JPH0323213A - Production of powder of oxide of rare earth element - Google Patents

Production of powder of oxide of rare earth element

Info

Publication number
JPH0323213A
JPH0323213A JP1153727A JP15372789A JPH0323213A JP H0323213 A JPH0323213 A JP H0323213A JP 1153727 A JP1153727 A JP 1153727A JP 15372789 A JP15372789 A JP 15372789A JP H0323213 A JPH0323213 A JP H0323213A
Authority
JP
Japan
Prior art keywords
rare earth
oxalate
aqueous solution
earth element
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1153727A
Other languages
Japanese (ja)
Other versions
JPH0832554B2 (en
Inventor
Shigenobu Tajima
田島 重信
Masatoshi Ishii
政利 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1153727A priority Critical patent/JPH0832554B2/en
Publication of JPH0323213A publication Critical patent/JPH0323213A/en
Publication of JPH0832554B2 publication Critical patent/JPH0832554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To increase the density of a sintered body of oxide powder and to improve the strength by adding an aq. mineral acid soln. contg. a rare earth element to an aq. oxalate soln. of a prescribed pH alkalified with ammonia and by calcining the deposited oxalate of the rare earth element to obtain the oxide powder. CONSTITUTION:An aq. oxalic acid soln. is adjusted to pH>=7 by neutralization with ammonia. An aq. mineral acid soln. contg. a rare earth element is added to the resulting soln. of pH>=7 and brought into a reaction at >=50 deg.C to deposit the oxalate of the rare earth element. This deposit is separated and calcined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類酸化物粉末の製造方法、特には分散性が
良く易焼結性の粉末の製造方法に関するものである. (従来の技術) 希土類酸化物は、通常、希土類しゆう酸塩を800〜1
000℃で焼成して得られるが、得られたものの平均粒
径は3〜5μmであり、これを通常品と呼ぶことが多い
。希土類酸化物は、単独または他のセラミックス原料と
混合され、焼結体として用いられているが、通常品を用
いた場合、焼結が進行しにくく、セラミックスとしての
特性が向上しない欠点を有していた。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing rare earth oxide powder, particularly a method for producing powder that has good dispersibility and is easily sinterable. (Prior art) Rare earth oxides usually contain 800 to 1
It is obtained by firing at 000°C, but the average particle size of the obtained product is 3 to 5 μm, and is often called a regular product. Rare earth oxides are used alone or mixed with other ceramic raw materials as sintered bodies, but when ordinary products are used, sintering is difficult to proceed and the characteristics of ceramics do not improve. was.

(発明が解決しようとする課題) 従って、本発明が解決すべき技術的課題は、希土類酸化
物単独または他の酸化物と混合して焼結する際、セラミ
ックスの特性を損なうことのない希土類酸化物の製造方
法を提供することにある。
(Problems to be Solved by the Invention) Therefore, the technical problem to be solved by the present invention is to oxidize rare earths without impairing the properties of ceramics when rare earth oxides are sintered alone or mixed with other oxides. The goal is to provide a method for manufacturing products.

(課題を解決するための手段) 本発明者等は、上記課題である希土類酸化物の焼結性の
向上について、先ず出発原料となる希土類酸化物粉末の
形状、粒径、粒度分布等に着目しこれら物性の好適な範
囲、その製造条件等を鋭意検討した結果、希土類酸化物
の単一粒子を小さくし、分散性のよい粉末を得れば良い
ことが判りさらに、その条件を鋭意検討した結果、アン
モニア性塩基性しゆう酸塩水溶液に希土類の鉱酸水溶浦
を加えて、希土類しゆう酸塩を析出させ、これを分離焼
成すれば単一粒子径の小さい酸化物粉末が得られ、また
希土類しゆう酸塩晶析時の反応温度を高くし、さらに晶
析時にCaイオンを添加し、その量を調節することで分
散性が良好で、易焼結性の希土類酸化物粉末が得られる
ことを見出し,本発明を完成させた, その要旨とするところは、 アンモニアを用いてpHを7以上としたしゆう酸水溶液
中に、希土類の鉱酸水溶液を加えて希土類しゆう酸塩を
析出させ、これを分離焼成することを特徴とする希土類
酸化物粉末の製造方法にある。
(Means for Solving the Problems) In order to improve the sinterability of rare earth oxides, which is the above-mentioned problem, the present inventors first focused on the shape, particle size, particle size distribution, etc. of rare earth oxide powder, which is a starting material. However, as a result of intensive study of the suitable range of these physical properties and the manufacturing conditions, it was found that it was sufficient to make the single particle of the rare earth oxide small and obtain a powder with good dispersibility. As a result, by adding a rare earth mineral acid aqueous solution to an ammoniacal basic oxalate solution, the rare earth oxalate is precipitated, and if this is separated and calcined, an oxide powder with a small single particle size can be obtained. In addition, by increasing the reaction temperature during rare earth oxalate crystallization, adding Ca ions during crystallization, and adjusting the amount, a rare earth oxide powder with good dispersibility and easy sinterability can be obtained. He discovered that the present invention can be made by adding a rare earth mineral acid aqueous solution to an oxalic acid aqueous solution whose pH was adjusted to 7 or more using ammonia to form a rare earth oxalate. The present invention provides a method for producing rare earth oxide powder, which is characterized by precipitating it and then separating and firing it.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

一般に希土類しゆう酸塩は、希土類の鉱酸塩水溶液とし
ゆう酸水溶液もしくは、しゆう酸アンモニウム水溶液と
を混合して得られるが、これらの方法では、結晶粒子径
が大きく、焼成しても粗い粉末しか得られず、これを粉
砕しても、焼結性の良いものは得られなかった.本発明
では、先ず、反応時の液性が高塩基性のとき、微小な粒
子が得られることを発見した。反応の過程において、希
土類しゆう酸塩が析出する際、鉱酸もしくは鉱酸アンモ
ニウムが生成するため、予め高塩基性としたしゆう酸ア
ンモニウム水溶液中に、希土類の鉱酸塩水溶液とさらに
アンモニア水を同時に添加して反応させると微小な希土
類し争う酸塩の沈澱が得られる。この高塩基性はpHで
7以上、好ましくは、9.0〜9.5に調整するのが良
い。pH7以下では、単一粒子が大きくなり好ましくな
い。しかし、この方法で得られた沈澱は微小なため凝集
しており、分離乾燥後、粉砕工程が必要になるが、本発
明では、結晶生成時の温度を高くすることで、分散性の
良好な粉末を得ることが出来、粉砕工程が不要となる。
Rare earth oxalate salts are generally obtained by mixing a rare earth mineral salt aqueous solution with an oxalic acid aqueous solution or an ammonium oxalate aqueous solution. Only a powder was obtained, and even if this was crushed, a product with good sinterability could not be obtained. In the present invention, first, it was discovered that fine particles can be obtained when the liquid during the reaction is highly basic. During the reaction process, when rare earth oxalate precipitates, mineral acid or mineral acid ammonium is produced, so a rare earth mineral salt aqueous solution and further ammonia water are added to an aqueous ammonium oxalate solution that has been made highly basic in advance. If these are added at the same time and reacted, a fine precipitate of rare earth and competing acid salts will be obtained. This high basicity is preferably adjusted to a pH of 7 or more, preferably 9.0 to 9.5. If the pH is below 7, single particles become large, which is not preferable. However, the precipitate obtained by this method is so small that it aggregates and requires a pulverization step after separation and drying. However, in the present invention, by increasing the temperature during crystal formation, good dispersibility can be achieved. A powder can be obtained, eliminating the need for a pulverization process.

この反応温度としては、50℃以上、好ましくは60〜
70℃が良い。また、希土類の鉱酸塩水溶液中にカルシ
ウムを添加することにより、得られる希土類酸化物の焼
結性を調節出来ることを発見した. このカルシウムは
、Ca塩の形態で添加すれば良いが、水酸化Caの形が
焼成後の物性に影響が少なく、その添加量は1500p
pm以下、好ましくは300〜1000ppmが良い。
The reaction temperature is 50°C or higher, preferably 60°C or higher.
70℃ is good. We also discovered that the sinterability of the resulting rare earth oxides could be adjusted by adding calcium to the rare earth mineral salt aqueous solution. This calcium may be added in the form of Ca salt, but the form of Ca hydroxide has less influence on the physical properties after firing, and the amount added is 1500 p.
pm or less, preferably 300 to 1000 ppm.

以上のようにして、希土類しゆう酸塩を析出させた後、
これを遠心分離等により脱水し、次いで、800〜10
00℃で焼成することにより本発明の焼結性の高い粉末
が得られる。
After precipitating the rare earth oxalate as described above,
This is dehydrated by centrifugation, etc., and then
The highly sinterable powder of the present invention can be obtained by firing at 00°C.

この製造方法が適用される希土類元素としては、 La
,Ce,Pr,Nd,Sm,Eu,Gd.Tb.Dy,
Ha,Er,丁m,Yb,LuのほかYあるいはScな
どが例示されるが、これらの内、Sm, Ndが好適で
ある. 以下本発明の具体的実施態様を実施例を挙げて説明する
が、本発明はこれらに限定されるものではない。
Rare earth elements to which this production method is applied include La
, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Dy,
In addition to Ha, Er, Dm, Yb, and Lu, Y and Sc are exemplified, and among these, Sm and Nd are preferred. EXAMPLES Specific embodiments of the present invention will be described below with reference to Examples, but the present invention is not limited thereto.

(実施例l) 希土類の鉱酸塩水溶液として、硝酸サマリウム水溶液を
使用した.しゆう酸アンモニウム水溶液は、サマリウム
1.00モルに対して、しゆう酸を1,5モル、アンモ
ニアを5.8モルの割合で混合した。次に硝酸サマリウ
ム水溶液中に水酸化カルシウムを0.300,600,
1000,1500ppm CaO/SII+.0.の
割合で添加した。上記のごとく調製した各水溶液を60
〜70℃に加温し、撹拌されたしゆう酸アンモニウム水
溶液中に、硝酸サマリウム水溶液と、サマリウム1.0
0モルに対して0.86モルのアンモニアを、同時に添
加して、しゆう酸サマリウムの沈澱を得る。これを81
10℃で焼成して、目的の酸化サマリウムの粉末を得た
。この粉末を通常のプレス法で成形し、1700℃で3
時間焼結を行い、相対密度を測定した。一般に製造され
ている市販の酸化サマリウム粉末を使用した場合(比較
例1)と比較して表−1に示す。ここに相対密度とは次
式で表わされる。
(Example 1) A samarium nitrate aqueous solution was used as a rare earth mineral salt aqueous solution. The ammonium oxalate aqueous solution was prepared by mixing 1.00 moles of samarium, 1.5 moles of oxalic acid, and 5.8 moles of ammonia. Next, add 0.300,600% calcium hydroxide to the samarium nitrate aqueous solution,
1000, 1500ppm CaO/SII+. 0. It was added at a ratio of 60% of each aqueous solution prepared as above
In an ammonium oxalate aqueous solution heated to ~70°C and stirred, samarium nitrate aqueous solution and samarium 1.0
0.86 moles of ammonia per 0 mole are added simultaneously to obtain a precipitate of samarium oxalate. This is 81
It was fired at 10°C to obtain the desired samarium oxide powder. This powder was molded using a normal press method and heated to 1700°C for 30 minutes.
Time sintering was performed and relative density was measured. Table 1 shows a comparison with the case (Comparative Example 1) in which commercially available samarium oxide powder was used. Here, the relative density is expressed by the following formula.

(実施例2) 出発原料として硝酸ネオジムを使用した以外は、実施例
1と同様に処理した。一般に製造されている市販の酸化
ネオジム粉末を使用した場合(比較例2)と比較して表
−1に示す。
(Example 2) The same process as in Example 1 was performed except that neodymium nitrate was used as the starting material. Table 1 shows a comparison with the case where a commercially available neodymium oxide powder (comparative example 2) which is commonly manufactured is used.

CaO量(ppn+)  0  300  600  
1,000 1,500(発明の効果) 本発明の製造方法によって得られる希土類酸化物粉末を
用いて、成形すれば、、通常市阪されている希土類酸化
物単独または他の酸化物との混合物を使用したものに比
べて、焼結性を向上させることが可能となった。すなわ
ち、焼結体の密度が緻密となり、破壊強度が増加し、耐
久性が増したため、応用範囲が拡大し、産業上極めて有
益である。
CaO amount (ppn+) 0 300 600
1,000 1,500 (Effects of the Invention) If the rare earth oxide powder obtained by the production method of the present invention is molded, a commonly produced rare earth oxide alone or a mixture with other oxides can be produced. It has become possible to improve sinterability compared to those using . That is, the density of the sintered body becomes denser, the fracture strength increases, and the durability increases, so the range of applications is expanded and it is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1、アンモニアを用いて、pHを7以上としたしゆう酸
水溶液中に、希土類の鉱酸水溶液を加えて希土類しゆう
酸塩を析出させ、これを分離焼成することを特徴とする
希土類酸化物粉末の製造方法。 2、希土類しゆう酸塩生成時、反応温度を50℃以上に
することを特徴とする請求項1に記載の希土類酸化物粉
末の製造方法。 3、希土類しゆう酸塩生成反応時、希土類の鉱酸水溶液
中に、カルシウムを1000ppm以下添加することを
特徴とする請求項1に記載の希土類酸化物粉末の製造方
法。
[Claims] 1. Adding a rare earth mineral acid aqueous solution to an oxalic acid aqueous solution whose pH is adjusted to 7 or more using ammonia to precipitate a rare earth oxalate salt, and separating and calcining this. Characteristic method for producing rare earth oxide powder. 2. The method for producing rare earth oxide powder according to claim 1, wherein the reaction temperature is set to 50° C. or higher during the production of rare earth oxalate. 3. The method for producing rare earth oxide powder according to claim 1, wherein 1000 ppm or less of calcium is added to the rare earth mineral acid aqueous solution during the rare earth oxalate production reaction.
JP1153727A 1989-06-16 1989-06-16 Method for producing rare earth oxide powder Expired - Lifetime JPH0832554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153727A JPH0832554B2 (en) 1989-06-16 1989-06-16 Method for producing rare earth oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153727A JPH0832554B2 (en) 1989-06-16 1989-06-16 Method for producing rare earth oxide powder

Publications (2)

Publication Number Publication Date
JPH0323213A true JPH0323213A (en) 1991-01-31
JPH0832554B2 JPH0832554B2 (en) 1996-03-29

Family

ID=15568778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153727A Expired - Lifetime JPH0832554B2 (en) 1989-06-16 1989-06-16 Method for producing rare earth oxide powder

Country Status (1)

Country Link
JP (1) JPH0832554B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332558A (en) * 1990-11-22 1994-07-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide powder and method for the preparation thereof
US5478543A (en) * 1993-06-21 1995-12-26 Santoku Metal Industry Co., Ltd. Compound oxide having oxygen absorbing and desorbing capability and method for preparing same
US5571492A (en) * 1994-06-20 1996-11-05 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability
US5580536A (en) * 1993-06-21 1996-12-03 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
US5582785A (en) * 1993-06-21 1996-12-10 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
JPH09188515A (en) * 1996-01-08 1997-07-22 Shin Etsu Chem Co Ltd Agglomerated lump-shaped rare earth hydroxide and its production
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
US7165371B2 (en) 2000-10-13 2007-01-23 Altia Hashimoto Co., Ltd. Automobile molding and fastener therefor
CN102976525A (en) * 2012-12-12 2013-03-20 南昌大学 Method for treating and recycling rare earth oxalate precipitation mother solution
CN105858707A (en) * 2016-05-27 2016-08-17 商洛学院 Preparing method for Sm2O3 nanocrystalline
JP2018035391A (en) * 2016-08-30 2018-03-08 住友金属鉱山株式会社 Recovery method of scandium
US11566652B2 (en) * 2014-11-04 2023-01-31 Illinois Tool Works Inc. Fastening clip assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291813A (en) * 1987-05-26 1988-11-29 Mitsubishi Metal Corp Production of scandium oxide having dodecahedral crystal form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291813A (en) * 1987-05-26 1988-11-29 Mitsubishi Metal Corp Production of scandium oxide having dodecahedral crystal form

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332558A (en) * 1990-11-22 1994-07-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide powder and method for the preparation thereof
US5478543A (en) * 1993-06-21 1995-12-26 Santoku Metal Industry Co., Ltd. Compound oxide having oxygen absorbing and desorbing capability and method for preparing same
US5580536A (en) * 1993-06-21 1996-12-03 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
US5582785A (en) * 1993-06-21 1996-12-10 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
US5571492A (en) * 1994-06-20 1996-11-05 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability
JPH09188515A (en) * 1996-01-08 1997-07-22 Shin Etsu Chem Co Ltd Agglomerated lump-shaped rare earth hydroxide and its production
US7165371B2 (en) 2000-10-13 2007-01-23 Altia Hashimoto Co., Ltd. Automobile molding and fastener therefor
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
CN102976525A (en) * 2012-12-12 2013-03-20 南昌大学 Method for treating and recycling rare earth oxalate precipitation mother solution
US11566652B2 (en) * 2014-11-04 2023-01-31 Illinois Tool Works Inc. Fastening clip assembly
CN105858707A (en) * 2016-05-27 2016-08-17 商洛学院 Preparing method for Sm2O3 nanocrystalline
JP2018035391A (en) * 2016-08-30 2018-03-08 住友金属鉱山株式会社 Recovery method of scandium
WO2018043183A1 (en) * 2016-08-30 2018-03-08 住友金属鉱山株式会社 Method for recovering scandium

Also Published As

Publication number Publication date
JPH0832554B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH0323213A (en) Production of powder of oxide of rare earth element
JP2868176B2 (en) Method for producing rare earth element oxide powder
JP3877922B2 (en) Method for producing rare earth compound
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JP3692188B2 (en) Method for producing fine yttrium aluminum garnet powder
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
JPH0210091B2 (en)
JPH0238527B2 (en)
JP2843908B2 (en) Method for producing yttrium oxide fine powder
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPH0529606B2 (en)
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2001270714A (en) Method for producing yag fine powder
JPH0210090B2 (en)
JPH05116943A (en) Production of barium titanate powder
JPH05116929A (en) Production of mgo-sio2 type oxide
JPH0769623A (en) Production of fine powder of rare earth element oxide
JPH0258230B2 (en)
JPH0433383A (en) Manufacture of piezoelectric ceramics
JPS61291418A (en) Production of easily sinterable raw material powder of tungsten bronze-type oxide
JPH07309622A (en) Production of fine powder of oxide of rare earth element
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic