JPH03209803A - Magnetic field generating device for mri - Google Patents
Magnetic field generating device for mriInfo
- Publication number
- JPH03209803A JPH03209803A JP2004685A JP468590A JPH03209803A JP H03209803 A JPH03209803 A JP H03209803A JP 2004685 A JP2004685 A JP 2004685A JP 468590 A JP468590 A JP 468590A JP H03209803 A JPH03209803 A JP H03209803A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- permanent magnet
- magnet
- magnetization direction
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005415 magnetization Effects 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 abstract description 12
- 239000000470 constituent Substances 0.000 abstract 4
- 238000004458 analytical method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
利用産業分野
この発明は、医療用核磁気共鳴断層撮影装置等に用いら
れる永久磁石を使用した磁界発生装置の改良に係り、空
隙を形成して対向する一対の単数または複数の磁石セグ
メントからなる永久磁石構成体において、構成体の所要
位置または所要位置の磁石セグメントの空隙方向すなわ
ち磁化方向の高さを変えて配列し、磁極片を用いずに均
一磁界を発生させ、渦電流発生の減少、軽量化を図った
磁界発生装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to an improvement in a magnetic field generating device using permanent magnets used in medical nuclear magnetic resonance tomography devices, etc. In a permanent magnet structure consisting of a plurality of magnet segments, the magnet segments at a desired position or a desired position of the structure are arranged with different heights in the gap direction, that is, in the magnetization direction, to generate a uniform magnetic field without using magnetic pole pieces, This invention relates to a magnetic field generator that reduces eddy current generation and is lightweight.
背景技術
医療用核磁気共鳴断層撮影装置(以下MRIという)は
、強力な磁界を形成する磁界発生装置の空隙内に、被検
者の一部または全部を挿入して、対象物の断層イメージ
を得てその組織の性質まで描き出すことができる装置で
ある。BACKGROUND TECHNOLOGY A medical nuclear magnetic resonance tomography apparatus (hereinafter referred to as MRI) takes a tomographic image of an object by inserting part or all of the subject into the gap of a magnetic field generator that generates a strong magnetic field. It is a device that can be used to visualize the properties of the tissue.
上記MRI用の磁界発生装置において、空隙は被検者の
一部または全部が挿入できるだけの広さが必要であり、
かつ鮮明な断層イメージを得るために、通常、空隙内の
撮像視野内には、0.05〜1.5Tでかつ1xlO−
4以下の精度を有する安定した強力な均一磁界を形成す
ることが要求される。In the above magnetic field generation device for MRI, the gap must be wide enough to allow part or all of the subject to be inserted;
In order to obtain a clear tomographic image, the field of view within the gap is normally filled with a temperature of 0.05 to 1.5T and 1xlO-
It is required to create a stable, strong, uniform magnetic field with an accuracy of 4 or less.
MHIに用いる磁界発生装置として、第9図に示す如く
、Fe−B−R系磁石を用いた一対の永久磁石構成体(
IXI)の各々の一方端に磁極片(2X2)を固着して
対向させ、他方端を板状継鉄(4X5)、さらにこれら
を4本の柱状継鉄(6)にて連結し、磁極片(2X2)
間の空隙(7)内に、静磁界を発生させる構成が知られ
ている。As shown in Fig. 9, the magnetic field generator used in MHI uses a pair of permanent magnet structures (
A magnetic pole piece (2X2) is fixed to one end of each of the IXI) and placed facing each other, and the other end is connected with a plate yoke (4X5), and these are further connected with four columnar yokes (6) to form a magnetic pole piece. (2X2)
A configuration is known in which a static magnetic field is generated in the air gap (7) between the two.
例えば、上記構成において、より安定した均一磁界を形
成するため、磁極片の対向面の各々の周縁部に環状突起
(3)を設け、あるいはさらに磁極片の対向面の各々の
中央部に凸状突起(8)を設けた磁界発生装置が提案(
実開昭60−166110号公報)されている。For example, in the above configuration, in order to form a more stable uniform magnetic field, an annular protrusion (3) is provided on the peripheral edge of each of the opposing surfaces of the magnetic pole pieces, or a convex protrusion (3) is provided on the center of each of the opposing surfaces of the magnetic pole pieces. A magnetic field generator equipped with protrusions (8) has been proposed (
(Japanese Utility Model Application Publication No. 166110/1983).
かかる磁界発生装置では、永久磁石の対向面に磁極片を
設けることにより、均一磁界を得ているが、この構成で
は磁極片側面からの漏洩が大きくなり、空隙中の磁界強
度が低下する問題がある。In such a magnetic field generator, a uniform magnetic field is obtained by providing a magnetic pole piece on the opposing surface of a permanent magnet, but this configuration has the problem of increasing leakage from the sides of the magnetic pole piece and reducing the magnetic field strength in the air gap. be.
また、磁極片は磁界発生装置の全重量の10%程度を占
めるため、軽量化の妨げにもなっていた。Furthermore, since the magnetic pole piece accounts for about 10% of the total weight of the magnetic field generating device, it has also been an obstacle to reducing the weight.
一方、空隙内の位置情報を得るために、パルス電流を印
加することによって短時間で所望方向に傾斜した磁界を
発生する傾斜磁界コイル、すなわち、通常x、 y、
zの3方向に対応する3組のコイル群を各磁極片の近傍
に配置するが、傾斜磁界コイ3−
ルにより渦電流が発生し、傾斜磁界が所定の強度に達す
るのに多くの時間を要する問題がある。On the other hand, in order to obtain positional information within the air gap, a gradient magnetic field coil is used, which generates a magnetic field tilted in a desired direction in a short time by applying a pulse current, that is, usually x, y,
Three sets of coils corresponding to the three directions of z are placed near each magnetic pole piece, but the gradient magnetic field coils generate eddy currents, and it takes a long time for the gradient magnetic field to reach a predetermined strength. There is a problem that needs to be addressed.
発明の目的
この発明は、上記現状に鑑み提案するもので、磁極片を
用いずに渦電流発生の減少並びに軽量化を図り、かつ磁
極片を用いた構成と同等以上の均一磁界が得られるMR
I用磁界発生装置の提供を目的としている。Purpose of the Invention The present invention is proposed in view of the above-mentioned current situation, and is an MR device that reduces the generation of eddy current and reduces weight without using magnetic pole pieces, and that can obtain a uniform magnetic field equivalent to or higher than a configuration using magnetic pole pieces.
The purpose is to provide a magnetic field generator for I.
発明の概要
この発明は、MRI用磁界発生装置において、磁極片を
使用することなく、所要空隙内に高精度の均一磁界を発
生する構成を目的に種々検討した結果、配列した複数の
永久磁石の磁化方向長さを部分的に調整するとことによ
り、均一磁界が得られ上記目的を達成できることを知見
しこの発明を完成したものである。Summary of the Invention The present invention was developed as a result of various studies aimed at creating a magnetic field generator for MRI that generates a highly accurate uniform magnetic field within a required air gap without using magnetic pole pieces. This invention was completed based on the finding that a uniform magnetic field can be obtained and the above object can be achieved by partially adjusting the length in the magnetization direction.
すなわち、この発明は、
空隙を形成して対向し単数または複数の磁石セグメント
からなる一対の永久磁石構成体を継鉄で磁4−
気的結合し、該空′隙に磁界を発生させるMRI用磁界
発生装置において、
永久磁石構成体の所要位置または所要位置の磁石セグメ
ントが、その磁化方向長さを変えて配列され、該空隙に
均一磁界を発生させることを特徴とするMRI用磁界発
生装置である。That is, the present invention provides an MRI system in which a pair of permanent magnet structures each consisting of a single or a plurality of magnet segments facing each other with an air gap are magnetically coupled with a yoke to generate a magnetic field in the air gap. A magnetic field generating device for MRI, characterized in that magnet segments at desired positions or desired positions of a permanent magnet structure are arranged with different lengths in their magnetization directions, and a uniform magnetic field is generated in the gap. be.
詳述すると、この発明は、前記構成のMRI用磁界発生
装置において、
永久磁石構成体を形成する磁石セグメントが単数の場合
、所要位置の磁石の磁化方向長さを変えるか、あるいは
磁石セグメントが複数の場合、所要位置の磁石セグメン
トの磁化方向長さを変えて配列され、該空隙に均一磁界
を発生させることを特徴上する。Specifically, in the magnetic field generating device for MRI having the above configuration, the present invention provides the following: When the permanent magnet structure has a single magnet segment, the length of the magnet in the magnetization direction of the magnet at a predetermined position is changed, or the magnet segment has a plurality of magnet segments. In this case, the magnet segments are arranged at predetermined positions with different lengths in the magnetization direction, and a uniform magnetic field is generated in the gap.
さらに、この発明は、永久磁石の磁化方向長さ(空隙方
向高さ)を変えるほか、磁石長さ、磁石幅、磁気特性、
磁石材質のうち、少なくとも1つを変え該空隙に均一磁
界を発生させることを特徴とする。Furthermore, in addition to changing the length of the permanent magnet in the magnetization direction (height in the air gap direction), this invention also changes the magnet length, magnet width, magnetic properties,
The present invention is characterized in that at least one of the magnet materials is changed to generate a uniform magnetic field in the gap.
発明の構成
この発明において、磁気回路は、空隙を形成して対向す
る一対の永久磁石構成体を継鉄で磁気的結合した構成で
あれば、継鉄、永久磁石構成体の磁石形状2寸法、配列
方法などはいかなる構成であってもよく、所要空隙の大
きさ等に応じて、永久磁石構成体の磁気特性、形状寸法
、継鉄の形状寸法等を適宜選定することが望ましい。Structure of the Invention In this invention, if the magnetic circuit has a structure in which a pair of permanent magnet structures facing each other with an air gap are magnetically coupled by a yoke, the yoke, two dimensions of the magnet shape of the permanent magnet structure, Any configuration may be used for the arrangement method, and it is desirable to appropriately select the magnetic properties, shape and dimensions of the permanent magnet structure, shape and dimensions of the yoke, etc., depending on the size of the required air gap and the like.
この発明は、永久磁石構成体の空隙対向面に磁極片を設
けることなく、所要の空隙に均一磁界を発生させるため
、複数の永久磁石の磁化方向長さ(空隙方向高さ)を変
えて配列し永久磁石構成体を形成したことを特徴として
おり、基本的な技術思想は、例えば、同一寸法、特性の
永久磁石で所定の永久磁石構成体を形成し、発生した所
要の空隙内の磁界強度分布を解析し、所要箇所の永久磁
石の磁化方向長さすなわち空隙方向の磁石高さを変え、
該空隙内が均一磁界となるように調整して永久磁石を配
列することにある。In order to generate a uniform magnetic field in a required gap without providing a magnetic pole piece on the surface facing the gap of a permanent magnet structure, a plurality of permanent magnets are arranged with different lengths in the magnetization direction (height in the gap direction). The basic technical idea is, for example, to form a predetermined permanent magnet structure with permanent magnets of the same size and characteristics, and to increase the magnetic field strength within the required air gap. By analyzing the distribution and changing the length of the permanent magnet in the magnetization direction at the required location, that is, the height of the magnet in the air gap direction,
The purpose is to arrange the permanent magnets in such a manner that a uniform magnetic field is generated within the air gap.
さらに、この発明において、空隙を形成して対向する一
対の永久磁石構成体は、前述の如く任意の形状を取るこ
とができ、この永久磁石構成体を形成する複数の永久磁
石は、前述の如く、永久磁石の磁化方向長さ、すなわち
空隙方向の磁石高さを変えるほか、磁石長さ、磁石幅、
磁気特性、磁石材質を変えてもよく、これら磁石を種々
のパターンで配列することができる。Further, in the present invention, the pair of permanent magnet structures facing each other with a gap formed therebetween can have any shape as described above, and the plurality of permanent magnets forming this permanent magnet structure may be formed as described above. , in addition to changing the length of the permanent magnet in the magnetization direction, that is, the magnet height in the air gap direction, the magnet length, magnet width,
The magnetic properties and magnet material may be changed, and these magnets can be arranged in various patterns.
この発明は、単数または複数の磁石セグメントからなる
一対の永久磁石構成体の所要位置または所要位置の磁石
セグメントが、その磁化方向長さを変えて配列され、該
空隙に均一磁界を発生させることを特徴とするが、磁化
方向長さを変えて配列する方法、あるいは永久磁石の形
状、配列パターン等は、軽量化、磁界均一度の向上など
の主目的や、装置の種々の用途の違い等により、後述す
る実施例に示す如く、所要空隙内の磁界強度、均一度な
どの解析方法の選択が行われ、かつ前記解析結果と磁石
高さを変える位置や磁石セグメントの選定及び変更量と
の具体的関係や、好ましい構成が変わるため、各条件に
応じて、磁石セグメ7一
ント、磁石の磁化方向長さ等を適宜選定する必要がある
。The present invention is characterized in that the magnet segments in a given position or in a given position of a pair of permanent magnet structures made up of a single or a plurality of magnet segments are arranged with different lengths in the magnetization direction, and a uniform magnetic field is generated in the gap. However, the method of arranging the magnets by changing their length in the magnetization direction, the shape of the permanent magnets, the arrangement pattern, etc. may vary depending on the main purpose such as weight reduction or improving the uniformity of the magnetic field, or the differences in the various uses of the device. As shown in the examples described later, an analysis method is selected for determining the magnetic field strength and uniformity within the required air gap, and the specifics of the analysis results and the position at which the magnet height is changed, the selection of the magnet segment, and the amount of change are made. Since the optical relationship and preferred configuration change, it is necessary to appropriately select the magnet segment, the length of the magnet in the magnetization direction, etc., depending on each condition.
かかる磁気回路に用いる単数または複数の磁石セグメン
トからなる磁石構成体の永久磁石は、フェライト磁石、
アルニコ系磁石、希土類コバルト系磁石が使用できるが
、特に、RとしてNdやPrを中心とする資源的に豊富
な軽希土類を用い、B、 Feを主成分として30MG
Oe以上の極めて高いエネルギー積を示す、Fe−B−
R系永久磁石を使用することにより、著しく小型化する
ことができる。The permanent magnet of the magnet structure consisting of one or more magnet segments used in such a magnetic circuit is a ferrite magnet,
Alnico-based magnets and rare-earth cobalt-based magnets can be used, but in particular, use resource-rich light rare earths such as Nd and Pr as R, and use 30MG magnets with B and Fe as the main components.
Fe-B- exhibits an extremely high energy product exceeding Oe.
By using R-based permanent magnets, the size can be significantly reduced.
図面に基づ〈発明の開示
第1図a、bはこの発明による磁界発生装置の永久磁石
構成体(下側)を示す説明図である。Based on the Drawings (Disclosure of the Invention) Figures 1a and 1b are explanatory diagrams showing the permanent magnet structure (lower side) of the magnetic field generating device according to the present invention.
第2図aは磁極片のない磁界発生装置の縦断説明図であ
り、同す図は横断説明図である。FIG. 2a is a longitudinal cross-sectional view of the magnetic field generator without magnetic pole pieces, and the same figure is a cross-sectional view.
第3図は磁界発生装置の球体空間内の磁界を測定する方
法を示す空隙の斜視説明図である。FIG. 3 is a perspective explanatory view of an air gap showing a method of measuring a magnetic field within a spherical space of a magnetic field generating device.
第4図a−dはこの発明の永久磁石構成体(上側)の所
要セグメントの磁化方向高さを変化さぜな例を示す説明
図である。FIGS. 4A to 4D are explanatory diagrams showing examples of changing the magnetization direction height of required segments of the permanent magnet structure (upper side) of the present invention.
8−
第5図、第6図は第3図の球体空間内のP1〜P7の磁
界不均一度を示すグラフであり、第5図は第9図の従来
磁界発生装置において磁極片を除去した場合、第6図は
第4図a−dの永久磁石構成体の場合を示す。8- Figures 5 and 6 are graphs showing the degree of magnetic field inhomogeneity of P1 to P7 in the spherical space of Figure 3, and Figure 5 is a graph showing the magnetic field inhomogeneity of P1 to P7 in the spherical space of Figure 3. In this case, FIG. 6 shows the case of the permanent magnet arrangement of FIGS. 4a-d.
第7図は第1図aの実施例における球体空間内のP1〜
P7の磁界不均一度を示すグラフである。FIG. 7 shows P1 to P1 in the spherical space in the embodiment of FIG. 1a.
It is a graph showing magnetic field non-uniformity of P7.
第8図は最適化したこの発明の永久磁石構成体(上側)
の一実施例を示す説明図である。Figure 8 shows the optimized permanent magnet structure of this invention (upper side)
FIG. 2 is an explanatory diagram showing an example.
装置構成
ここでは、第2図に示す如く、前述した第9図に示す磁
界発生装置の構成から磁極片(2X2)を除き、Fe−
B−R系磁石を用いた一対の永久磁石構成体(IXI)
を対向させ、他方端を長方形の板状継鉄(4X5)、さ
らにこれらを四隅に配設した4本の柱状継鉄(6)にて
連結し、永久磁石構成体(1)(1)間の空隙(7)内
に、静磁界を発生させる構成からなる磁界発生装置に、
この発明を適用した例を説明する。Device configuration Here, as shown in FIG. 2, the magnetic field generating device shown in FIG.
A pair of permanent magnet structures using B-R magnets (IXI)
facing each other, the other end is connected by a rectangular plate yoke (4x5), and these are further connected by four columnar yokes (6) arranged at the four corners, and the permanent magnet structure (1) (1) is connected. A magnetic field generating device configured to generate a static magnetic field in the air gap (7),
An example to which this invention is applied will be explained.
まず、永久磁石構成体(1)を、同一寸法、特性の多数
の永久磁石で所定パターンで円盤状に形成し、あるいは
該構成に形成したと想定し、空隙(7)内に発生した磁
界状況、強度分布等を解析する。First, assuming that the permanent magnet structure (1) is formed into a disk shape in a predetermined pattern with a large number of permanent magnets having the same size and characteristics, or is formed into such a configuration, the magnetic field situation generated in the air gap (7) will be explained. , analyze intensity distribution, etc.
解析方法
解析方法には、有限要素法、境界要素法等の種々の解析
方法が採用できる。また、最適化手法としては、線形計
画法等の数理計画法が用いられるが、ここでは有限要素
法と線形計画法を併用する場合を説明する。Analysis Method Various analysis methods such as the finite element method and the boundary element method can be adopted as the analysis method. Further, as an optimization method, a mathematical programming method such as linear programming is used, but here, a case where the finite element method and linear programming are used together will be explained.
磁界発生装置空隙(7)内の磁界状況を有限要素法にて
調べる。The magnetic field situation in the magnetic field generator air gap (7) is investigated using the finite element method.
また、上記構成からなる磁界発生装置の空隙(7)にお
いて、その中心(0)から所定半径rの球体空間を設定
し、第3図に示す如く、肖該球体を所要数の水平面、こ
こでは7つの水平面(P1〜P7)で横断面し、さらに
各水平面(Pi〜P7)と球体空間との交差円周上を、
Z軸を中心に所要角度で等分割した複数点での磁界強度
を計算し、各水平面(p1〜P7)の該円周上の磁界強
度のばらつきを調べる。In addition, in the air gap (7) of the magnetic field generator having the above configuration, a spherical space with a predetermined radius r is set from the center (0), and as shown in FIG. A cross section is made on seven horizontal planes (P1 to P7), and further on the intersection circumference of each horizontal plane (Pi to P7) and the spherical space,
The magnetic field strength at a plurality of points equally divided at a required angle around the Z-axis is calculated, and the dispersion of the magnetic field strength on the circumference of each horizontal plane (p1 to P7) is investigated.
次に、永久磁石構成体(IXI)を構成する多数の磁石
セグメントの各々の磁化方向長さが、水平面(Pi〜P
7)の該円周上の磁界強度に与える影響を調べる。Next, the length in the magnetization direction of each of the many magnet segments constituting the permanent magnet structure (IXI) is determined in the horizontal plane (Pi to P
7) Investigate the influence on the magnetic field strength on the circumference.
第2図に示す如く磁極片を除き、永久磁石構成体(IX
I)の空隙対向面が平坦な場合、すなわち、各磁石セグ
メントの磁化方向高さが全て等しい場合の水平面(Pi
〜P7)の該円周上の磁界強度を測定したところ、第5
図に示す如く、磁界強度の不均一の割合を空隙中心の磁
界強度からのずれ(%)で示すとおり、水平面(Pl〜
P7)の磁界強度が著しく不均一である。As shown in Figure 2, the permanent magnet structure (IX
The horizontal plane (Pi
~P7) When measuring the magnetic field strength on the circumference, the fifth
As shown in the figure, the non-uniformity of the magnetic field strength is expressed as a deviation (%) from the magnetic field strength at the center of the air gap on the horizontal plane (Pl~
P7) The magnetic field strength is significantly non-uniform.
そこで、第4図a−dに示す如く磁化方向高さを低くし
た磁石セグメントの位置を、永久磁石構成体(1)の中
心から順次外側へ移動させた場合の水平面・(P1〜P
7)の該円周上の磁界強度に与える影響を調べると、第
6図に示す如き結果を得る。Therefore, as shown in Fig. 4 a to d, when the position of the magnet segment whose height in the magnetization direction is lowered is sequentially moved outward from the center of the permanent magnet structure (1), the horizontal plane (P1 to P
When the influence of 7) on the magnetic field strength on the circumference is investigated, the results shown in FIG. 6 are obtained.
このように磁石セグメントの位置、その磁化方向高さの
変化量について、水平面(P1〜P7)の該円周上の磁
界強度に与える影響を調べて、最適な磁石セグメントを
選定しこれを重ね合わせることにより、水平面(p1〜
P7)の磁界強度が一定になる。In this way, the influence of the position of the magnet segment and the amount of change in height in its magnetization direction on the magnetic field strength on the circumference of the horizontal plane (P1 to P7) is investigated, and the optimal magnet segment is selected and superimposed. By this, the horizontal plane (p1~
The magnetic field strength of P7) becomes constant.
11−
さらに同様に、磁石セグメントの最適化を全領域に拡大
してゆき、最適な磁石セグメントを重ね合わせることに
より均一磁界を得ることができるが、試行錯誤では多大
の工程を要するので、ここでは最適化手法のひとつであ
る線形計画法により、各磁石セグメントの磁化方向高さ
を決定した。11- In the same way, it is possible to obtain a uniform magnetic field by expanding the optimization of magnet segments to the entire area and overlapping the optimal magnet segments, but since it requires a large number of steps through trial and error, we will not discuss it here. The height of each magnet segment in the magnetization direction was determined using linear programming, which is one of the optimization methods.
かかる解析に基づき、空隙(7)内の磁界強度の強弱な
どに応じて、永久磁石構成体(IXI)の多数の永久磁
石のうち、所要永久磁石の磁化方向長さを選定し、例え
ば、第1図aに示す如く変化させて配列することにより
、第7図に示す如く、均一磁界を得ることができる。Based on this analysis, the required length in the magnetization direction of the permanent magnet is selected from among the many permanent magnets of the permanent magnet structure (IXI) depending on the strength of the magnetic field in the air gap (7), etc. By varying the arrangement as shown in FIG. 1a, a uniform magnetic field can be obtained as shown in FIG. 7.
第1図aに示す永久磁石構成体(1)は、板状継鉄(5
)上に種々の磁化方向長さの異なる永久磁石を配列して
いるが、第1図すに示す如く、板状継鉄(5)表面に凹
凸を設けて、同様の永久磁石を配列し永久磁石構成体(
1)の空隙(7)対向面を平坦面としても同様の効果が
得られる。The permanent magnet structure (1) shown in Fig. 1a is a plate-shaped yoke (5
), permanent magnets with different magnetization directions and lengths are arranged on the top of the plate yoke (5). Magnet structure (
The same effect can be obtained even if the opposing surface of the gap (7) in 1) is made a flat surface.
12−
さらに、磁石重量の軽減を目的に、前述した解析方法に
より、各磁石セグメントの磁化方向高さの最適化を図っ
たところ、各磁石セグメントを。12-Furthermore, for the purpose of reducing the weight of the magnet, the height of each magnet segment in the magnetization direction was optimized using the analysis method described above.
第8図に示す如く、特に周縁部の磁化方向を長くして環
状の突起を形成するとともに、中央部の所定位置の磁化
方向を変化させて配列することにより、より高精度の均
一磁界を得ることができ、−層の軽量化が達成できた。As shown in Fig. 8, by forming an annular protrusion by elongating the magnetization direction particularly at the periphery, and by changing the magnetization direction at a predetermined position in the center and arranging it, a more highly accurate uniform magnetic field can be obtained. -The weight of the layer could be reduced.
実施例
常温時の(BH)maxが35MGOeを示すFe−B
−R系永久磁石を用い、直径300皿、高さ3.0mm
の凸状突起と、外径1100皿、内径900皿、高さ8
0皿の環状突起を有する磁極片を配置し、磁極片の対向
゛距離を500皿に設定した第9図に示す従来の磁界発
生装置において、空隙内の中心から半径20軸皿以内の
磁界均一度を測定したところ、50ppmであった。Example: Fe-B with (BH)max of 35 MGOe at room temperature
-Using R-based permanent magnets, diameter 300 discs, height 3.0mm
Convex projection, outer diameter 1100 mm, inner diameter 900 mm, height 8
In the conventional magnetic field generator shown in FIG. 9, in which magnetic pole pieces having an annular protrusion of 0 disks are arranged and the opposing distance of the magnetic pole pieces is set to 500 disks, the magnetic field is equalized within a radius of 20 axis disks from the center of the air gap. When measured once, it was 50 ppm.
上記従来の磁界発生装置において、磁極片を除去し、前
述した解析方法を適用して永久磁石構成体の各永久磁石
の磁化方向長さの最適化を図り、永久磁石構成体対向距
離を500−に設定し、第8図に示す永久磁石構成体を
有するこの発明による磁界発生装置を作製した。In the above-mentioned conventional magnetic field generating device, the magnetic pole piece is removed, and the length in the magnetization direction of each permanent magnet of the permanent magnet structure is optimized by applying the above-mentioned analysis method, and the facing distance of the permanent magnet structure is reduced by 500- A magnetic field generating device according to the present invention having a permanent magnet structure shown in FIG. 8 was manufactured.
この発明による磁界発生装置の空隙内の中心から半径2
00mm以内の磁界均一度を測定したところ、従来装置
と同等であり、磁極片を使用しないことから磁石重量で
10%以上の軽量化が達成でき、装置全体としても軽量
化が可能になった。Radius 2 from the center within the air gap of the magnetic field generator according to the present invention
When we measured the magnetic field uniformity within 0.00 mm, it was the same as the conventional device, and since no magnetic pole pieces were used, the weight of the magnet could be reduced by more than 10%, making it possible to reduce the weight of the entire device.
発明の効果
この発明による磁界発生装置は、磁極片を用ν)ずに磁
化方向長さの異なる永久磁石を配列することにより、磁
極片を用いた構成と同等以上の均一磁界が得られ、また
、磁極片を用いないので渦電流の発生が抑えられ、さら
に、軽量化を図ることができる。Effects of the Invention The magnetic field generating device according to the present invention can obtain a uniform magnetic field equivalent to or better than a configuration using magnetic pole pieces by arranging permanent magnets with different lengths in the magnetization direction without using magnetic pole pieces. Since no magnetic pole pieces are used, the generation of eddy currents can be suppressed, and the weight can also be reduced.
第1図a、bはこの発明による磁界発生装置の永久磁石
構成体(下側)を示す説明図である。
第2図aは磁極片のない磁界発生装置の縦断説明図であ
り、同す図は横断説明図である。
第3図は磁界発生装置の球体空間内の磁界を測定する方
法を示す空隙の斜視説明図である。
第4図a−dはこの発明の永久磁石構成体(上側)の所
要セグメントの磁化方向高さを変化させた例を示す説明
図である。
第5図、第6図は第3図の球体空間内のP1〜P7の磁
界不均一度を示すグラフであり、第5図は第9図の従来
磁界発生装置において磁極片を除去した場合、第6図は
第4図a−dの永久磁石構成体の場合を示す。
第7図は第1図aの実施例における球体空間内のP1〜
P7の磁界不均一度を示すグラフである。
第8図は最適化したこの発明の永久磁石構成体(上側)
の一実施例を示す説明図である。
第9図aは従来の磁界発生装置の縦断説明図であり、同
す図は横断説明図である。
1・・・永久磁石構成体、2・・・磁極片、3・・・環
状突起部、4,5・・・板状継鉄、6・・・柱状継鉄、
7・・・空隙、8・・・凸状突起。
で←
0)
(%)
(%)
第8医
\1FIGS. 1a and 1b are explanatory diagrams showing the permanent magnet structure (lower side) of the magnetic field generator according to the present invention. FIG. 2a is a longitudinal cross-sectional view of the magnetic field generator without magnetic pole pieces, and the same figure is a cross-sectional view. FIG. 3 is a perspective explanatory view of an air gap showing a method of measuring a magnetic field within a spherical space of a magnetic field generating device. FIGS. 4a to 4d are explanatory diagrams showing examples in which the heights in the magnetization direction of required segments of the permanent magnet structure (upper side) of the present invention are changed. 5 and 6 are graphs showing the degree of magnetic field inhomogeneity of P1 to P7 in the spherical space of FIG. 3, and FIG. 5 is a graph showing the magnetic field inhomogeneity of P1 to P7 in the spherical space of FIG. FIG. 6 shows the case of the permanent magnet arrangement of FIGS. 4a-d. FIG. 7 shows P1 to P1 in the spherical space in the embodiment of FIG. 1a.
It is a graph showing magnetic field non-uniformity of P7. Figure 8 shows the optimized permanent magnet structure of this invention (upper side)
FIG. 2 is an explanatory diagram showing one embodiment of the invention. FIG. 9a is a longitudinal cross-sectional view of a conventional magnetic field generator, and the same figure is a cross-sectional view. DESCRIPTION OF SYMBOLS 1... Permanent magnet structure, 2... Magnetic pole piece, 3... Annular protrusion, 4, 5... Plate-shaped yoke, 6... Column-shaped yoke,
7...Void, 8...Convex projection. So← 0) (%) (%) 8th doctor\1
Claims (1)
からなる一対の永久磁石構成体を継鉄で磁気的結合し、
該空隙に磁界を発生させるMRI用磁界発生装置におい
て、 永久磁石構成体の所要位置または所要位置の磁石セグメ
ントが、その磁化方向長さを変えて配列され、該空隙に
均一磁界を発生させることを特徴とするMRI用磁界発
生装置。[Scope of Claims] 1. A pair of permanent magnet structures formed of one or more magnet segments facing each other with a gap formed therein are magnetically coupled with a yoke,
In an MRI magnetic field generation device that generates a magnetic field in the air gap, magnet segments at desired positions or positions of the permanent magnet structure are arranged with different lengths in their magnetization directions, and a uniform magnetic field is generated in the air gap. Features of magnetic field generator for MRI.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004685A JPH0821498B2 (en) | 1990-01-12 | 1990-01-12 | Magnetic field generator for MRI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004685A JPH0821498B2 (en) | 1990-01-12 | 1990-01-12 | Magnetic field generator for MRI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03209803A true JPH03209803A (en) | 1991-09-12 |
JPH0821498B2 JPH0821498B2 (en) | 1996-03-04 |
Family
ID=11590749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004685A Expired - Lifetime JPH0821498B2 (en) | 1990-01-12 | 1990-01-12 | Magnetic field generator for MRI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0821498B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7859156B2 (en) | 2001-08-24 | 2010-12-28 | Berlin Heart Gmbh | Hard magnetic object and method for adjusting the direction and position of a magnetic vector |
-
1990
- 1990-01-12 JP JP2004685A patent/JPH0821498B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7859156B2 (en) | 2001-08-24 | 2010-12-28 | Berlin Heart Gmbh | Hard magnetic object and method for adjusting the direction and position of a magnetic vector |
Also Published As
Publication number | Publication date |
---|---|
JPH0821498B2 (en) | 1996-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0587962B2 (en) | ||
US5332971A (en) | Permanent magnet for nuclear magnetic resonance imaging equipment | |
US4695802A (en) | Nuclear magnetic resonance apparatus with a permanent magnet | |
JP2019515710A (en) | Method and apparatus for magnetic field shimming | |
JPS63226009A (en) | Uniform magnetic field generator | |
US6275128B1 (en) | MRI magnetic field generator | |
KR910001860B1 (en) | Transverse gradient field coils for nuclear magnetic resonance imaging | |
JPH03138912A (en) | Ferromagnetic compensation ring for high magnetic field strength magnet | |
US6984982B2 (en) | Method and system for shimming an MRI magnet assembly | |
JPH067316A (en) | Magnetic field generating device of magnetic resonance imaging system | |
WO2001019242A1 (en) | Open-type magnet device for mri | |
US7898257B2 (en) | Open yoke magnet assembly | |
JPH03209803A (en) | Magnetic field generating device for mri | |
JP3535107B2 (en) | Magnetic pole and magnet device using the same | |
US6351125B1 (en) | Method of homogenizing magnetic fields | |
JP3151129B2 (en) | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method | |
JPH01164356A (en) | Apparatus for generating uniform magnetic field | |
JP3194699B2 (en) | Permanent magnet magnetic circuit | |
JP4040334B2 (en) | Magnetic resonance imaging system | |
JP3098044B2 (en) | Magnetic resonance imaging equipment | |
JP2002102205A (en) | Magnetic resonace imaging apparatus | |
JPH07194572A (en) | Magnetic field generating device for magnetic resonance imaging device | |
JPH0382447A (en) | Magnetic field generator | |
JPH0787141B2 (en) | Permanent magnet type uniform magnetic field magnet | |
JPH01283905A (en) | Method for deviating uniform magnetic field for mri apparatus and magnetostatic field generating apparatus using the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100304 Year of fee payment: 14 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |