JPH03229804A - Manufacture of sliding member - Google Patents
Manufacture of sliding memberInfo
- Publication number
- JPH03229804A JPH03229804A JP2332790A JP2332790A JPH03229804A JP H03229804 A JPH03229804 A JP H03229804A JP 2332790 A JP2332790 A JP 2332790A JP 2332790 A JP2332790 A JP 2332790A JP H03229804 A JPH03229804 A JP H03229804A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- raw material
- component value
- lining layer
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 52
- 238000005245 sintering Methods 0.000 claims abstract description 35
- 239000002994 raw material Substances 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 239000011812 mixed powder Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 230000013011 mating Effects 0.000 claims description 4
- 229910009038 Sn—P Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 7
- 229910052745 lead Inorganic materials 0.000 abstract description 5
- 229910052718 tin Inorganic materials 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 229910020816 Sn Pb Inorganic materials 0.000 abstract 2
- 229910020922 Sn-Pb Inorganic materials 0.000 abstract 2
- 229910008783 Sn—Pb Inorganic materials 0.000 abstract 2
- 230000008016 vaporization Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 238000005096 rolling process Methods 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 229910000978 Pb alloy Inorganic materials 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
A9発明の目的
(1)産業上の利用分野
本発明は摺動部材の製造方法、特に、裏金の相手部材と
の摺動面側に、Cu−3n−Pb系合金よりなる原料粉
末を焼結してライニング層を形成する方法の改良に関す
る。Detailed Description of the Invention A9 Object of the Invention (1) Industrial Application Field The present invention relates to a method for manufacturing a sliding member, and in particular, to a method for manufacturing a sliding member, in particular, a Cu-3n-Pb based alloy is The present invention relates to an improvement in a method of forming a lining layer by sintering a raw material powder consisting of:
(2)従来の技術
従来、Cu−3n−Pb系合金としては、例えば耐焼付
き性向上の観点からpbを20重量%程度含有し、また
Sn成分値(S n / S n + Cu )X10
0を7未満に設定した鉛青銅が用いられている。(2) Conventional technology Conventionally, Cu-3n-Pb alloys contain about 20% by weight of PB, for example, from the viewpoint of improving seizure resistance, and have an Sn content value (S n /S n + Cu)X10.
Lead bronze with 0 set to less than 7 is used.
この種合金において、PbはCu−3nマトリツクスに
固溶しないので、その焼結は主としてCUおよびSn間
で行われ、したがって焼結温度はCu−3nマトリツク
スの拡散温度に支配される。In this type of alloy, Pb does not form a solid solution in the Cu-3n matrix, so the sintering takes place mainly between CU and Sn, and the sintering temperature is therefore dominated by the diffusion temperature of the Cu-3n matrix.
従来は、前記Sn成分値に応して焼結温度を800°C
以上に設定している。Conventionally, the sintering temperature was set at 800°C depending on the Sn component value.
It is set above.
(3)発明が解決しようとする課題
しかしながら前記のように焼結温度を高く設定すると、
pbの非固溶化に起因して800°C付近においてPb
が盛んに蒸発し始めるため、Pb含有量が設定値を下回
ってライニング層の耐焼付き性に悪影響を及ぼしたり、
またPbがCu−3nマトリツクスの粒界に密に凝集し
てライニング層の耐疲労性が損なわれるといった問題を
生しる。(3) Problems to be solved by the invention However, if the sintering temperature is set high as described above,
Due to non-solid solution of Pb, Pb
As the Pb content begins to evaporate rapidly, the Pb content may fall below the set value, adversely affecting the seizure resistance of the lining layer.
Further, Pb aggregates densely at the grain boundaries of the Cu-3n matrix, resulting in a problem that the fatigue resistance of the lining layer is impaired.
本発明は前記に鑑み、原料粉末として特定の混合粉末を
用いることにより、焼結温度を下げてPbの蒸発量を大
幅に抑制し、これにより優れた耐焼付き性および耐疲労
性を有するライニング層を備えた摺動部材を得ることの
できる前記製造方法を提供することを目的とする。In view of the above, the present invention uses a specific mixed powder as a raw material powder to lower the sintering temperature and significantly suppress the amount of Pb evaporation, thereby providing a lining layer with excellent seizure resistance and fatigue resistance. It is an object of the present invention to provide the above-mentioned manufacturing method, which makes it possible to obtain a sliding member having the following features.
B0発明の構成
(1) 課題を解決するための手段
本発明は、裏金の相手部材との摺動面側に、Cu−3n
−Pb系合金よりなる原料粉末を焼結してライニング層
を形成する摺動部材の製造方法において、前記原料粉末
として、Sn成分値(Sn/Sn+Cu)Xl 00が
7未満の第1粉末に、Sn成分値(Sn/Sn+Cu)
X100が7以上、13.5未満の第2粉末を添加した
混合粉末を用いることを特徴とする。B0 Structure of the Invention (1) Means for Solving the Problems The present invention provides Cu-3n on the sliding surface side of the back metal with the mating member.
- In a method for manufacturing a sliding member in which a lining layer is formed by sintering a raw material powder made of a Pb-based alloy, the raw material powder is a first powder having an Sn component value (Sn/Sn+Cu)Xl 00 of less than 7; Sn component value (Sn/Sn+Cu)
It is characterized by using a mixed powder to which a second powder having an X100 of 7 or more and less than 13.5 is added.
(2)作 用
前記原料粉末を用いると、その焼結温度を780°C以
下に設定することが可能となり、これによりpbの蒸発
量を大幅に抑制することができる。(2) Effect When the raw material powder is used, the sintering temperature can be set to 780° C. or lower, thereby making it possible to significantly suppress the amount of PB evaporated.
(3)実施例
第1.第2閃において、摺動部材としての平面軸受lは
、エンジンにおけるクランクシャフトのジャーナル部、
コンロンドの大端部等に適用されるもので、第1および
第2半体1+、’1gよりなる。両半体l3,1□は同
一構造を有し、裏金2と、その裏金2の相手部材との摺
動面側に粉末焼結法により形成されたライニング層3と
、そのライニング層3の表面に電気メツキ法により形成
された表面層4とを備えている。裏金2およびライニン
グ層3間には銅メツキ層が、またライニング層3および
表面層4間には二ンケルメソキバリャ層がそれぞれ必要
に応して設けられている。(3) Example 1. In the second flash, the plane bearing l as a sliding member is attached to a journal portion of a crankshaft in an engine.
It is applied to the large end of a connecting rod, etc., and consists of the first and second halves 1+ and '1g. Both halves l3, 1□ have the same structure, and include a back metal 2, a lining layer 3 formed by a powder sintering method on the sliding surface side of the back metal 2 with the mating member, and a surface of the lining layer 3. and a surface layer 4 formed by electroplating. A copper plating layer is provided between the backing layer 2 and the lining layer 3, and a nickel mesoki barrier layer is provided between the lining layer 3 and the surface layer 4, as required.
裏金2は圧延鋼板より構成され、その厚さは平面軸受1
の設定厚さにより決められる。ライニング層3はCu−
3n−Pb系合金より構成され、その厚さは50〜50
0μm1通常は300μm程度である。表面層4は、例
えばPb合金より構成され、その厚さは5〜50μm、
通常は20μm程度である。この表面層4は相手部材と
の初期なじみ性を良好にするためのもので、摺動時間の
経過と共に摩滅する。The back metal 2 is made of a rolled steel plate, and its thickness is equal to that of the plane bearing 1.
Determined by the set thickness. Lining layer 3 is Cu-
Composed of 3n-Pb alloy, its thickness is 50~50
0 μm1 is usually about 300 μm. The surface layer 4 is made of, for example, a Pb alloy, and has a thickness of 5 to 50 μm.
Usually it is about 20 μm. This surface layer 4 is intended to improve the initial conformability with the mating member, and will wear out as the sliding time progresses.
ライニング層3は、16重量%以上、24重量%未満の
Pb、4重量%以上、10重量%未満のSnおよび残部
Cuといった組成を有する。The lining layer 3 has a composition of 16% by weight or more and less than 24% by weight of Pb, 4% by weight or more and less than 10% by weight of Sn, and the balance Cu.
pbにおいて、その含有量が16重量%未満では耐焼付
き性が低く、一方、24重量%以上になると耐疲労性が
低下する。Snにおいて、その含有量が4重量%未満で
は耐疲労性が低く、一方、10重量%以上添加しても効
果は変わらない。When the Pb content is less than 16% by weight, seizure resistance is low, while when it is 24% by weight or more, fatigue resistance is reduced. When the content of Sn is less than 4% by weight, fatigue resistance is low, whereas the effect remains unchanged even when it is added in an amount of 10% by weight or more.
第3図はCu−7重量%Sn−−Pb系合金におけるP
b含有量と焼付き発生面圧との関係を示す。Figure 3 shows P in Cu-7wt%Sn--Pb alloy.
The relationship between the b content and the surface pressure at which seizure occurs is shown.
耐焼付きテストはチップオンディスク式試験機を用いて
行われ、そのテスト条件は次の通りである。ディスクJ
IS 548C材に液体窒化処理を施したもの、オイ
ル温度100°C、オイル供給速度150 c c/s
in 、最大荷重300kg/d、ディスク回転速度1
8m/s(一定)である。The seizure resistance test was conducted using a chip-on-disc tester, and the test conditions were as follows. disk J
IS 548C material subjected to liquid nitriding treatment, oil temperature 100°C, oil supply speed 150 c c/s
in, maximum load 300kg/d, disc rotation speed 1
8 m/s (constant).
第3図より、Pb含有量16重量%未満では焼付き発生
面圧が朶、激に低下することが判る。From FIG. 3, it can be seen that when the Pb content is less than 16% by weight, the surface pressure at which seizure occurs is drastically reduced.
ライニング層3の形成は従来法と路間−であり、量産体
制下では、ロール状裏金2用圧延鋼帯の巻きほぐし、1
次子面度修正、圧延鋼帯上への原料粉末の散布、1次焼
結、1次圧延、2次子面度修正、2次焼結、2次圧延、
巻取りの各工程を順次行うものである。この場合、2次
焼結温度は1次焼結温度よりも20〜30’C低く設定
されており、したがってpbの草発等は1次焼結工程に
おいて問題となる。The lining layer 3 is formed by a conventional method and a method for forming the lining layer.
Correction of secondary surface degree, scattering of raw material powder onto rolled steel strip, primary sintering, primary rolling, correction of secondary surface degree, secondary sintering, secondary rolling,
Each winding process is performed sequentially. In this case, the secondary sintering temperature is set to be 20 to 30'C lower than the primary sintering temperature, and therefore, the growth of PB poses a problem in the primary sintering process.
原料粉末としては、Sn成分値(S n / S n
+Cu)X100が7未満の第1粉末に、Sn成分値(
Sn/Sn+Cu)xl ooが7以上、13゜5未満
の第2粉末を添加した混合粉末が用いられる。As the raw material powder, the Sn component value (S n /S n
+Cu)X100 is less than 7, the Sn component value (
A mixed powder to which a second powder having Sn/Sn+Cu)xl oo of 7 or more and less than 13°5 is added is used.
第4閏はCu−7重量%Sn−−19重量%pb系合金
における1次焼結温度とpb減少率との関係を示し、焼
結時間は30分間に設定された。The fourth loop shows the relationship between the primary sintering temperature and the PB reduction rate in a Cu-7wt%Sn--19wt%PB alloy, and the sintering time was set to 30 minutes.
第4図より1次焼結温度800°C付近で、Pbの蒸発
量が急激に増加することが判る。It can be seen from FIG. 4 that the amount of Pb evaporated increases rapidly when the primary sintering temperature is around 800°C.
第5図はCu−3n系合金の二元系平衡状態図における
要部を示し、線Xは融点1083°Cからの固相線であ
り、その固相線温度はSn成分値が増すと、下がる傾向
にあり、この傾向はSn成分値13.5まで続く。この
Sn成分値13.5における固相線温度は79 B ”
Cであり、この温度はSn成分値13.5以上、25ま
で一定である。Figure 5 shows the main part of the binary equilibrium phase diagram of the Cu-3n alloy, where the line X is the solidus line from the melting point of 1083°C, and the solidus temperature increases as the Sn content increases. This trend continues until the Sn component value reaches 13.5. The solidus temperature at this Sn component value of 13.5 is 79 B''
C, and this temperature is constant from Sn component value 13.5 to 25.
線yはCu7Snマトリツクスの拡散温度を示し、その
温度はSn成分値13.5未満において固相線温度より
も約100°C低くなる。The line y shows the diffusion temperature of the Cu7Sn matrix, which is about 100° C. lower than the solidus temperature for Sn content values below 13.5.
第4.第5図線yを勘案すると、pbの蒸発量を大幅に
抑制するためには、1次焼結温度は800°Cよりも低
い温度、即ち、安全性を見込んで780°C以下に設定
する必要があり、したがって原料粉末のSn成分値は7
以上でなければならない。4th. Considering the line y in Figure 5, in order to significantly suppress the amount of PB evaporation, the primary sintering temperature should be set lower than 800°C, that is, 780°C or lower with safety in mind. Therefore, the Sn component value of the raw material powder is 7.
Must be above.
第6図は1次焼結温度を変化させた場合において、第1
粉末に対する第2粉末の添加量と、ライニング層の平均
欠陥率との関係を示す。Figure 6 shows the results of the first sintering process when the primary sintering temperature is changed.
The relationship between the amount of the second powder added to the powder and the average defect rate of the lining layer is shown.
第1および第2粉末の組成は表Iの通りである。The compositions of the first and second powders are as shown in Table I.
表 I
平均欠陥率は、ライニング層の表面積に対する未充填部
分の面積率で表しである。Table I Average defect rate is expressed as the area ratio of the unfilled portion to the surface area of the lining layer.
第6図中、線2.〜2.は1次焼結温度を750.77
0,800°Cにそれぞれ設定した場合に該当する。In Figure 6, line 2. ~2. is the primary sintering temperature of 750.77
This applies when the temperature is set to 0,800°C.
第6図から明らかなように、1次焼結温度を比較的高い
温度である770°Cに設定した場合において、ライニ
ング層の平均欠陥率を1%以下に下げるためには、第2
粉末を50重量%以上添加することが必要である。As is clear from Fig. 6, when the primary sintering temperature is set at a relatively high temperature of 770°C, in order to reduce the average defect rate of the lining layer to 1% or less, it is necessary to
It is necessary to add powder in an amount of 50% by weight or more.
原料粉末を構成するCu−3n−Pb系合金には、必要
に応じてNi、Ti、S i、Zn、Mn。The Cu-3n-Pb alloy constituting the raw material powder contains Ni, Ti, Si, Zn, and Mn as necessary.
Fe、Zr、S、SbおよびA1.から選択される少な
くとも一種が添加される。Fe, Zr, S, Sb and A1. At least one selected from the following is added.
1次および2次圧延工程はローラを用いて行われ、圧下
率は1次圧延工程で50〜70%、2次圧延工程で5〜
20%にそれぞれ設定される。The primary and secondary rolling steps are performed using rollers, and the rolling reduction ratio is 50 to 70% in the primary rolling process and 5 to 70% in the secondary rolling process.
Each is set to 20%.
アトマイズ法を適用して、表■に示す組成を有する直径
150μm以下の各種原料粉末を製造した。By applying the atomization method, various raw material powders having the compositions shown in Table 1 and having a diameter of 150 μm or less were manufactured.
表
■
表Hにおいて、原料粉末aは本発明で用いられる粉末で
ある。この原料粉末aは、原料粉末eを第1粉末とし、
これに50重量%の原料粉末すを第2粉末として加えた
もので、組成は原料粉末Cと同しになる。なお、原料粉
末e、bは表Iの第1.第2粉末にそれぞれ対応する。Table 1 In Table H, raw material powder a is the powder used in the present invention. This raw material powder a uses raw material powder e as a first powder,
To this, 50% by weight of raw material powder was added as a second powder, and the composition was the same as raw material powder C. Note that the raw material powders e and b are the same as No. 1 in Table I. corresponding to the second powder, respectively.
実験のため、各原料粉末a −eを用い、下記作業を経
て各種平面軸受を製造した。For experiments, various planar bearings were manufactured using each of the raw material powders a to e through the following operations.
■、ライニング層形成作業
(i) 厚さ1.6 mの裏金用圧延鋼板上へ原料粉
末を厚さ1mに散布した。(2) Lining layer forming operation (i) Raw material powder was spread to a thickness of 1 m onto a 1.6 m thick rolled steel plate for a backing metal.
(ii) 原料粉末に還元性雰囲気中で1次焼結処理
を施した。この場合、1次焼結温度は、原料粉末a −
dについては770°Cに、また原料粉末eについては
820°Cにそれぞれ設定された。(ii) The raw material powder was subjected to primary sintering treatment in a reducing atmosphere. In this case, the primary sintering temperature is the raw material powder a −
d was set at 770°C, and raw material powder e was set at 820°C.
(■) 圧延鋼板および1次焼結層に、圧下率約65%
の1次圧延処理を施した。(■) Reduction rate of approximately 65% for rolled steel plate and primary sintered layer
A primary rolling treatment was performed.
(1■) 圧延鋼板および1次焼結層に、ローラによ
る平面度修正処理を施した。(1■) The rolled steel plate and the primary sintered layer were subjected to flatness correction treatment using a roller.
(■) 1次焼結層に2次焼結処理を施した。この場
合、2次焼結温度は、1次焼結温度よりもそれぞれ20
°C低く設定された。(■) The primary sintered layer was subjected to secondary sintering treatment. In this case, the secondary sintering temperature is 20° higher than the primary sintering temperature.
°C was set low.
(vi) 圧延鋼板および2次焼結層に、圧下率約1
4%の2次圧延処理を施して、厚さ300μmの2次焼
結層よりなるライニング層3を備えた軸受素材を得た。(vi) Rolled steel plate and secondary sintered layer have a reduction rate of approximately 1
A bearing material having a lining layer 3 made of a secondary sintered layer with a thickness of 300 μm was obtained by performing a 4% secondary rolling treatment.
■0機械加工作業
軸受素材にプレス加工、各種切削加工等を施して第1.
第2半体り、1gに対応する一対の中間体を得た。■0 Machining work The bearing material is subjected to press working, various cutting processes, etc.
A pair of intermediates corresponding to 1 g of the second half was obtained.
■、電気メツキ作業
各中間体にpb金合金用いた電気メツキ処理を施して、
ライニング層3上に厚さ20μmの表面層4を形成した
。■Electroplating process Each intermediate is electroplated using PB gold alloy,
A surface layer 4 having a thickness of 20 μm was formed on the lining layer 3.
表■は各種平面軸受におけるライニング層の1次焼結温
度および物性を示す。便宜上、本発明および各比較例に
おける符号は、原料粉末と同じものが用いられている。Table 3 shows the primary sintering temperature and physical properties of the lining layer in various flat bearings. For convenience, the same reference numerals as those of the raw material powder are used in the present invention and each comparative example.
また耐焼付き性テストは第3図例と同一方式および同一
条件の下で行われた。Further, the seizure resistance test was conducted in the same manner and under the same conditions as in the example shown in FIG.
表■から明らかなように、本発明aは従来例に相当する
比較例eに比べて1次焼結温度が50°Cも低く、これ
によりPbの蒸発量を大幅に抑制することができる。そ
の結果、本発明aは比較例eよりも焼付き発生面圧が高
く、また硬さおよび引張強さの向上に伴い耐疲労性も優
れている。これは比較例c、dに対しても同様である。As is clear from Table (2), the primary sintering temperature of the present invention a is 50°C lower than that of the comparative example e corresponding to the conventional example, and as a result, the amount of evaporation of Pb can be significantly suppressed. As a result, the present invention a has a higher surface pressure at which seizure occurs than the comparative example e, and also has excellent fatigue resistance due to improved hardness and tensile strength. This also applies to comparative examples c and d.
比較例すはpb含有量が15重量%であるため焼付き発
生面圧が低くなる。Since the comparative example has a Pb content of 15% by weight, the surface pressure at which seizure occurs is low.
なお、本発明は平面軸受に限らず、他の摺動部材の製造
にも当然に通用される。Note that the present invention is not limited to plane bearings, and can naturally be applied to the manufacture of other sliding members.
C0発明の効果
本発明によれば、前記のように特定された混合粉末を原
料粉末として用いることにより、原料粉末の焼結温度を
下げてpbの蒸発量を大幅に抑制し、これにより優れた
耐焼付き性および耐疲労性を有するライニング層を備え
た摺動部材を得ることができる。Effects of the C0 Invention According to the present invention, by using the mixed powder specified as described above as the raw material powder, the sintering temperature of the raw material powder is lowered and the amount of PB evaporated is significantly suppressed. A sliding member with a lining layer having seizure resistance and fatigue resistance can be obtained.
第1図は平面軸受の分解平面図、第2図は第1図■−■
線断面図、第3図はPb含有量と焼付き発生面圧との関
係を示すグラフ、第4図は1次焼結温度とpb減少率と
の関係を示すグラフ、第5図はCu−Sn−系合金の二
元系平衡状態図における部分図、第6図は第2粉末の添
加量と平均欠陥率との関係を示すグラフである。
1・・・平面軸受(摺動部材)、2・・・裏金、3・・
・ライニング層Figure 1 is an exploded plan view of the plain bearing, Figure 2 is Figure 1 - ■
3 is a graph showing the relationship between the Pb content and the surface pressure at which seizure occurs. FIG. 4 is a graph showing the relationship between the primary sintering temperature and the Pb reduction rate. FIG. 6, which is a partial diagram of the binary equilibrium phase diagram of the Sn-based alloy, is a graph showing the relationship between the amount of the second powder added and the average defect rate. 1... Plane bearing (sliding member), 2... Back metal, 3...
・Lining layer
Claims (2)
b系合金よりなる原料粉末を焼結してライニング層を形
成する摺動部材の製造方法において、前記原料粉末とし
て、Sn成分値(Sn/Sn+Cu)×100が7未満
の第1粉末に、Sn成分値(Sn/Sn+Cu)×10
0が7以上、13.5未満の第2粉末を添加した混合粉
末を用いることを特徴とする摺動部材の製造方法。(1) Cu-Sn-P on the sliding surface side of the back metal with the mating member.
In the method for manufacturing a sliding member in which a lining layer is formed by sintering a raw material powder made of a b-based alloy, the raw material powder is a first powder whose Sn component value (Sn/Sn+Cu)×100 is less than 7; Component value (Sn/Sn+Cu) x 10
A method for manufacturing a sliding member, characterized in that a mixed powder containing a second powder having a zero value of 7 or more and less than 13.5 is used.
第(1)項記載の摺動部材の製造方法。(2) the amount of the second powder added is 50% by weight or more;
The method for manufacturing a sliding member according to item (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2332790A JPH03229804A (en) | 1990-02-01 | 1990-02-01 | Manufacture of sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2332790A JPH03229804A (en) | 1990-02-01 | 1990-02-01 | Manufacture of sliding member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03229804A true JPH03229804A (en) | 1991-10-11 |
Family
ID=12107489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2332790A Pending JPH03229804A (en) | 1990-02-01 | 1990-02-01 | Manufacture of sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03229804A (en) |
-
1990
- 1990-02-01 JP JP2332790A patent/JPH03229804A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6746154B2 (en) | Lead-free bearing | |
US6652675B2 (en) | Copper alloy sliding material | |
US4334926A (en) | Bearing material | |
JPWO2008140100A1 (en) | Pb-free copper alloy sliding material and plain bearing | |
JP2532790B2 (en) | Copper-lead alloy bearing with overlay | |
JPH0270032A (en) | Graphite-containing lead bronze double layer sliding material and its manufacture | |
US5482782A (en) | Sliding-contact material excellent in corrosion resistance and wear resistance, and method of manufacturing the same | |
GB2084186A (en) | Alloy for antifriction bearing layers and process of forming an antifriction layer on a steel supporting strip | |
JPH04198440A (en) | Sliding member having sintered copper alloy layer | |
GB2264336A (en) | Bearings. | |
JPH06192774A (en) | Copper alloy plain bearing having high strength back plate and its production | |
US3732083A (en) | Composite article | |
JP2769421B2 (en) | Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same | |
US3403010A (en) | Multilayer bearing having a base of steel and a surface layer of a lead alloy | |
JP2006022896A (en) | Double-layered bearing material and its manufacturing method | |
JP2551981B2 (en) | Multi-layer iron copper lead alloy bearing material | |
JPH07179963A (en) | Copper-lead alloy bearing | |
US6706126B2 (en) | Aluminum alloy for sliding bearing and its production method | |
JP2615332B2 (en) | Copper alloy plain bearing for low rigidity housing and method of manufacturing the same | |
JPS5844140B2 (en) | Composite sliding material | |
JPH03229804A (en) | Manufacture of sliding member | |
JP3754353B2 (en) | Sliding member with composite plating film | |
JPH0819945B2 (en) | Multi-layer lead bronze bearing for high loads | |
US20040022663A1 (en) | Production method of aluminum alloy for sliding bearing | |
JPH11193427A (en) | Copper-base sintered bearing material and its production |