JPH03273189A - Fuel assembly - Google Patents
Fuel assemblyInfo
- Publication number
- JPH03273189A JPH03273189A JP2074244A JP7424490A JPH03273189A JP H03273189 A JPH03273189 A JP H03273189A JP 2074244 A JP2074244 A JP 2074244A JP 7424490 A JP7424490 A JP 7424490A JP H03273189 A JPH03273189 A JP H03273189A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- burnable poison
- concentration
- fuel assembly
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 217
- 239000002574 poison Substances 0.000 claims abstract description 56
- 231100000614 poison Toxicity 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000009835 boiling Methods 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims 1
- 238000004220 aggregation Methods 0.000 claims 1
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 7
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 110
- 239000011800 void material Substances 0.000 description 13
- 230000009257 reactivity Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 5
- 229910052770 Uranium Inorganic materials 0.000 description 4
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は沸騰水型原子炉(BWR)に用いられる燃料集
合体に関し、特に燃料経済性向上のために燃焼度を高く
した燃料集合体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel assembly used in a boiling water reactor (BWR), and particularly to a fuel assembly with a high burnup to improve fuel economy. .
BWR用燃料集合体は、核燃料を装荷した燃料棒と、そ
れに可燃性毒物を混入した可燃性毒物入り燃料棒(以下
、「ガドリニア人燃料棒」と称す)とを正方格子状に配
列した構造を有している。通常、燃料棒に混入するガド
リニアの濃度とガドリニア人燃料捧の本数とをrAuす
ることで、炉心の反応度特性および熱特性を適切に制御
する。即ち、次の4項目を満たすように、ガドリニア人
燃料棒を設計する。The BWR fuel assembly has a structure in which fuel rods loaded with nuclear fuel and fuel rods containing burnable poison (hereinafter referred to as "Gadolinian fuel rods") are arranged in a square grid. have. Normally, the reactivity and thermal characteristics of the core are appropriately controlled by adjusting the concentration of gadolinia mixed into the fuel rods and the number of gadolinia fuel rods to rAu. That is, the Gadolinian fuel rod is designed to satisfy the following four items.
■所定の運転サイクルの運転が可能であり、その運転サ
イクル中の余剰反応度燃焼変化が設計条件を満たしてい
ること。■It is possible to operate the specified operation cycle, and the change in surplus reactivity combustion during the operation cycle satisfies the design conditions.
■燃料経済性を損なわないように、運転サイクル末期(
EOC)で可燃性毒物が炉心に残っていないこと。■At the end of the driving cycle (
EOC), and no burnable poison remains in the reactor core.
■炉停止余裕を満足していること。■The reactor shutdown margin must be satisfied.
■熱的設計条件を満足していること。■Thermal design conditions must be satisfied.
上記の条件■■を満たすようにガドリニア濃度やガドリ
ニア人燃料棒の本数を決定してやり、同時に、条件■■
を満足できればよい。沸騰水型原子炉の場合、通常、1
つの運転サイクルは12ケ月で、平均濃縮度は3重量%
程度と低い。したがって、抑制すべき余剰反応度は小さ
く、ガドリニア濃度とガドリニア人燃料捧本数の積で示
すガドリニア量は小さくてよい。1つの運転サイクルは
。The gadolinia concentration and the number of gadolinium fuel rods were determined to satisfy the above condition ■■, and at the same time, the condition
It is sufficient if you can satisfy the following. For boiling water reactors, usually 1
One operating cycle is 12 months, with an average concentration of 3% by weight.
The degree is low. Therefore, the surplus reactivity to be suppressed is small, and the amount of gadolinia, which is the product of the gadolinia concentration and the number of gadolinia fuels, may be small. One driving cycle.
原子炉の起動から燃料交換のための原子炉の運転停止ま
での期間をいう。The period from reactor startup to reactor shutdown for fuel exchange.
しかし、近年、濃縮度を増加させて、燃料の取出燃焼度
を伸長させる(!l!転サイクルの期間を長くする)こ
とにより、燃料経済性を向上させることのできる燃料集
合体が考えられている。このタイプの燃料集合体に対し
て、例えば、特開昭62−106391号公報が挙げら
れる。第8図に示す従来技術では、ガドリニア濃度の異
なる2種類以上のガドリニア入燃料捧71および72を
用い、これらをガドリニア濃度にしたがって、第1グル
ープおよび第2グループに分けた時、第1グループのガ
ドリニア反応度価値が1つの運転サイクルでなくなり、
第2グループのガドリニア反応度価値が1つの運転サイ
クル以上持続するように、ガドリニア濃度を調整して、
第1グル〜プが第2グループの外側になるように配置し
ている。However, in recent years, fuel assemblies have been developed that can improve fuel economy by increasing the enrichment and extending the fuel extraction burnup (lengthening the inversion cycle period). There is. Regarding this type of fuel assembly, for example, Japanese Patent Application Laid-Open No. 106391/1982 can be cited. In the prior art shown in FIG. 8, two or more types of gadolinia-containing fuels 71 and 72 with different gadolinia concentrations are used, and when these are divided into a first group and a second group according to the gadolinia concentration, the first group Gadolinia reactivity value disappears in one operating cycle,
adjusting the gadolinia concentration such that the gadolinia reactivity value of the second group persists for more than one operating cycle;
The first group is arranged outside the second group.
沸騰水型原子炉用燃料集合体では、燃料集合体周辺部の
燃料棒と燃料集合体中央部の燃料棒とで中性子スペクト
ルに差が生じる。そのため、新燃料集合体に添加された
可燃性毒物がその燃料集合体に対する最初の運転サイク
ルで燃えつきるように、言いかえれば、可燃性毒物が燃
え残り、次の運転サイクルでむだな熱中性子吸収が生じ
ないように、燃料集合体の横断面内の位置を考慮して可
燃性毒物濃度を設計しなければならない。In a fuel assembly for a boiling water reactor, a difference occurs in the neutron spectrum between the fuel rods at the periphery of the fuel assembly and the fuel rods at the center of the fuel assembly. Therefore, just as the burnable poison added to a new fuel assembly burns out during the first operation cycle of the fuel assembly, in other words, the burnable poison remains unburned and wasteful thermal neutron absorption occurs during the next operation cycle. To prevent this from occurring, the burnable poison concentration must be designed taking into account the position within the cross section of the fuel assembly.
ところが、取出燃焼度がより大きくなった高燃焼度用の
燃料集合体lでは、第9図に示すように燃料集合体内の
横断面における中性子スペクトルの均質性を向上させる
ため、燃料集合体中央部に太径水ロッド7を配置する。However, in high burnup fuel assemblies with a larger extraction burnup, as shown in Figure 9, in order to improve the homogeneity of the neutron spectrum in the cross section within the fuel assembly, the central part of the fuel assembly is A large-diameter water rod 7 is placed in the area.
したがって、燃料集合体の横断面では、中性子スペクト
ルはほぼ同じで、後述するように、その横断面での出力
分41はXfl坦となる。Therefore, in the cross section of the fuel assembly, the neutron spectra are almost the same, and as will be described later, the output portion 41 in the cross section is Xfl flat.
したがって、燃料集合体中央部に太径水ロッドを配置し
た高燃焼度用の燃料集合体では、燃料集合体軸方向のボ
イド率分布を考慮して、可燃性毒物の分布を適切化する
必要があることを、発明者等が発見した。Therefore, in a fuel assembly for high burnup in which a large-diameter water rod is placed in the center of the fuel assembly, it is necessary to optimize the distribution of burnable poisons by considering the void fraction distribution in the axial direction of the fuel assembly. The inventors discovered something.
本発明の目的は、太径水ロッドを有した高燃焼度用燃料
集合体において、燃料経済性を低下させることなく、炉
心の軸方向出力分布の平坦化を図り、炉心安全性を向上
させることができる燃料集合体を提供することにある。An object of the present invention is to flatten the axial power distribution of the reactor core and improve core safety in a high burnup fuel assembly having large diameter water rods, without reducing fuel economy. The objective is to provide a fuel assembly that can.
上記目的を達成するために、炉心上部にあたる高いボイ
ド率の場合、燃料集合体中央部に挿入される太径水ロッ
ドの付近の出力は、他の燃料領域に比べて低下するので
、可燃性毒物濃度は他の燃料領域に比べて小さくする。In order to achieve the above objective, in the case of a high void ratio in the upper part of the core, the output near the large diameter water rod inserted into the center of the fuel assembly is lower than in other fuel areas, so burnable poison The concentration should be small compared to other fuel regions.
さらに、炉心下部に相当する低いボイド率の場合、集合
体の均質性は高められているので、可燃性毒物濃度の差
を小さくする。燃料集合体の軸方向可燃性毒物分布を前
述のように構成することで、軸方向出力分布の平坦化を
実現し、十分なスクラム反応度を確保して炉心の安全性
が向上できる。Furthermore, in the case of a low void fraction corresponding to the lower part of the core, the homogeneity of the aggregate is enhanced, thereby reducing the difference in burnable poison concentration. By configuring the axial burnable poison distribution of the fuel assembly as described above, it is possible to flatten the axial power distribution, ensure sufficient scram reactivity, and improve core safety.
すなわち、本発明は、燃料集合体の中央部に単数または
複数の太径水ロッドを有し、複数の燃料棒が格子状に配
列された沸騰水型原子炉用の燃料集合体において、前記
太径水ロッドに面した領域の燃料棒群に第1可燃性毒物
入燃料棒が混在配置され、この第1可燃性毒物入燃料捧
の配置された領域の外側の領域の燃料棒群に第2可燃性
毒物入燃料棒が混在配置され、第1及び第2可燃性毒物
入燃料棒は可燃性毒物濃度が上下で異なって形成されて
おり、第1可燃性毒物入燃料棒の上部の可燃性毒物濃度
は第2可燃性毒物入燃料棒の上部より低濃度に形成され
、第1及び第2可燃性毒物入燃料棒間の上部同士の可燃
性毒物濃度の差は下部同士の差より大きく形成されてい
ることを特徴とする燃料集合体である。That is, the present invention provides a fuel assembly for a boiling water reactor, which has one or more large-diameter water rods in the center of the fuel assembly, and in which a plurality of fuel rods are arranged in a lattice pattern. The first burnable poison fuel rods are mixedly arranged in the fuel rod group in the area facing the diameter water rod, and the second fuel rod group is arranged in the area outside the area where the first burnable poison fuel rods are arranged. The fuel rods containing burnable poison are arranged in a mixed manner, and the first and second fuel rods containing burnable poison are formed with different concentrations of burnable poison at the top and bottom, and the flammable poison in the upper part of the first fuel rod containing burnable poison is different. The concentration of the poison is lower than that in the upper part of the second burnable poison-filled fuel rod, and the difference in the burnable poison concentration between the upper parts of the first and second burnable poison-filled fuel rods is greater than the difference between the lower parts. This fuel assembly is characterized by:
前記燃料集合体において、太径水ロッドに面した領域の
燃料棒群に可燃性毒物濃度が上下一様に形成された第3
可燃性毒物入燃料棒が混在配置されているものがよい。In the fuel assembly, the fuel rod group in the region facing the large-diameter water rod has a third fuel rod in which the concentration of burnable poison is uniformly formed in the upper and lower part of the fuel rod group.
It is better to have fuel rods containing burnable poison mixed together.
また、太径水ロッドに面した領域の燃料棒群に可燃性毒
物濃度が上部より下部の方が低く形成された第3可燃性
毒物入燃料棒が混在配置されているものがよい。また、
第1可燃性毒物入燃料棒の上部の可燃性毒物濃度が零又
は他部の可燃性毒物濃度のうち最小のものの半分以下で
あるものがよい。また、第1及び第2可燃性毒物入燃料
棒の下部の可燃性毒物濃度が等しいものでもよい。また
、燃料棒の燃料濃縮度軸線方法で多領域に分割形成され
ているものがよい。Further, it is preferable that a third burnable poison-containing fuel rod, in which the burnable poison concentration is lower in the lower part than in the upper part, is mixedly arranged in the fuel rod group in the area facing the large-diameter water rod. Also,
It is preferable that the burnable poison concentration in the upper part of the first burnable poison-containing fuel rod is zero or less than half of the minimum burnable poison concentration in other parts. Alternatively, the burnable poison concentrations in the lower portions of the first and second burnable poison-containing fuel rods may be equal. Further, it is preferable that the fuel rod is divided into multiple regions along the fuel enrichment axis of the fuel rod.
また、第1及び第2可燃性毒物入燃料棒の上部同士の可
燃性毒物の濃度差を第1可燃性毒物入燃料棒側が第2可
燃性毒物入燃料棒側より高くなるように替えて形成され
たものでもよい。In addition, the concentration difference of the burnable poison between the upper parts of the first and second burnable poison fuel rods is changed so that the first burnable poison fuel rod side is higher than the second burnable poison fuel rod side. It may be something that has been done.
太径水ロッドを有した可燃性毒物(例えばガドリニア)
を含まない燃料集合体において、第9図に示す各領域平
均出力を比較したのが第1表である。Burnable poisons with large diameter water rods (e.g. gadolinia)
Table 1 compares the average output in each region shown in FIG. 9 for a fuel assembly that does not include.
第 1 表
炉心下部に相当するボイド率O%の場合、太径水ロッド
の存在により、集合体内の均質性が高められているので
、太径水ロッドまわりの領域83の平均出力P+は、ギ
ャップ水領域8に面した領域81の次に高くなっている
。さらに、前記領域83と隣接していて、ギャップ水領
域8には面しない領域82の平均出力PMに対する前記
領域83の平均出力PIの比PI/PMは、1.010
であり、出力分布は燃料集合体の横断面において平坦化
されている。また、炉心上部に相当するボイド率70%
の場合も、領域82の平均出力PMに対する領域83の
平均出力PIの比は0.977と、燃料集合体横断面に
おける出力分布が平坦化されている。Table 1 When the void ratio is O%, which corresponds to the lower part of the core, the presence of large-diameter water rods increases the homogeneity within the assembly, so the average power P+ in the region 83 around the large-diameter water rods is It is next highest after the region 81 facing the water region 8. Further, the ratio PI/PM of the average output PI of the area 83 to the average output PM of the area 82 that is adjacent to the area 83 and does not face the gap water area 8 is 1.010.
, and the power distribution is flattened in the cross section of the fuel assembly. In addition, the void rate corresponding to the upper part of the core is 70%.
In the case of , the ratio of the average power PI in the region 83 to the average power PM in the region 82 is 0.977, and the power distribution in the cross section of the fuel assembly is flattened.
以上述にたことから、太径水ロッドを有する高燃焼度用
燃料集合体では、燃料集合体の横断面よりもむしろ燃料
集合体軸方向ボイド率分布を考慮し燃料集合体の上部及
び下部の各横断面におけるガドリニア濃度を決定すると
よいことがMる。From the above, in high burnup fuel assemblies with large diameter water rods, the void fraction distribution in the axial direction of the fuel assembly is considered rather than the cross section of the fuel assembly, and the upper and lower parts of the fuel assembly are It may be advantageous to determine the gadolinia concentration in each cross section.
第10図および第12図は、燃料集合体に添加するガド
リニア量を一定とし、ガドリニア人燃料捧を前記領域8
2、領域83に各々8本、7本配置し、領域82に配置
されたガドリニア人燃料捧のガドリニア濃度をGM(重
量%)、領域83に配置されるガドリニア人燃料捧のガ
ドリニア濃度を(3+(重量%)とし、燃料集合体の中
性子無限増倍率差の燃焼変化を示したものである。第1
1図の破線は第10図のケースBとケースAとの無限増
倍率の差〔すなわち(ケースB)−(ケースA)]を示
し、第11図の実線は第10図のケースCとケースAと
の無限増倍率の差〔すなわち(ケースC)−(ケースA
))を示す。第13図において、破線はケースBとケー
スAとの無限増倍率差〔すなわち(ケースB)−(ケー
スA))を示し、実線はケースCとケースAとの無限増
倍率差〔すなわち(ケースC)−(ケースA))をそれ
ぞれ示す。ガドリニア濃度GM、Gxの組み合わせを第
2表に示す。領域83とその外側領域82におけるガド
リニア濃度を等しくした基準ケースをケースA、前記ガ
ドリニア濃度差を大きくとったケースとして領域83の
ガドリニア濃度の方が大きい場合をケースB、その逆の
場合をケースCとする。10 and 12, the amount of gadolinia added to the fuel assembly is constant, and the gadolinia fuel is added to the region 8.
2. Place 8 and 7 rods in region 83, respectively, and set the gadolinia concentration of the gadolinian fuel specimen placed in region 82 as GM (wt%), and the gadolinia concentration of the gadolinian fuel specimen placed in region 83 as (3+ (wt%) and shows the combustion change due to the difference in the infinite neutron multiplication factor of the fuel assembly.
The broken line in Figure 1 shows the difference in infinite multiplication factor between case B and case A in Figure 10 [i.e. (case B) - (case A)], and the solid line in Figure 11 shows the difference between case C and case A in Figure 10. The difference in infinite multiplication factor from A [i.e. (Case C) - (Case A
)). In FIG. 13, the broken line shows the infinite multiplication factor difference between case B and case A [i.e. (case B) - (case A)], and the solid line shows the infinite multiplication factor difference between case C and case A [i.e. (case C)-(Case A)) are shown respectively. Table 2 shows the combinations of gadolinia concentrations GM and Gx. Case A is a reference case in which the gadolinia concentrations in the region 83 and the region 82 outside it are equal; Case B is a case in which the gadolinia concentration is larger in the region 83; and Case C is the opposite case. shall be.
第10図及び第11図はボイド率が70%の場合(燃料
集合体上部)を示し、第12図及び第13図はボイド率
が0%の場合(燃料集合体下部)を示す。ボイド率が燃
料集合体上部に相当する、70%である場合、前記領域
83と領域82(外側から2層目の燃料棒配置領域)に
おけるガドリニア濃度を等しくしないケースB、Cの方
が、ガドリニア濃度を等しくするケースA(基準)に比
べて、運転サイクル初期からその中期(約100W d
/ s t )までの間、中性子無限増倍率を最大約
0.3%Δに大きく保つことができる。また。10 and 11 show the case where the void ratio is 70% (upper part of the fuel assembly), and FIGS. 12 and 13 show the case where the void ratio is 0% (lower part of the fuel assembly). When the void ratio is 70%, which corresponds to the upper part of the fuel assembly, cases B and C in which the gadolinia concentrations in the region 83 and region 82 (the second layer of fuel rods from the outside) are not equal are more likely to have gadolinia. Compared to case A (standard) where the concentration is the same, it is
/ s t ), the infinite neutron multiplication factor can be maintained at a maximum of about 0.3%Δ. Also.
ボイド率が燃料集合体下部に相当する、0%である場合
でも、ケースB、Cの方がケースAに比べて、運転サイ
クル初期からその中期までの間、中性子無限増倍率を大
きくできる。Even when the void fraction is 0%, which corresponds to the lower part of the fuel assembly, the infinite neutron multiplication factor can be made larger in cases B and C than in case A from the beginning of the operation cycle to the middle thereof.
以上、燃料集合体の上部及び下部の各断面で、中央部と
外側領域との間でガドリニア濃度差を大きくしたときの
作用を説明した。すなわち、ケースB及びCのように太
径水ロツド周辺の燃料集合体中央部(領域83)とその
外側領域(領域82)とでガドリニア濃度差を大きくつ
けることで、運転サイクル始めから運転サイクル中期ま
での中性子無限増倍率が大きくなり、運転サイクル中期
以降、運転サイクル終了時期までの中性子無限増倍率が
小さくなる。また、ケースAのように両者の領域でガド
リニア濃度に差をつけない方が、運転サイクル中期に至
るまでの中性子無限増倍率が小さくなり、運転サイクル
中期以降における中性子無限増倍率が約0.9%Δに大
きくなる。したがって、燃料集合体の上部ではその横断
面において中央部と外側領域とでガドリニア濃度に差を
つけ、燃料集合体の下部ではその横断面において中央部
と外側領域とのガドリニア濃度差を上部でのその差より
も小さくなる(好しくは零になる)ようむガドリニア濃
度分布とした燃料集合体では、運転サイクル中期から運
転サイクル末期に至るまで、燃料集合体上部とその下部
との中性子無限増倍率の差を小さくでき、燃料集合体平
均の軸方向出力分布の平坦化を実現できる。この場合、
運転サイクル始めから運転サイクル中期に至るまでの燃
料集合体の上部とその下部との無限増倍率の差も小さく
なる。さらに、運転サイクル末期での軸方向出力分布の
上歪みを是正することができる。The effect when the gadolinia concentration difference is increased between the central part and the outer region in each cross section of the upper and lower parts of the fuel assembly has been explained above. In other words, by creating a large gadolinia concentration difference between the central part of the fuel assembly (area 83) around the large-diameter water rod and the outer area (area 82) as in Cases B and C, it is possible to The neutron infinite multiplication factor up to the end of the operating cycle becomes large, and the neutron infinite multiplication factor from the middle of the operating cycle to the end of the operating cycle becomes small. In addition, if there is no difference in gadolinia concentration between the two regions as in case A, the infinite neutron multiplication factor up to the middle of the operating cycle will be smaller, and the infinite neutron multiplication factor after the middle of the operating cycle will be approximately 0.9. %Δ. Therefore, in the upper part of the fuel assembly, there is a difference in gadolinia concentration between the center and outer regions in the cross section, and in the lower part of the fuel assembly, the difference in gadolinia concentration between the center and outer regions in the cross section is made equal to the difference in gadolinia concentration in the upper part. In a fuel assembly with a gadolinia concentration distribution that is smaller than the difference (preferably zero), the neutron multiplication rate between the upper part of the fuel assembly and the lower part is infinite from the middle of the operation cycle to the end of the operation cycle. This makes it possible to reduce the difference in fuel assembly average axial power distribution. in this case,
The difference in the infinite multiplication factor between the upper part and the lower part of the fuel assembly from the beginning of the operating cycle to the middle of the operating cycle also becomes smaller. Furthermore, it is possible to correct the upward distortion in the axial power distribution at the end of the operation cycle.
燃料集合体下部ではケースAのように必ずしも。In the lower part of the fuel assembly, it is not necessarily the case as in case A.
GM=G+にしなくともよい、つまり、ガドリニア濃度
差に注目すれば、燃料集合体上半分におけるガドリニア
濃度差を基準と考えた時に、燃料集合体下半分では燃料
集合体上半分よりも小さければ。It is not necessary to set GM=G+, that is, if we look at the gadolinia concentration difference, if the gadolinia concentration difference in the upper half of the fuel assembly is considered as a reference, it is smaller in the lower half of the fuel assembly than in the upper half of the fuel assembly.
燃料集合体上半分とその下半分の中性子無限増倍率の差
を小さくして、燃料集合体軸方向出力分布の平坦化を実
現することが可能である。It is possible to flatten the fuel assembly axial power distribution by reducing the difference in the infinite neutron multiplication factors between the upper half and the lower half of the fuel assembly.
さらに、軸方向出力分布の平坦化を図るには、燃料集合
体上半分・下半分の各領域で、運転サイクル中の中性子
無限増倍率に、最も長い間、影響する代表ガドリニア濃
度の最大値にも注口する必要がある。即ち、炉心軸方向
のボイド率分布は前述したように燃料集合体下部で低く
、燃料集合体上部で高い。したがって、中性子スペクト
ルは燃料集合体下部の方がより軟らかいので、熱中性子
吸収断面積が大きいガドリニアは燃料集合体下部で多く
消費される。ガドリニアの燃焼の様子と同じように、核
分裂性物質、例えばU−235も中性子スペクトルが軟
らかい燃料集合体下部で、より反応を起こすため、軸方
向出力分布は燃料集合体下部の方でより大きくなりがち
である。したがって、軸方向出力分布を平坦化するには
1代表ガトリニア濃度の最大値が燃料集合体下部で、よ
り大きくなっていればよい。Furthermore, in order to flatten the axial power distribution, in each region of the upper and lower halves of the fuel assembly, the maximum value of the representative gadolinia concentration, which affects the infinite neutron multiplication factor during the operation cycle for the longest time, must be It is also necessary to spout. That is, as described above, the void fraction distribution in the core axis direction is low at the bottom of the fuel assembly and high at the top of the fuel assembly. Therefore, since the neutron spectrum is softer in the lower part of the fuel assembly, gadolinia, which has a larger thermal neutron absorption cross section, is consumed more in the lower part of the fuel assembly. Similar to how gadolinia burns, fissile materials such as U-235 also react more at the bottom of the fuel assembly where the neutron spectrum is softer, so the axial power distribution becomes larger at the bottom of the fuel assembly. It tends to be. Therefore, in order to flatten the axial power distribution, it is sufficient that the maximum value of the one representative Gatlinium concentration is larger at the lower part of the fuel assembly.
また、ガドリニア濃度Gs、 Glの組み合わせを第3
表に示すようにした時の運転時冷温時中性子無限増倍率
差Δk swingの差の燃焼変化を第14図に示す。In addition, the combination of gadolinia concentrations Gs and Gl was
FIG. 14 shows the combustion change due to the difference in the infinite neutron multiplication factor difference Δk swing during cold operation when the conditions are as shown in the table.
第14図に示すように、運転時のボイド率が燃料集合体
上部に相当する。70%である場合、燃料集合体上部で
ガドリニア濃度差を1.0重量%以上つけたケースE、
Fで運転サイクル中期以降の前半に相当する10〜15
GWd/stで運転時冷温時反応度差Δk swing
をより小さくすることができる。これにより、運転サイ
クル中期以降の炉停止余裕を改善することが可能である
。As shown in FIG. 14, the void ratio during operation corresponds to the upper part of the fuel assembly. 70%, case E where the gadolinia concentration difference is 1.0% by weight or more in the upper part of the fuel assembly;
F corresponds to 10 to 15, which corresponds to the first half after the middle of the driving cycle.
Difference in reactivity at cold temperature during operation at GWd/st Δk swing
can be made smaller. Thereby, it is possible to improve the reactor shutdown margin after the middle of the operation cycle.
このように、燃料集合体の上部の横断面において、中央
部と外側領域とのガドリニア濃度差を1.0重量%以上
つけることにより、前述した場合の効果に加えて炉停止
余裕を改善できる。In this way, by creating a gadolinia concentration difference of 1.0% by weight or more between the central part and the outer region in the cross section of the upper part of the fuel assembly, in addition to the effects described above, the margin for reactor shutdown can be improved.
以下に本発明の一実施例を示す。 An example of the present invention is shown below.
第1図(a)は、本発明の第1実施例を示す。FIG. 1(a) shows a first embodiment of the present invention.
燃料集合体1は、その水平断面中央部に太径水ロット7
を配置し、燃料棒2を9X9の正方格子状に配置するこ
とで構成されている。図中の記号A。The fuel assembly 1 has a large diameter water lot 7 in the center of its horizontal section.
The fuel rods 2 are arranged in a 9x9 square lattice. Symbol A in the figure.
B、C,Dは燃料棒記号であり、記号G、およびG2は
ガドリニア燃料棒記号である。燃料棒A。B, C, and D are fuel rod symbols, and symbols G and G2 are gadolinia fuel rod symbols. Fuel rod A.
B、C,Dの濃縮度は各々第1図(b)に示されている
。図中、21は天然ウランのペレットを充填した領域、
22は濃縮ウランのペレットを充填した領域を示す。第
1図(b)中、Gを付した数字はガドリニア濃度(重量
%)を示し、その他の数字は濃縮度(重量%)を示す。The enrichment levels of B, C, and D are shown in FIG. 1(b), respectively. In the figure, 21 is an area filled with natural uranium pellets,
22 indicates an area filled with enriched uranium pellets. In FIG. 1(b), the numbers with G indicate the gadolinia concentration (% by weight), and the other numbers indicate the degree of concentration (% by weight).
天然ウラン充填領域21及び濃縮ウラン充填領域22を
含めた領域の軸方向全長を燃料有効長という。一方、ガ
ドリニア入燃料捧G2は、太径水ロッド7に隣接するよ
うに、燃料集合体1の最外周から第3層目に配置された
燃料棒が位置する領域83へ配置する。The total length in the axial direction of the region including the natural uranium filling region 21 and the enriched uranium filling region 22 is referred to as the effective fuel length. On the other hand, the gadolinia-filled fuel rod G2 is placed adjacent to the large-diameter water rod 7 in a region 83 where the fuel rods placed in the third layer from the outermost periphery of the fuel assembly 1 are located.
ガドリニア入燃料捧G2は、燃料有効長の下端から炉心
有効長の12/24までの範囲でガドリニア濃度を56
0(重量%)とし、それにより上部では4.5(重量%
)とした、ガドリニア濃度2領域の燃料棒である。ガド
リニア人燃料捧G2が配置された領域83よりも外側に
位置する領域82に・、ガドリニア人燃料棒G2に比べ
、ガドリニア濃度を下部で0.5(重量%)l<L、上
部で1.0(重量%)淡くした。ガドリニア人燃料捧G
よを配置する。即ち、本実施例では、燃焼度0GWd/
stで、燃料集合体下半分・燃料集合体上半分の代表ガ
ドリニア濃度差は各々0.5(重量%) 、 1.0
(重量%)となる。The gadolinia fuel supply G2 has a gadolinia concentration of 56% in the range from the lower end of the fuel effective length to 12/24 of the core effective length.
0 (wt%), so that at the top it is 4.5 (wt%)
), this is a fuel rod with a gadolinia concentration in the 2 range. In the region 82 located outside the region 83 where the Gadolinian fuel rod G2 is placed, compared to the Gadolinian fuel rod G2, the gadolinia concentration is 0.5 (wt%) l<L in the lower part and 1. 0 (wt%) lighter. Gadolinian Fuel Offering G
Place the yo. That is, in this example, the burnup is 0 GWd/
st, the representative gadolinia concentration difference between the lower half of the fuel assembly and the upper half of the fuel assembly is 0.5 (wt%) and 1.0, respectively.
(% by weight).
比較例を第15図に示す。第15図は、前記代表ガドリ
ニア濃度差が燃料集合体上半分でO(重量%)、下半分
で0.5(重量%)である。第1実施例と第15図の比
較例とで炉心運転特性を比較すると、運転サイクル末期
の軸方向出力分布を本実施例では平坦化できる。これを
燃料集合体下半分の出力分担割合でみると、本実施例で
は0゜2%程度増加し、50.1%程度になる。燃料集
合体下半分の出力分担割合を増加させることで、十分な
スクラム反応度を確保でき、炉心の安全性を向上させる
ことができる。A comparative example is shown in FIG. In FIG. 15, the representative gadolinia concentration difference is O (wt%) in the upper half of the fuel assembly and 0.5 (wt%) in the lower half. Comparing the core operating characteristics between the first embodiment and the comparative example shown in FIG. 15, it is possible to flatten the axial power distribution at the end of the operation cycle in this embodiment. Looking at this in terms of the output sharing ratio of the lower half of the fuel assembly, this example increases by about 0.2% to about 50.1%. By increasing the power sharing ratio of the lower half of the fuel assembly, sufficient scram reactivity can be ensured and the safety of the reactor core can be improved.
一方、炉心の炉停止余裕を比較すると、本実施例による
炉心の方が0.3〜0.4%Δに程度余裕が増大する。On the other hand, when comparing the reactor shutdown margins of the cores, the core according to this embodiment has an increased margin of 0.3 to 0.4% Δ.
また、第1図に示した実施例において、上下2領域のガ
ドリニア人燃料捧G□およびG2を挿入する領域を入れ
替えた他の実施例でも、炉停止余裕は0.2〜0.3%
Δに程度余裕が増大する。In addition, in the embodiment shown in Fig. 1, even in another embodiment in which the upper and lower two regions where the Gadolinian fuel supply G□ and G2 are inserted are swapped, the reactor shutdown margin is 0.2 to 0.3%.
The degree margin increases in Δ.
また、第2図に示すように、上下2領域のガドリニア人
燃料捧G工、G2を2種類用いる他に、領域110に」
中下1領域のガドリニア人燃料捧G3を含めて構成した
燃料集合体であってもよい。前記ガドリニア人燃料捧G
2に一部かえて上下1領域のガドリニア人燃料捧G□を
挿入することで、燃料集合体上半分と下半分のガドリニ
ア存在量比を大きくでき、炉心軸方向出力分布が平坦化
され、炉停止余裕がより改善される。In addition, as shown in Figure 2, in addition to using two types of Gadolinian fuel supply G, G2 in the upper and lower two areas, in area 110.
It may be a fuel assembly that includes the Gadolinian fuel unit G3 in the lower middle area. Said Gadolinian Fuel Offering G
By inserting Gadolinia fuel in the upper and lower 1 regions instead of 2, the gadolinia abundance ratio in the upper and lower halves of the fuel assembly can be increased, the core axial power distribution is flattened, and the reactor Stop margin is further improved.
集合体に挿入する上下2領域ガドリニア人燃料棒におい
て、次に示すように、非常に淡いガドリニア濃度として
も本発明による効果が得られる。In the upper and lower gadolinia fuel rods inserted into the assembly, the effects of the present invention can be obtained even if the gadolinia concentration is very low, as shown below.
即ち、第3図に示すように、運転サイクル初期の最大線
出力密度を抑制するために前記領域83に配置される、
燃料集合体下部のガドリニア濃度が150(重量%)と
非常に淡い濃度の上下2領域ガドリニア人燃料捧G、を
数本含んでいてもよい。That is, as shown in FIG. 3, in order to suppress the maximum linear power density at the beginning of the operation cycle, the
The lower portion of the fuel assembly may contain several gadolinium fuels G having a very light gadolinia concentration of 150 (wt%) in the upper and lower two regions.
さらに、fJS4図(a)(b)に示すように、前記領
域83に配置される上下2領域ガドリニア人燃料捧の上
部に相当するガドリニア濃度をゼロ、または1.0(重
量%)のように非常に淡くすることによって、炉心上部
における領域83および82のガドリニア濃度差をとっ
てもよい9これまでは、燃料濃縮度が上下1領域である
実施例を示したが、第5図に示すように濃縮度を2領域
とした燃料集合体であってもよい。本実施例では、燃料
集合体最外周に位置する燃料棒Bを上下2領域燃料濃縮
度の燃料棒としている。本実施例では、燃料集合体上部
の平均濃縮度を炉心下部より高くすることで、運転サイ
クル初期の軸方向出力分布の平坦化を図ることができる
。Furthermore, as shown in fJS4 diagrams (a) and (b), the gadolinia concentration corresponding to the upper part of the upper and lower two regions arranged in the region 83 is set to zero or 1.0 (wt%). By making it extremely diluted, the gadolinia concentration difference between regions 83 and 82 in the upper part of the core may be taken. A fuel assembly having two ranges of power may also be used. In this embodiment, the fuel rod B located at the outermost periphery of the fuel assembly is a fuel rod having two regions of fuel enrichment, upper and lower. In this embodiment, by making the average enrichment in the upper part of the fuel assembly higher than in the lower part of the core, it is possible to flatten the axial power distribution at the beginning of the operation cycle.
本実施例では、ボイド率が大きい燃料集合体上部の平均
濃縮度を燃料集合体下部のそれより高くすることで軸方
向出力分布の平坦化を促進でき、本発明で構成したガド
リニア分布による炉心jlZ均軸方向出力分布平坦化の
効果を助長できる。In this example, flattening of the axial power distribution can be promoted by making the average enrichment in the upper part of the fuel assembly, where the void ratio is large, higher than that in the lower part of the fuel assembly. The effect of flattening the output distribution in the axial direction can be promoted.
第6図に示すように、軸方向多領域の濃縮度であっても
よい。本実施例では、集合体最外周部よりも内側にある
燃料棒Aの濃縮度を軸方向3領域としている。本実施例
では、燃料有効長の下端を基準にして燃料有効長の20
/24〜23/24の範囲の平均濃縮度を中央部燃料有
効長の8/24〜20/24 (燃料有効長下端から)
の範囲の平均濃縮度より低くすることと組み合わせるこ
とで、運転サイクル初期・末期の炉停止余裕改善が図れ
る。As shown in FIG. 6, the degree of concentration may be in multiple regions in the axial direction. In this embodiment, the enrichment of the fuel rods A located inside the outermost peripheral part of the assembly is set to three regions in the axial direction. In this embodiment, 20 of the effective fuel length is calculated based on the lower end of the effective fuel length.
The average enrichment in the range of /24 to 23/24 is 8/24 to 20/24 of the central fuel effective length (from the lower end of the fuel effective length).
By combining this with lowering the concentration below the average concentration in the range of , it is possible to improve the reactor shutdown margin at the beginning and end of the operating cycle.
本実施例のように、燃料集合体下部から燃料集合体中央
部及び燃料集合体上部にかけて濃縮度を高めることで、
軸方向出力分布の平坦化を促進し。As in this example, by increasing the enrichment from the lower part of the fuel assembly to the central part of the fuel assembly and the upper part of the fuel assembly,
Promotes flattening of axial power distribution.
本発明で示したガドリニア分布による効果を助長できる
。The effect of the gadolinia distribution shown in the present invention can be promoted.
第7図に示すように、燃料棒の一部を燃料有効長が短い
部分長燃料棒としてもよい。本実施例は、第5図に示し
た実施例において、燃料棒Aのうちの8本を残りの燃料
棒の燃料有効長の15 / 24とした部分長燃料棒P
としたものである。本実施例でも、部分長燃料棒Pを用
いることで、炉停止余裕の改善ができる。尚、部分長燃
料棒1〕を含めて、構成した燃料集合体であっても1本
発明による前記効果が失われることはない。As shown in FIG. 7, a part of the fuel rod may be a partial length fuel rod having a short effective fuel length. This embodiment is a partial length fuel rod P in which eight of the fuel rods A are set to 15/24 of the effective fuel length of the remaining fuel rods in the embodiment shown in FIG.
That is. In this embodiment as well, by using the partial length fuel rods P, the reactor shutdown margin can be improved. Incidentally, even if the fuel assembly is configured to include the partial length fuel rods 1], the above-mentioned effects of the present invention will not be lost.
尚、プルトニウムが充分に供給されて、MOX燃料が用
いられるようになった場合に、第1実施例の燃料をMO
X燃料におきかえたものが考えられる。In addition, when plutonium is sufficiently supplied and MOX fuel is used, the fuel of the first embodiment can be used as MOX fuel.
One possibility is to replace it with X fuel.
以上説明したように、本発明によれば、運転サイクル中
期以降において燃料集合体上部と燃料集合体下部との中
性子無限増倍率の差を小さくでき、燃料集合体軸方向出
力分布の平坦化を図ることで。As explained above, according to the present invention, it is possible to reduce the difference in the infinite neutron multiplication factors between the upper part of the fuel assembly and the lower part of the fuel assembly after the middle stage of the operation cycle, thereby flattening the axial power distribution of the fuel assembly. By the way.
1−分なスクラム反応度を確保し、炉心安全性を向上で
きる。1 minute scram reactivity can be secured and core safety can be improved.
第1図(a)、(b)−第7図(a)、(b)までは本
発明の一実施例の燃料集合体水平断面図(各回(a))
および燃料棒の軸方向濃度分布図(各回(b))を示し
、第8図は従来型の燃料集合体水平断面図を示し、第9
図は高燃焼度用燃料集合体の水平断面図を示し、第10
図及び第12図は、燃料集合体の中性子無限増倍率の燃
焼度に対する変化を示す図、第11図及び第13図は中
性子無限増倍率の差と燃料度との関係を示す特性図、第
14図は運転時冷温時反応度差の燃焼度に対する変化を
示す特性図、第15図(a、)(b)は比較例の燃料集
合体水平断面図(同図(a))および軸方向濃度分布図
(同図(b))である。
1.5・・・燃料集合体、2・・・燃料棒、4・・・水
ロッド、6・・・十字型制御法、7・・・太径水ロッド
。1(a), (b) to FIG. 7(a), (b) are horizontal sectional views of a fuel assembly according to an embodiment of the present invention (each time (a))
FIG. 8 shows a horizontal cross-sectional view of a conventional fuel assembly, and FIG.
The figure shows a horizontal cross-sectional view of a high burnup fuel assembly.
11 and 13 are characteristic diagrams showing the relationship between the difference in the neutron infinite multiplication factor and the fuel degree. Figure 14 is a characteristic diagram showing the change in reactivity difference at cold temperature during operation with respect to burnup, and Figure 15 (a) and (b) are horizontal cross-sectional views of the fuel assembly of the comparative example (Figure (a)) and axial direction. It is a concentration distribution map ((b) of the same figure). 1.5... Fuel assembly, 2... Fuel rod, 4... Water rod, 6... Cruciform control method, 7... Large diameter water rod.
Claims (1)
ドを有し、複数の燃料棒が格子状に配列された沸騰水型
原子炉用の燃料集合体において、前記太径水ロッドに面
した領域の燃料棒群に第1可燃性毒物入燃料棒が混在配
置され、この第1可燃性毒物入燃料棒の配置された領域
の外側の領域の燃料棒群に第2可燃性毒物入燃料棒が混
在配置され、第1及び第2可燃性毒物入燃料棒は可燃性
毒物濃度が上下で異なって形成されており、第1可燃性
毒物入燃料棒の上部の可燃性毒物濃度は第2可燃性毒物
入燃料棒の上部と異なる濃度に形成され、第1及び第2
可燃性毒物入燃料棒間の上部同士の可燃性毒物濃度の差
は下部同士の差より大きく形成されていることを特徴と
する燃料集合体。 2、請求項1において、太径水ロッドに面した領域の燃
料棒群に可燃性毒物濃度が上下一様に形成された第3可
燃性毒物入燃料棒が混在配置されている燃料集合体。 3、請求項1において、太径水ロッドに面した領域の燃
料棒群に可燃性毒物濃度が上部より下部の方が低く形成
された第3可燃性毒物入燃料棒が混在配置されている燃
料集合体。 4、請求項1において、第1可燃性毒物入燃料棒の上部
の可燃性毒物濃度が零又は他部の可燃性毒物濃度のうち
最小のものの半分以下である燃料集合体。 5、請求項1において、第1及び第2可燃性毒物入燃料
棒の下部の可燃性毒物濃度が等しい燃料集合体。 6、請求項1〜5のいずれかにおいて、燃料棒の燃料濃
縮度が軸線方向で各領域に分割形成されている燃料集合
体。[Claims] 1. A fuel assembly for a boiling water reactor, which has one or more large-diameter water rods in the center of the fuel assembly, and in which a plurality of fuel rods are arranged in a lattice pattern, A first burnable poison-containing fuel rod is mixedly arranged in a fuel rod group in an area facing the large-diameter water rod, and a fuel rod group in an area outside the area where the first burnable poison-containing fuel rod is arranged is The second burnable poison-containing fuel rods are arranged in a mixed manner, and the first and second burnable poison-containing fuel rods are formed with different burnable poison concentrations at the top and bottom, and the upper part of the first burnable poison-containing fuel rod is The burnable poison concentration is formed at a different concentration from the upper part of the second burnable poison fuel rod, and
A fuel assembly characterized in that the difference in burnable poison concentration between the upper parts of the burnable poison-containing fuel rods is larger than the difference between the lower parts. 2. The fuel assembly according to claim 1, wherein third burnable poison-containing fuel rods are mixedly arranged in the fuel rod group in the area facing the large-diameter water rod, and the third burnable poison-containing fuel rods are formed to have a uniform burnable poison concentration vertically. 3. The fuel according to claim 1, in which a third burnable poison-containing fuel rod is mixedly arranged in the group of fuel rods in the area facing the large-diameter water rod, in which the burnable poison concentration is lower in the lower part than in the upper part. Aggregation. 4. The fuel assembly according to claim 1, wherein the burnable poison concentration in the upper part of the first burnable poison-containing fuel rod is zero or less than half of the minimum burnable poison concentration in the other parts. 5. The fuel assembly according to claim 1, wherein the burnable poison concentration in the lower part of the first and second burnable poison-containing fuel rods is equal. 6. A fuel assembly according to any one of claims 1 to 5, in which the fuel enrichment of the fuel rods is divided into regions in the axial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074244A JP2972917B2 (en) | 1990-03-23 | 1990-03-23 | Fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074244A JP2972917B2 (en) | 1990-03-23 | 1990-03-23 | Fuel assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03273189A true JPH03273189A (en) | 1991-12-04 |
JP2972917B2 JP2972917B2 (en) | 1999-11-08 |
Family
ID=13541557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2074244A Expired - Fee Related JP2972917B2 (en) | 1990-03-23 | 1990-03-23 | Fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2972917B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06102384A (en) * | 1992-09-18 | 1994-04-15 | Hitachi Ltd | Fuel assembly and reactor core |
EP1463064A2 (en) | 2003-03-20 | 2004-09-29 | Hitachi, Ltd. | Boiling water reactor core and fuel assemblies therefor |
-
1990
- 1990-03-23 JP JP2074244A patent/JP2972917B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06102384A (en) * | 1992-09-18 | 1994-04-15 | Hitachi Ltd | Fuel assembly and reactor core |
EP1463064A2 (en) | 2003-03-20 | 2004-09-29 | Hitachi, Ltd. | Boiling water reactor core and fuel assemblies therefor |
EP1463064A3 (en) * | 2003-03-20 | 2008-10-01 | Hitachi, Ltd. | Boiling water reactor core and fuel assemblies therefor |
EP2447952A2 (en) | 2003-03-20 | 2012-05-02 | Hitachi Ltd. | Boiling water reactor core and fuel assemblies therefor |
US8363776B2 (en) | 2003-03-20 | 2013-01-29 | Hitachi, Ltd. | Boiling water reactor core and fuel assemblies therefor |
EP2618333A2 (en) | 2003-03-20 | 2013-07-24 | Hitachi Ltd. | Boiling water reactor core and fuel assemblies therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2972917B2 (en) | 1999-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3531011B2 (en) | Fuel assemblies and reactors | |
JPH09105792A (en) | Initial loading reactor core and fuel assembly | |
JPH03273189A (en) | Fuel assembly | |
JP4161486B2 (en) | Initial loading core of boiling water reactor | |
JP4088735B2 (en) | Nuclear fuel assemblies and boiling water reactor cores | |
JPH04109193A (en) | Fuel assembly | |
JP3075749B2 (en) | Boiling water reactor | |
JP4351798B2 (en) | Fuel assemblies and reactors | |
JP3115392B2 (en) | Fuel assembly for boiling water reactor | |
JPH0555836B2 (en) | ||
JP2563287B2 (en) | Fuel assembly for nuclear reactor | |
JP2627952B2 (en) | Reactor core | |
JP3237922B2 (en) | Fuel assemblies and cores for boiling water reactors | |
JP2966877B2 (en) | Fuel assembly | |
JP4044993B2 (en) | Reactor fuel loading method | |
JP3894784B2 (en) | Fuel loading method for boiling water reactor | |
JPH05164874A (en) | Light water reactor core | |
JP2625404B2 (en) | Fuel assembly | |
JPH11202070A (en) | Initial loading core or reactor | |
JPH0432355B2 (en) | ||
JP3596831B2 (en) | Boiling water reactor core | |
JP2739515B2 (en) | Boiling water reactor | |
JP3788170B2 (en) | Fuel assemblies and reactor cores | |
JPH0331794A (en) | Boiling water reactor | |
JP2001056388A (en) | Mox fuel assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |