and 2~2
Preferably 4 hours, 95% of theoretical density in first stage sintering
The density is further increased.

またMgOまたはSingまたはZrO□なとの焼結助
剤を添加した場合には、4〜lO時間程度の短時間保持
でも95%以上の高密度焼結を容易に達成することがで
きる。
Furthermore, when a sintering aid such as MgO, Sing, or ZrO□ is added, high-density sintering of 95% or more can be easily achieved even with a short holding time of about 4 to 10 hours.

この発明において使用するYAG粉末は純度99.6%
以上で比表面積3m”/g(BET値)以上であること
が望ましい。
The YAG powder used in this invention has a purity of 99.6%.
It is desirable that the specific surface area is 3 m''/g (BET value) or more.

これは−次粒子の粒径がおよそ0.4μm以下であるこ
とを示しており、上記の焼結条件で緻密な焼結体を得る
ためには必要な条件である。また純度を99.6%以上
とするのは、不純物が多く含有しているとたとえ十分な
高密度化焼結体が得られたとしても不純物吸収により透
光性の低下をもたらすためである。
This indicates that the particle size of the secondary particles is approximately 0.4 μm or less, which is a necessary condition for obtaining a dense sintered body under the above sintering conditions. The reason why the purity is set to 99.6% or more is that if a large amount of impurities is contained, even if a sufficiently high-density sintered body is obtained, the absorption of impurities will result in a decrease in translucency.

特に、鉄などの遷移金属元素を含むことは好ましくない
In particular, it is not preferable to include transition metal elements such as iron.

このように、高純度でかつ微細なYAG粉末としては、
イツトリウムとアルミニウムの塩化物を溶かした水の中
に硫酸イオンを添加し、さらに尿素を入れて加熱し、Y
AG粉末を沈殿させ、これを乾燥して得られるもの等が
好適である。
In this way, as a highly pure and fine YAG powder,
Sulfate ions are added to water in which yttrium and aluminum chloride are dissolved, and urea is added and heated.
Preferably, it is obtained by precipitating AG powder and drying it.

上記したこの発明の製造方法によると、波長3〜4μm
の赤外光による厚さ3■の直線透過率が75%以上の透
光性YAG焼結体を得ることがきる。
According to the manufacturing method of the present invention described above, the wavelength is 3 to 4 μm.
It is possible to obtain a translucent YAG sintered body having a linear transmittance of 75% or more with a thickness of 3 cm by infrared light.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1 純度99.6%、比表面積3.3m”/g(B E T
値)の高純度YAG粉末を乾燥後、直径30mmのゴム
モールドを用いて2.0ton/c1で静圧成形を行な
い、比重2.6の成形体を得た。
Example 1 Purity 99.6%, specific surface area 3.3 m”/g (B E T
After drying the high-purity YAG powder (value), static pressure molding was performed at 2.0 ton/c1 using a rubber mold with a diameter of 30 mm to obtain a molded body with a specific gravity of 2.6.

この成形体を真空中で1700℃で24時間焼結し、理
論密度比98%以上の焼結体を得た。さらにこの焼結体
をHIP装置に入れ、10%0□−Mの混合ガスを用い
て1750℃、2000kg/cm”で1時間保持した
This molded body was sintered in vacuum at 1700° C. for 24 hours to obtain a sintered body having a theoretical density ratio of 98% or more. Further, this sintered body was placed in a HIP device and maintained at 1750° C. and 2000 kg/cm” for 1 hour using a 10% 0□-M mixed gas.

かくして得られたYAG焼結体を厚さ3mmに鏡面研磨
加工し、赤外分光光度計で透過率を測定したところ、波
長3〜4μmの赤外領域で平均80%の良好な透光性を
示した。
The thus obtained YAG sintered body was mirror-polished to a thickness of 3 mm, and its transmittance was measured with an infrared spectrophotometer, and it was found that it had good transmittance of 80% on average in the infrared region with a wavelength of 3 to 4 μm. Indicated.

実施例2 純度99.8%、比表面積4m”/g  (B E T
値)の高純度YAG粉末を、5 X 10−”torr
の真空中において1750℃で10時間焼結し、理論密
度比96%の白色の焼結体を得た。
Example 2 Purity 99.8%, specific surface area 4 m”/g (B E T
high purity YAG powder of 5 x 10-”torr
The mixture was sintered in a vacuum at 1750° C. for 10 hours to obtain a white sintered body with a theoretical density ratio of 96%.

次に、この焼結体をHIP装置に入れ、Arガスを用い
て1650℃の温度および2000kg/Cm”の圧力
で2時間のHIP処理を行なった。
Next, this sintered body was placed in a HIP apparatus, and HIP treatment was performed using Ar gas at a temperature of 1650° C. and a pressure of 2000 kg/cm'' for 2 hours.

得られたYAG焼結体は外観的に無色透明であった。こ
のYAG焼結体を厚さ3mmに鏡面研磨加工し、分光光
度計で直線透過率を測定したところ、波長3〜5μmの
赤外領域で平均80%、および波長0.4〜3μmの領
域で平均74%のすぐれた透光性を示した。
The obtained YAG sintered body was colorless and transparent in appearance. When this YAG sintered body was mirror-polished to a thickness of 3 mm and the linear transmittance was measured using a spectrophotometer, it was found to be 80% on average in the infrared region of wavelengths 3 to 5 μm, and in the wavelength region of 0.4 to 3 μm. It showed excellent translucency of 74% on average.

実施例3 純度99.7%、比表面積6m”/g  (B E T
値)の高純度YAG粉末を、水素気流中で1780℃、
6時間焼結し、理論密度比96%の白色の焼結体を得た
Example 3 Purity 99.7%, specific surface area 6 m”/g (B E T
High-purity YAG powder of
After sintering for 6 hours, a white sintered body with a theoretical density ratio of 96% was obtained.

更に、この焼結体をHIP装置に入れ、N2ガスを用い
て1700℃の温度および1500kg/cm”の圧力
で3時間のHIP処理を行なった。
Further, this sintered body was placed in a HIP apparatus and subjected to HIP treatment using N2 gas at a temperature of 1700° C. and a pressure of 1500 kg/cm'' for 3 hours.

得られたYAG焼結体は外観的に無色透明であった。The obtained YAG sintered body was colorless and transparent in appearance.

このYAG焼結体を厚さ3mmに鏡面研磨加工し、分光
光度計で直線透過率を測定したところ、波長3〜5μm
の赤外領域で平均81%、および波長0.4〜3μmの
領域で平均72%のすぐれた透光性を示した。
When this YAG sintered body was mirror-polished to a thickness of 3 mm and the linear transmittance was measured with a spectrophotometer, it was found that the wavelength was 3 to 5 μm.
It exhibited excellent light transmittance of 81% on average in the infrared region and 72% on average in the wavelength range of 0.4 to 3 μm.

〈発明の効果〉 以上説明したように、この発明によればYAG成形体を
いったん高密度に焼結したのち、さらに高温高圧でHI
P処理を施すことにより、高密度で透光性にすぐれたY
AG焼結体を得ることができるのである。
<Effects of the Invention> As explained above, according to the present invention, after the YAG molded body is sintered to a high density, it is further HI'd at high temperature and high pressure.
By applying P treatment, Y has high density and excellent translucency.
This makes it possible to obtain an AG sintered body.

また、この発明により得られる透光性YAG焼結体は、
透光性にすぐれているため、3mm以上の厚内で使用さ
れる赤外光透過窓材として有用であることが認められた
Furthermore, the translucent YAG sintered body obtained by this invention is
Because of its excellent light transmittance, it was found to be useful as an infrared light transmitting window material used within a thickness of 3 mm or more.

Claims (4)

【特許請求の範囲】[Claims] (1)イットリウム・アルミニウム・ガーネットからな
り、波長3〜4μmの赤外光による 3mm厚さの直線透過率が75%以上であることを特徴
とする透光性イットリウム・アルミニウム・ガーネット
焼結体。
(1) A translucent yttrium-aluminum-garnet sintered body made of yttrium-aluminum-garnet, characterized in that the in-line transmittance of a 3 mm thick infrared light with a wavelength of 3 to 4 μm is 75% or more.
(2)高純度かつ微細なイットリウム・アルミニウム・
ガーネット粉末を成形後、焼結して高密度化したのち、
1500〜1800℃、500kg/cm^2以上にて
熱間静水圧処理することによりさらに高密度で透光性に
すぐれた焼結体とすることを特徴とする透光性イットリ
ウム・アルミニウム・ガーネット焼結体の製造方法。
(2) High purity and fine yttrium aluminum
After molding the garnet powder and sintering it to make it more dense,
A translucent yttrium aluminum garnet sintered body characterized by a sintered body with higher density and excellent translucency by hot isostatic pressure treatment at 1500 to 1800°C and 500 kg/cm^2 or higher. Method for producing solids.
(3)イットリウム・アルミニウム・ガーネット粉末は
純度99.6%以上で比表面積3m^2/g以上である
ことを特徴とする請求項2記載の透光性イットリウム・
アルミニウム・ガーネット焼結体の製造方法。
(3) The translucent yttrium-aluminum garnet powder according to claim 2, wherein the yttrium-aluminum-garnet powder has a purity of 99.6% or more and a specific surface area of 3 m^2/g or more.
Method for producing aluminum garnet sintered body.
(4)イットリウム・アルミニウム・ガーネット粉末の
成形は圧力1ton/cm^2以上の静圧成形で行ない
、成形比重を2.5以上とすることを特徴とする請求項
2記載の透光性イットリウム・アルミニウム・ガーネッ
ト焼結体の製造方法。
(4) The translucent yttrium-aluminum garnet powder according to claim 2, characterized in that the molding of the yttrium-aluminum-garnet powder is carried out by static pressure molding at a pressure of 1 ton/cm^2 or more, and the molding specific gravity is 2.5 or more. Method for producing aluminum garnet sintered body.
JP7380690A 1990-03-23 1990-03-23 Light transmissive sintered body of yttrium, aluminum and garnet and production thereof Pending JPH03275560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7380690A JPH03275560A (en) 1990-03-23 1990-03-23 Light transmissive sintered body of yttrium, aluminum and garnet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7380690A JPH03275560A (en) 1990-03-23 1990-03-23 Light transmissive sintered body of yttrium, aluminum and garnet and production thereof

Publications (1)

Publication Number Publication Date
JPH03275560A true JPH03275560A (en) 1991-12-06

Family

ID=13528781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7380690A Pending JPH03275560A (en) 1990-03-23 1990-03-23 Light transmissive sintered body of yttrium, aluminum and garnet and production thereof

Country Status (1)

Country Link
JP (1) JPH03275560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253129B2 (en) * 2003-01-27 2007-08-07 Konoshima Chemical Co., Ltd. Rare earth garmet sintered compact
JP2009084060A (en) * 2007-09-27 2009-04-23 Covalent Materials Corp Translucent oxidized yttrium aluminum garnet sintered compact and its producing method
KR20150112997A (en) 2013-02-08 2015-10-07 신에쓰 가가꾸 고교 가부시끼가이샤 Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253129B2 (en) * 2003-01-27 2007-08-07 Konoshima Chemical Co., Ltd. Rare earth garmet sintered compact
JP2009084060A (en) * 2007-09-27 2009-04-23 Covalent Materials Corp Translucent oxidized yttrium aluminum garnet sintered compact and its producing method
KR20150112997A (en) 2013-02-08 2015-10-07 신에쓰 가가꾸 고교 가부시끼가이샤 Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
US9604853B2 (en) 2013-02-08 2017-03-28 Shin-Etsu Chemical Co., Ltd. Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
DE112013006623B4 (en) 2013-02-08 2024-07-11 Shin-Etsu Chemical Co., Ltd. Manufacturing process for a translucent metal oxide sintered body

Similar Documents

Publication Publication Date Title
JP2773193B2 (en) Method for producing translucent yttria sintered body
EP0332393A1 (en) Method of producing a light-transmitting spinel sintered body
Uematsu et al. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake
EP3831797A1 (en) High-strength transparent zirconia sintered body, process for producing the same, and uses thereof
JP2650870B2 (en) Infrared window manufacturing method
JP2834341B2 (en) Method for producing sintered calcium carbonate and sintered calcium carbonate
JPH03275560A (en) Light transmissive sintered body of yttrium, aluminum and garnet and production thereof
JPH0672045B2 (en) Translucent spinel sintered body and method for producing the same
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
JPS5681603A (en) Sintering method for green material of aluminum powder
JP2620288B2 (en) Method for producing translucent spinel sintered body
JP2620287B2 (en) Method for producing translucent spinel sintered body
JPH03275561A (en) Light-transmissive yag sintered body and production thereof
ATE153325T1 (en) METHOD FOR PRODUCING TIGHT-SINTERED CERAMIC COMPONENTS MADE OF SILICON NITRIDE WITH HIGH MECHANICAL STRENGTH
JP2952978B2 (en) Transparent yttria sintered body and method for producing the same
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP2003300777A (en) High purity calcium fluoride sintered compact and production method therefor
JPH0323269A (en) Transparent aluminum oxynitride sintered body and production thereof
JPH01286956A (en) Production of light-transmitting spinel sintered material
JPH06171930A (en) Spinel powder for light transmitting spinel sintered compact and its production
JPH0283270A (en) Glass capsule hip method of ceramic molded article
JPH0323251A (en) Light-transmissive calcium fluoride sintered compact and its production
JPH0248463A (en) Production of light-transmitting spinel calcined compact
JP3103433B2 (en) Method for manufacturing PLZT sintered body
JPH0248462A (en) Production of light-transmitting spinel calcined compact