JPH0326607B2 - - Google Patents
Info
- Publication number
- JPH0326607B2 JPH0326607B2 JP59019781A JP1978184A JPH0326607B2 JP H0326607 B2 JPH0326607 B2 JP H0326607B2 JP 59019781 A JP59019781 A JP 59019781A JP 1978184 A JP1978184 A JP 1978184A JP H0326607 B2 JPH0326607 B2 JP H0326607B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- ultrasonic
- ultrasound
- group
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002604 ultrasonography Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 description 8
- 238000003745 diagnosis Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 238000002592 echocardiography Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/348—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
Landscapes
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、方位方向及び距離方向の分解能を向
上させた超音波診断装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic diagnostic apparatus with improved resolution in azimuth and distance directions.
超音波パルス反射法に基づく超音波診断装置
は、探触子にて配列された超音波振動子夫々をパ
ルサー(発信器)により励振して被検体内に超音
波ビームを送波させ、その反射エコーを上記励振
した超音波振動子夫々で受波することにより超音
波画像情報を得て被検体の診断に供するようにし
たものである。
Ultrasonic diagnostic equipment based on the ultrasonic pulse reflection method uses a pulser (transmitter) to excite each ultrasonic transducer arrayed in a probe to transmit an ultrasonic beam into the subject, and its reflection Ultrasonic image information is obtained by receiving echoes by each of the excited ultrasonic transducers, and is used for diagnosis of a subject.
このような超音波診断装置において、方位方向
の分解能は、励振された振動子の開口が大きい
程、また超音波周波数(単一周波数)が高い程向
上する。ここで、例えば第1図aに示すような開
口Dであつて、第1図bに示すような周波数成分
f0、−f0を有した超音波を用いた場合を考える。
この場合、上記開口D及び周波数成分f0、−f0を
有した超音波により被検体内のラインターゲツト
(点物体)を走査すると、その画像情報の周波数
スペクトラムは第1図cに示すようになる。ま
た、上述第1図cの周波数スペクトラムを逆変換
すると第1図dに示すような空間周波数成分が得
られる。この空間周波数成分は上述した開口D及
び周波数の下で固有であり、この場合の方位方向
の分解能は、上記空間周波数成分の分布によつて
一義的に決定されており、この分布の帯域幅が広
い程上記方位方向の分解能は向上する。 In such an ultrasonic diagnostic apparatus, the resolution in the azimuth direction improves as the aperture of the excited transducer becomes larger and as the ultrasonic frequency (single frequency) becomes higher. Here, for example, the aperture D as shown in FIG. 1a has a frequency component as shown in FIG. 1b.
Consider the case where ultrasonic waves having f 0 and −f 0 are used.
In this case, when a line target (point object) inside the subject is scanned by ultrasound having the aperture D and frequency components f 0 and -f 0 , the frequency spectrum of the image information will be as shown in Figure 1c. Become. Furthermore, when the frequency spectrum shown in FIG. 1c is inversely transformed, a spatial frequency component as shown in FIG. 1d is obtained. This spatial frequency component is unique under the above-mentioned aperture D and frequency, and the resolution in the azimuth direction in this case is uniquely determined by the distribution of the above-mentioned spatial frequency component, and the bandwidth of this distribution is The wider the area, the better the resolution in the azimuth direction.
一方、超音波診断装置で用いられる超音波は、
1MHz乃至数MHzの成分を含む高帯域のパルス波
である。この場合、第2図aで示す開口Dで第2
図bで示すような周波数成分f0、f1、f2(f0>f1>
f2)の分布は、第2図cに示すように各周波数成
分で得られる空間周波数成分の線形和となり、空
間周波数の低い成分が大きくなり、等価的な空間
周波数の帯域幅が狭くなり、よつて方位方向の分
解能は低下する。 On the other hand, the ultrasound used in ultrasound diagnostic equipment is
It is a high-band pulse wave containing components from 1 MHz to several MHz. In this case, the second
Frequency components f 0 , f 1 , f 2 (f 0 > f 1 >
The distribution of f 2 ) is a linear sum of the spatial frequency components obtained for each frequency component, as shown in Figure 2c, the low spatial frequency components become large, and the equivalent spatial frequency bandwidth becomes narrow. Therefore, the resolution in the azimuth direction is reduced.
従来、上述した1MHz乃至数MHzの高帯域の周
波数における方位方向の分解能が低下するという
不具合に対して以下に述べるような対策がなされ
ていた。即ち、探触子の超音波振動子夫夫で得ら
れた反射エコー信号群の遅延加算後にバンドパス
フイルターをかけることにより低周波成分を抑圧
して、方位方向の分解能を向上させる。しかし乍
ら、このような方法によれば、一般に距離方向の
分解能を向上させる帯域幅の減少を招くことにな
るので有効でなかつた。 Conventionally, the following countermeasures have been taken to deal with the above-mentioned problem of a decrease in resolution in the azimuth direction in a high frequency band of 1 MHz to several MHz. That is, by applying a bandpass filter after delay addition of a group of reflected echo signals obtained by the ultrasonic transducer of the probe, low frequency components are suppressed and resolution in the azimuth direction is improved. However, such a method was not effective because it generally resulted in a reduction in the bandwidth for improving the resolution in the distance direction.
一方、上記した方法以外に逆フイルター法と称
される方法がある。この逆フイルター法は、例え
ば第3図aに示すような画像情報を第3図bに示
すようにフーリエ変換した後、この情報で得られ
る空間周波数成分の分布の逆数を乗じて第3図c
のようにし、それを更に第3図dに示すように逆
フーリエ変換することにより、等価的に広い空間
周波数成分となるようにして、この成分による方
位方向の分解能を得るようにしたものである。し
かし乍らこの逆フイルター法では、上記変換時に
多くの演算時間を要し診断時に要求される実時間
性を損うばかりか、超音波の生体内減衰の影響に
より、所望の診断部位の深さによつて得られる空
間周波数成分が変化する。従つて逆フイルターを
用いなければならず構成が複雑となる。 On the other hand, in addition to the above-described method, there is a method called the inverse filter method. In this inverse filter method, for example, image information as shown in Fig. 3a is Fourier transformed as shown in Fig. 3b, and then multiplied by the reciprocal of the distribution of spatial frequency components obtained from this information.
By further inverse Fourier transforming it as shown in Figure 3d, it becomes an equivalently wide spatial frequency component, and the resolution in the azimuth direction is obtained from this component. . However, this inverse filter method requires a lot of calculation time during the above conversion, which impairs the real-time performance required for diagnosis. The spatial frequency component obtained by Therefore, an inverse filter must be used, making the configuration complicated.
本発明は上記事情に基づいてなされたもので、
その目的とするところは、方位方向と共に距離方
向の分解能を向上させた超音波診断装置を提供す
ることにある。
The present invention was made based on the above circumstances, and
The purpose is to provide an ultrasonic diagnostic apparatus that has improved resolution in both the azimuth and distance directions.
本発明は、配列された複数の超音波振動子によ
り超音波を被検体に送受信して超音波画像情報を
得るようにした超音波診断装置において、上記超
音波振動子夫々に設けられ上記被検体における所
望の診断部位の深さに応じて経時的にフイルター
特性可変なフイルターと、上記フイルター群のフ
イルター特性を各別に制御し空間周波数成分の重
みを補正する制御手段とを備えたことを特徴とし
ている。
The present invention provides an ultrasonic diagnostic apparatus that transmits and receives ultrasonic waves to and from a subject using a plurality of arranged ultrasonic transducers to obtain ultrasound image information. The present invention is characterized by comprising: a filter whose filter characteristics can be changed over time according to the depth of a desired diagnostic site; and a control means which individually controls the filter characteristics of the filter group and corrects the weight of the spatial frequency component. There is.
以下本発明に係る超音波診断装置を第4図に示
す一実施例に従い説明する。第4図において1は
超音波振動子UV1,UV2,UV3,UV4(一
般的にはn個であるがここでは更宜的に4コとす
る)からなる探触子であり、第5図a,bに示す
ような周波数−出力特性を有するものである。こ
の超音波振動子UV1,UV2,UV3,UV4は
パルサー群2により各別に励振される。3は超音
波振動子UV1,UV2,UV3,UV4により受
波した反射エコー信号を各別に受信増幅するプリ
アンプ群である。4は経時的にフイルター特性が
各別に変化可能なフイルター群である。5はフイ
ルター群4から得られた各受信信号に各別に遅延
をかける遅延素子群である。6は遅延素子群5か
ら得られた遅延受信信号を加算する加算器であ
り、これの出力は増幅器7で増幅した後、検波器
8で検波し、フイルター(L.P.F)9で画像信号
を抽出して、これを表示装置10で表示するよう
にしている。また11はパルサー群2の励振タイ
ミングの制御、遅延素子群5の遅延タイミングの
制御及びフイルター群4のフイルター各別のフイ
ルター特性を所望する診断部位の深さに応じて制
御し上記超音波振動子夫々により得られた受信信
号の空間周波数成分の重みを補正する制御回路で
ある。
The ultrasonic diagnostic apparatus according to the present invention will be described below according to an embodiment shown in FIG. In Fig. 4, 1 is a probe consisting of ultrasonic transducers UV1, UV2, UV3, and UV4 (generally n pieces, but here it is assumed to be 4 pieces for convenience), and Fig. 5 a , b have frequency-output characteristics as shown in FIG. The ultrasonic transducers UV1, UV2, UV3, and UV4 are individually excited by the pulsar group 2. 3 is a preamplifier group that separately receives and amplifies the reflected echo signals received by the ultrasonic transducers UV1, UV2, UV3, and UV4. 4 is a filter group whose filter characteristics can be changed individually over time. Reference numeral 5 denotes a delay element group that individually delays each received signal obtained from the filter group 4. 6 is an adder that adds the delayed reception signals obtained from the delay element group 5; the output of this is amplified by an amplifier 7, detected by a detector 8, and an image signal is extracted by a filter (LPF) 9; This is then displayed on the display device 10. Reference numeral 11 controls the excitation timing of the pulsar group 2, the delay timing of the delay element group 5, and the filter characteristics of each filter of the filter group 4 in accordance with the depth of the desired diagnosis site. This is a control circuit that corrects the weight of the spatial frequency component of the received signal obtained by each.
次に上記の如く構成された本実施例の作用につ
いて述べる。即ち、制御回路11の指令に基づく
パルサー群2が起動されると、その出力として高
電圧が超音波振動子UV1,UV2,UV3,UV
4に所定の走査法に応じて与えられる。これによ
り図示しない被検体には超音波ビームが送波さ
れ、その反射波エコーは上記励振された超音波振
動子UV1,UV2,…,UVoで受波され電気信
号に変換された後プリアンプ群3により増幅され
る。プリアンプ群3からの受信信号夫々はフイル
ター群4に取込まれる。そして、制御回路11か
らの制御信号に基づいて所望の診断部位の深さ及
び超音波振動子UV1,UV2,UV3,UV4に
応じてフイルター群4の各フイルターが制御さ
れ、例えば第6図a1,b1,c1,d1(超音
波振動子UV1,UV2,UV3,UV4に夫々対
応している)及び同図a2,b2,c2,d2に
示すような通過特性をもつフイルターとし、受信
信号の方位方向の空間周波数成分の低域成分を抑
えて、遅延素子群5及び加算器6での処理後の加
算信号の周波数成分及び空間周波数成分を第6図
e1及び第6図e2に示すように矩形状に近ずけ
るようにする。これにより、用いる超音波周波数
帯域幅を狭くすることなく一層広域化し、更に方
位方向及び距離方向共に分解能が向上した画像情
報を実時間で得ることができ、増幅器7、検波
器、フイルター9及び表示装置10を介して良好
な診断情報を得ることができるようになる。 Next, the operation of this embodiment configured as described above will be described. That is, when the pulsar group 2 is activated based on a command from the control circuit 11, a high voltage is outputted to the ultrasonic transducers UV1, UV2, UV3, UV.
4 depending on the predetermined scanning method. As a result, an ultrasonic beam is transmitted to a subject (not shown), and its reflected echoes are received by the excited ultrasonic transducers UV1, UV2, ..., UV o , converted into electrical signals, and then sent to a preamplifier group. 3. Each received signal from the preamplifier group 3 is taken into a filter group 4. Then, based on the control signal from the control circuit 11, each filter of the filter group 4 is controlled according to the depth of the desired diagnosis site and the ultrasonic transducers UV1, UV2, UV3, UV4. b1, c1, d1 (corresponding to ultrasonic transducers UV1, UV2, UV3, UV4, respectively) and filters with passage characteristics as shown in a2, b2, c2, d2 in the same figure, and the azimuth direction of the received signal. By suppressing the low-frequency components of the spatial frequency components of make it possible to get closer to As a result, it is possible to further widen the ultrasonic frequency bandwidth to be used without narrowing it, and obtain image information in real time with improved resolution in both the azimuth direction and the distance direction. Good diagnostic information can be obtained via the device 10.
本発明は上記実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲で種々変形し
て実施できる。 The present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the gist of the present invention.
以上述べたように本発明では、配列された複数
の超音波振動子により超音波を被検体に送受信し
て超音波画像情報を得るようにした超音波診断装
置において、上記超音波振動子夫々に設けられ上
記被検体における所望の診断部位の深さに応じて
経時的にフイルター特性可変なフイルターと、上
記フイルター群のフイルター特性を各別に制御し
上記超音波振動子夫々により得られる受信信号の
空間周波数成分の重みを補正する制御手段とを備
えた構成とし、上記受信信号夫々を加算した後の
信号の周波数成分及び空間周波数成分を矩形状と
したので、超音波周波数の帯域幅を狭めることな
く方位方向と共に距離方向の分解能を向上させる
ことを可能とした超音波診断装置が提供できる。
As described above, the present invention provides an ultrasonic diagnostic apparatus in which ultrasonic image information is obtained by transmitting and receiving ultrasonic waves to and from a subject using a plurality of arranged ultrasonic transducers. a filter whose filter characteristic is variable over time according to the depth of a desired diagnosis site in the subject; and a space of received signals obtained by each of the ultrasonic transducers by individually controlling the filter characteristics of the filter group. The structure is equipped with a control means for correcting the weight of the frequency component, and the frequency component and spatial frequency component of the signal after adding up each of the received signals are made into a rectangular shape, so that the ultrasonic frequency band width is not narrowed. It is possible to provide an ultrasonic diagnostic apparatus that can improve resolution in both the azimuth and distance directions.
第1図及び第2図は夫々従来の超音波診断装置
を説明するための図、第3図は逆フイルター法を
説明するための図、第4図は本発明に係る超音波
診断装置の一実施例を示すブロツク図、第5図及
び第6図は夫々同実施例の作用を説明するための
図である。
1……探触子、UV1,UV2,UV3,UV4
……超音波振動子、2……パルサー群、3……プ
リアンプ群、4……フイルター群、5……遅延素
子群、6……加算器、7……増幅器、8……検波
器、9……フイルター(L.P.F)、10……表示
装置、11……制御回路。
1 and 2 are diagrams for explaining a conventional ultrasound diagnostic device, FIG. 3 is a diagram for explaining an inverse filter method, and FIG. 4 is a diagram for explaining an ultrasound diagnostic device according to the present invention. The block diagram of the embodiment, FIGS. 5 and 6, are diagrams for explaining the operation of the embodiment, respectively. 1...Probe, UV1, UV2, UV3, UV4
... Ultrasonic transducer, 2 ... Pulser group, 3 ... Preamplifier group, 4 ... Filter group, 5 ... Delay element group, 6 ... Adder, 7 ... Amplifier, 8 ... Detector, 9 ... Filter (LPF), 10 ... Display device, 11 ... Control circuit.
Claims (1)
を被検体に送受信して超音波画像情報を得るよう
にした超音波診断装置において、上記超音波振動
子夫々に設けられ上記被検体における所望の診断
部位の深さに応じて経時的にフイルター特性可変
なフイルターと、上記フイルター群のフイルター
特性を各別に制御し上記超音波振動子夫々により
得られた受信信号の空間周波数成分の重みを補正
する制御手段とを備えたことを特徴とする超音波
診断装置。1. In an ultrasound diagnostic apparatus configured to obtain ultrasound image information by transmitting and receiving ultrasound to and from a subject using a plurality of arrayed ultrasound transducers, each of the ultrasound transducers is provided with a desired image information on the subject. A filter whose filter characteristics can be changed over time according to the depth of the diagnostic site, and filter characteristics of the filter group are individually controlled to correct the weight of the spatial frequency component of the received signal obtained by each of the ultrasonic transducers. An ultrasonic diagnostic apparatus comprising: a control means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59019781A JPS60164248A (en) | 1984-02-06 | 1984-02-06 | Ultrasonic wave diagnostic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59019781A JPS60164248A (en) | 1984-02-06 | 1984-02-06 | Ultrasonic wave diagnostic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60164248A JPS60164248A (en) | 1985-08-27 |
JPH0326607B2 true JPH0326607B2 (en) | 1991-04-11 |
Family
ID=12008865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59019781A Granted JPS60164248A (en) | 1984-02-06 | 1984-02-06 | Ultrasonic wave diagnostic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60164248A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021250991A1 (en) | 2020-06-09 | 2021-12-16 | 信越化学工業株式会社 | Substrate for group-iii nitride epitaxial growth and method for producing the same |
WO2022004165A1 (en) | 2020-07-01 | 2022-01-06 | 信越化学工業株式会社 | Large-diameter substrate for group-iii nitride epitaxial growth and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4709584B2 (en) * | 2004-12-24 | 2011-06-22 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus, ultrasonic tomographic image generation method, and ultrasonic tomographic image generation program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5689074A (en) * | 1979-12-21 | 1981-07-20 | Fujitsu Ltd | Sound wave detector |
JPS57170236A (en) * | 1981-04-14 | 1982-10-20 | Yokogawa Electric Works Ltd | Ultrasonic diagnostic apparatus |
JPS57203434A (en) * | 1981-06-08 | 1982-12-13 | Tokyo Shibaura Electric Co | Ultrasonic diagnostic apparatus |
JPS58127185A (en) * | 1982-01-25 | 1983-07-28 | Yokogawa Hokushin Electric Corp | Ultrasonic wave receiving circuit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57203363U (en) * | 1981-06-23 | 1982-12-24 |
-
1984
- 1984-02-06 JP JP59019781A patent/JPS60164248A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5689074A (en) * | 1979-12-21 | 1981-07-20 | Fujitsu Ltd | Sound wave detector |
JPS57170236A (en) * | 1981-04-14 | 1982-10-20 | Yokogawa Electric Works Ltd | Ultrasonic diagnostic apparatus |
JPS57203434A (en) * | 1981-06-08 | 1982-12-13 | Tokyo Shibaura Electric Co | Ultrasonic diagnostic apparatus |
JPS58127185A (en) * | 1982-01-25 | 1983-07-28 | Yokogawa Hokushin Electric Corp | Ultrasonic wave receiving circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021250991A1 (en) | 2020-06-09 | 2021-12-16 | 信越化学工業株式会社 | Substrate for group-iii nitride epitaxial growth and method for producing the same |
WO2022004165A1 (en) | 2020-07-01 | 2022-01-06 | 信越化学工業株式会社 | Large-diameter substrate for group-iii nitride epitaxial growth and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS60164248A (en) | 1985-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5235982A (en) | Dynamic transmit focusing of a steered ultrasonic beam | |
US5142649A (en) | Ultrasonic imaging system with multiple, dynamically focused transmit beams | |
US5230340A (en) | Ultrasound imaging system with improved dynamic focusing | |
US7393324B2 (en) | Ultrasonic transmitting and receiving apparatus | |
US20040034305A1 (en) | Ultrasound imaging system and method based on simultaneous multiple transmit-focusing using weighted orthogonal chirp signals | |
JP2000157548A (en) | Method and system for imaging ultrasonic wave scattered body | |
US4413520A (en) | Ultrasonic imaging apparatus | |
US6786097B2 (en) | Ultrasound imaging system and method using weighted chirp signals | |
JPH0148992B2 (en) | ||
KR100483783B1 (en) | Doppler signal processing apparatus and ultrasonic diagnostic apparatus | |
JP3242864B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic transmitting / receiving method for ultrasonic diagnostic | |
JP4458407B2 (en) | Harmonic imaging method and apparatus using multiplex transmission | |
JPH0326607B2 (en) | ||
JPH04336051A (en) | Ultrasonic diagnosing device | |
JPH11271447A (en) | System for removing prescribed frequency signal from received signal | |
US6174284B1 (en) | Ultrasound harmonic imaging techniques | |
JPS5943170B2 (en) | Ultrasonic transceiver device | |
JPH0119549B2 (en) | ||
JP3244536B2 (en) | Ultrasound diagnostic equipment | |
JPH02271845A (en) | Ultrasonic diagnostic device | |
JPH0344773B2 (en) | ||
JPH02218353A (en) | Ultrasonic wave diagnosing device | |
JPH029813B2 (en) | ||
JPH0292344A (en) | Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe | |
JPS60242365A (en) | Ultrasonic inspecting device |