【発明の詳細な説明】[Detailed description of the invention]
【産業上の利用分野】[Industrial application field]
この発明は、熱処理装置に関する。
The present invention relates to a heat treatment apparatus.
【従来の技術1
例えば半導体集積回路の製造工程中には、例えばフォト
リソグラフィー工程におけるベーキング処理、成膜処理
、アッシング処理等、種々の熱処理工程がある。
従来、この熱処理例えばベーキング処理は、例2えば枚
葉式の場合には、例えばSUSやアルミニウムからなり
、ニクロム線などの発熱抵抗体を内蔵した加熱板上に被
処理基板を載置すると共に、例えば加熱板に熱電対や測
温抵抗体等の温度センサを埋設し、この温度センサによ
り温度をモニターすることにより、処理温度をコントロ
ールするようにしている。
【発明が解決しようとする課題】
以上のように、従来の熱処理装置の温度制御方法は、温
度をモニターして温度コントロールする方式であるので
、制御の遅れが生じ、被処理体を所定温度に立ち上げる
時や所定温度まで立ち下げる時、または、外乱等の影響
で温度変化の可能性がある状況において、応答性のよい
正確な制御が困難であった。
すなわち、ヒーター等の発熱体から発する熱流束(熱流
束は単位面積及び単位時間当たりの熱量;単位は(kc
al/m2・h))により加熱板延いては被処理基板が
加熱されるものであるが、般に温度は熱流束の時間及び
座標についての積分値であり(下記の熱拡散方程式の式
(1)及びフーリエの法則の式(2)) 、熱流束が定
まった後、その結果として加熱板及び被処理体の温度が
定まり、熱流束と温度との間には一定の相関がある(下
記の熱拡散方程式の式(3))。
玖ニー 1 ・a21 ・・ (1)at pC
p ay2
at pCp ay
T;温度、q;熱流束、t;時間、y;座標ρ;密度、
cp、熱容量、に;熱伝導度このため、現象変化として
は、温度よりも熱流束が早く検知され昌<、温度をモニ
ターしたのでは制御の遅れが生じることになる。したが
って、従来の温度モニタ一方式による温度制御方式では
、外乱等の影響で温度変化の可能性がある状況において
、設定温度の状態から外乱による温度変化を予測して、
この外乱を抑圧する方向に制御することはできなかった
。
また、所定温度への立ち上げ時や立ち下げ時の温度履歴
をコントロールしようとする場合に、予め定められた温
度履歴に沿うように温度を予測して制御することはでき
なかった。しかも、昇温及び降温中に外乱が生じて熱流
束が初期のものと異なったとしても、温度モニタ一方式
では、これに対応できるのは、温度変化となって現れた
後で、どうしても制御の遅れは否めない。したがって、
従来の温度コントロール方式では、所望の昇温変化パタ
ーンや降温変化パターンを精度良く、正確に得るように
することは困難であった。
また、ベーキング工程は、フォトレジストを塗布した後
や、フォトレジスト膜の露光、現像後等に、フォトレジ
スト中の溶剤を除去するとともに、レジストに耐熱性を
付与しつつレジストの物性(感光性や解像度等)をコン
トロールするために行われる加熱処理で、例えば特開昭
61−201426号公報に開示されるように、半導体
ウェーハ等を予め設定した所望のベーキング温度で、所
定時間、加熱するというものである。
例えば第2図に示すように、加熱板により被処理基板を
予め定められた温度T、に設定し、この温度T1を保持
した状態で予め定められた設定時間D2だけ加熱を行な
う。
ところで、第2図において、従来は上記のように、設定
温度T、の期間は、その温度を一定にする温度管理は行
なっていたが、昇温期間D1及q冷却期間D3における
温度変化匂配やその期間の長さ等の履歴(温度変化パタ
ーン)は全く管理されていなかった。
このように従来は昇温変化パターンや降温変化パターン
は、温度管理されていないため、同じ種類の半導体ウェ
ー八等の被処理基板であっても、これらのパターンが被
処理基板毎に区々となり、基板毎にレジストの物性が異
なってしまい、信頼性に欠けるという問題があった。
また、最近は、半導体デバイスの高密度化、高デバイス
化に伴い、レジストパターンが微細化してきている。こ
のため、従来、ベーキング工程において無視されていた
昇温期間や降温期間の温度変化パターンがフォトレジス
トの解像度や感光性等の物性に与える影響が無視できな
くなってきており、これら昇温変化パターンや降温変化
パターン等の履歴を所定のものにコントロールして、よ
り良いレジスト物性を得ることが必要になっている。
そこで昇温期間、降温期間においても、温度コントロー
ルを行なうことが考えられるが、前述したように、従来
の温度制御方法は、温度をモニターして温度コントロー
ルする方式であるため、特に急俊なる温度変化の場合、
制御の遅れが生じ、温度を予測して温度履歴を所望のも
のにするようにすることはできなかった。
この発明は、以上の点に鑑み、温度変化を予測して制御
できるようにすることにより、上記の欠点を改善した熱
処理装置を提供することを目的とする。BACKGROUND ART For example, during the manufacturing process of a semiconductor integrated circuit, there are various heat treatment processes such as baking treatment, film formation treatment, and ashing treatment in a photolithography process. Conventionally, this heat treatment, for example, baking treatment, for example, in the case of a single-wafer type, involves placing the substrate to be treated on a heating plate made of, for example, SUS or aluminum and containing a heating resistor such as a nichrome wire, and For example, the processing temperature is controlled by embedding a temperature sensor such as a thermocouple or a resistance temperature detector in the heating plate and monitoring the temperature with this temperature sensor. [Problems to be Solved by the Invention] As described above, the conventional temperature control method for heat treatment equipment is a method of monitoring and controlling the temperature, which causes a delay in control and brings the object to be processed to a predetermined temperature. It has been difficult to perform accurate control with good responsiveness when starting up or cooling down to a predetermined temperature, or in situations where there is a possibility of temperature change due to external disturbances. In other words, the heat flux emitted from a heating element such as a heater (heat flux is the amount of heat per unit area and unit time; the unit is (kc
The heating plate and, by extension, the substrate to be processed are heated by the heating plate (al/m2・h)), but temperature is generally the integral value of the heat flux with respect to time and coordinates (the following thermal diffusion equation ( 1) and Fourier's law equation (2)), after the heat flux is determined, the temperature of the heating plate and the object to be processed is determined as a result, and there is a certain correlation between the heat flux and temperature (see below) Equation (3) of the thermal diffusion equation of Kuuni 1 ・a21 ・・ (1) at pC
p ay2 at pCp ay T; temperature, q; heat flux, t; time, y; coordinate ρ; density,
cp, heat capacity; thermal conductivity Therefore, as a phenomenon change, heat flux is detected earlier than temperature, and if temperature is monitored, there will be a delay in control. Therefore, in the conventional temperature control method using one type of temperature monitor, in situations where there is a possibility of temperature change due to the influence of external disturbances, etc., the temperature change due to the external disturbance is predicted from the set temperature state.
It was not possible to suppress this disturbance. Further, when trying to control the temperature history at the time of starting up or stopping down to a predetermined temperature, it has not been possible to predict and control the temperature so as to follow a predetermined temperature history. Moreover, even if a disturbance occurs during temperature rise or fall and the heat flux differs from the initial one, a single temperature monitor system can only respond to this change after the temperature change occurs. The delay is undeniable. therefore,
With conventional temperature control methods, it has been difficult to accurately and precisely obtain desired temperature increase and decrease patterns. In addition, the baking process removes the solvent in the photoresist after applying the photoresist, exposing the photoresist film to light, developing the photoresist film, etc., and also improves the physical properties of the resist (photosensitivity, etc.) while imparting heat resistance to the resist. A heat treatment performed to control the resolution, etc.), in which a semiconductor wafer, etc., is heated at a desired baking temperature for a predetermined period of time, as disclosed in, for example, Japanese Patent Laid-Open No. 61-201426. It is. For example, as shown in FIG. 2, the substrate to be processed is set to a predetermined temperature T using a heating plate, and heated for a predetermined set time D2 while maintaining this temperature T1. By the way, in FIG. 2, as mentioned above, temperature control was conventionally performed to keep the temperature constant during the period of the set temperature T, but the temperature change pattern during the temperature rising period D1 and q cooling period D3 was The history (temperature change pattern) such as the temperature and the length of the period was not managed at all. Conventionally, the temperature rising and falling patterns are not temperature-controlled, so these patterns vary from substrate to substrate, even if the substrates are of the same type, such as semiconductor wafers. However, there was a problem in that the physical properties of the resist differed depending on the substrate, resulting in a lack of reliability. In addition, resist patterns have recently become finer as semiconductor devices have become more dense and more sophisticated. For this reason, it is no longer possible to ignore the effects of the temperature change patterns during the heating and cooling periods, which were previously ignored in the baking process, on the physical properties such as the resolution and photosensitivity of the photoresist. It is necessary to control the history of temperature drop change patterns and the like to a predetermined value to obtain better resist physical properties. Therefore, it is possible to perform temperature control during the temperature rising period and the temperature falling period, but as mentioned above, the conventional temperature control method is a method of controlling the temperature by monitoring the temperature. In case of change,
Control delays occurred and the temperature could not be predicted to ensure the desired temperature history. In view of the above points, it is an object of the present invention to provide a heat treatment apparatus that improves the above drawbacks by making it possible to predict and control temperature changes.
【課題を解決するための手段】[Means to solve the problem]
この発明は、被処理体を加熱手段により加熱して所定の
処理を行なう熱処理装置において、上記加熱手段から上
記被処理体に与えられる熱流束を検出する熱流束検出手
段を設け、この熱流束検出手段の出力に基づいて上記加
熱手段を制御するようにしたことを特徴とする。The present invention provides a heat treatment apparatus for heating an object to be processed by a heating means to perform a predetermined treatment, and a heat flux detection means for detecting a heat flux given to the object to be processed from the heating means. The heating means is characterized in that the heating means is controlled based on the output of the means.
【作用】[Effect]
前述したように、現象変化としては温度よりも、熱流束
が早く対応する。しかも、熱流束と温度とは一定の相関
があるから、熱流束をモニターすることにより温度変化
を予測することができる(前記の式(3))。このため
、外乱のある状況においても、温度を常に安定に制御す
ることができると共に、温度の昇温あるいは降温特性を
所望のものに精度良く管理することが可能になる。As mentioned above, heat flux responds more quickly to changes in phenomena than temperature. Furthermore, since there is a certain correlation between heat flux and temperature, temperature changes can be predicted by monitoring the heat flux (Equation (3) above). Therefore, even in a situation where there is a disturbance, the temperature can always be controlled stably, and the temperature increase or decrease characteristics can be precisely controlled to a desired value.
【実施例】【Example】
以下、この発明による熱処理装置の一実施例を、フォト
リソグラフィー工程のベーキング装置に適用した場合を
例にとって、図を参照しながら説明する。
第1図において、熱板1は金属からなり、その内部には
発熱抵抗体2が埋め込まれている。この熱板1の上には
半導体ウェーハ3が載置されており、熱板1によって、
後述するように加熱制御される。
熱板1の発熱抵抗体2には、例えば商用交流電源4から
スイッチング素子、この例では5SR(Solid 5
tate Re1ay) 5を介して電力が供給される
。この場合、5SR5は、後述するようにコンピュータ
を備える温度制御回路10からのPWM(パルス幅変調
)信号SMによってスイッチング制御され、発熱抵抗体
2には信号SMのパルス幅に応じた時間分だけ交流電流
が流れ、発熱抵抗体2はその供給電力量に応じて発熱す
る。したがって、PWM信号SMのパルス幅を変えるこ
とによって発熱抵抗体2に供給される信号SMの1周期
T当たりの電力量を調節し、熱板1の温度を制御するこ
とができる。すなわち、この場合、熱板1の温度は、P
WM信号SMのパルス幅Wの期間で発熱抵抗体2に電力
が供給されることにより微視的に上昇する温度と、パル
ス幅期間の後の期間で発熱抵抗体2への電力が遮断され
ることにより微視的に下降する温度との平均の温度とな
る。したがって、今、熱板1の昇温特性と降温特性が等
しいと仮定すれば、例えばPWM信号SMの1周期Tに
おけるパルス幅Wが1/2T、つまりデユーティ比50
%の時は、熱板1の温度は変わらず、PWM信号SMの
パルス幅Wが1/2Tより広くなれば、熱板1の温度は
、パルス幅Wに応じた傾きで上昇し、逆に、PWM信号
SMのパルス幅Wが1/2Tより狭くなれば、熱板1の
温度は、パルス幅Wに応じた傾きで下がる。こうして、
PWM信号SMのパルス幅Wを変えることによって、熱
板1の温度を自由にコントロールできる。
熱板1のウェーハ3の載置面近傍には、例えば熱電対や
測温抵抗体からなる温度センサ6が設けられ、この温度
センサ6の出力が温度計7に供給される。そして、この
温度計7の検出温度に応じた出力信号が温度制御回路1
0に供給される。
また、ウェーハ3の表面の近傍に熱流センサ8が設けら
れ、この熱流センサ8の出力が熱流計9に供給されて、
熱流束qが求められ、この熱流束qが温度制御回路10
に供給される。この熱流センサ8は、微小なる温度誤差
を検出すべく熱伝導率λの十分小さい薄板材料(厚さd
)で構成され、この薄板を貫通して流れる熱流束qは、
次の式から求めることができる。
q−^・ΔT ・・・・ (4)ここで、Δ
Tは薄板の表裏両面間の温度差で、λ及びdが既知であ
るから、このΔTを例えば熱流センサ8に設けた差動熱
電対によって測定することによって熱流計9から熱流束
qを求めることができる。温度制御回路10は、この熱
流束qからウェーハ3の温度変化を予測する(前出の式
(3)で示される原理に基づく)。
なお、熱板1には、半導体ウェーハ3を支持して熱板1
から持ち上げる図示しないビンが貫挿されている。さら
に半導体ウェーハ3は、図示しない搬送機構により、熱
板1上に搬送され、ピンの昇降により、熱板1に対し、
ロード、アンロードされるようになっている。
次に、第1図のように構成された熱処理装置を用いたベ
ーキング処理について説明する。
先ス、前述した図示しないピンを熱板1の表面から突き
立てる。そして、この突き立ったピン上に搬送して来た
半導体ウェーハ3を載置する。次に、ピンを降下させて
半導体ウェーノー3を熱板1上に載置して吸着によって
保持する。そして、熱板1からの熱伝導によって次のよ
うな温度コントロールに従った半導体ウェーl\3の加
熱を行なう。
この例の場合、前述したように、温度制御回路10はコ
ンピュータを備えており、キーボードなどのベーキング
パターン入力手段11によって、半導体ウェーハ3等の
被処理体の種類に応じて適切な熱履歴を呈するようにす
るための仕様書(レシピ)が入力され、これが記憶され
て、このレシピに従った温度コントロールが行われる。
第3図は、このレシピの一例で、常温20℃から60秒
間の間に、所定の傾きを持って120℃まで上昇し、そ
の後60秒間はその120℃を保持し、その後の60秒
間に常温20℃まで冷却するという熱履歴で、この熱履
歴を再現できるようにするために、例えば第3図のよう
に各点PO〜P8を定め、これら各点PO〜P8におけ
る時間と温度情報を入力することによりレシピを入力す
る。
温度制御回路10では、点PO〜P3までの昇温期間及
び点P5〜P8までの降温期間においては、隣り合う2
点(例えばPi−PO)の情報から、この2点間の温度
勾配を求め、この温度勾配となるようなパルス幅WのP
WM信号SMを、5SR5に供給する。そして、この際
、熱流センサ8によって検出した温度差に比例する出力
信号に基づいて、熱流計9において熱板1からの熱流束
を検出し、予め求めたこの熱流束とウェーハ温度変化と
の相関を参照しつつ(後述の式(5))、レシピから演
算して求めた温度とこの熱流束から推定されるウェーハ
3の温度との誤差を順次補正するように信号SMのパル
ス幅Wが制御される。
ここで、
ρCp
T;温度1t1時間、q;熱流束、y;座標L;ウェー
ハと熱流センサ間の距離
ρ;室空気密度、cp、空気の熱容量
;熱流センサ本体、S;ウェー71表面f (L、
t) ;q とqs間の一定の関係を表わす関数
なお、この昇温期間PO〜P3及び降温期間P5〜P8
においては、副次的に温度センサ6からの温度情報が参
照され、制御温度結果の検証がなされる。
点P3〜P5の間の温度整定期間においては、温度セン
サ6のみからの温度計測情報を参照して温度制御回路1
0は、発熱抵抗体2の制御を行なう。これは、熱板1は
、比較的熱容量が大きく温度が整定した後は、外乱はほ
とんど影響しないからである。もっとも、外乱の影響を
受ける状態のときには、熱流計9からの熱流束をも参照
して発熱抵抗体2を制御するようにしたほうがよい。
なお、この場合の温度コントロール方法としては、例え
ばPIDコントロール方式などの線形制御方式を用いる
ことができる。すなわち、例えば昇温期間において前記
2点の情報から求めた傾きに基づいて、時々刻々の温度
(基準温度)を求めておき、この基準温度と熱流計9に
より検出した熱流束から推定されるウェーハ3の温度と
の誤差を求め、この温度誤差から供給電力量を求め、P
WM信号SMのパルス幅Wをそれに応じたものとする。
以上のようにして、熱流計9によって被処理体であるウ
ェーハ3を貫通する熱流束を検出し、この熱流束から温
度を予測して制御することにより、ベーキング処理にお
いて昇温期間及び降温期間を応答性良く正確に制御する
ことが可能になり、同品種のウェーハではレジスト物性
の揃ったものが得られる。また、昇温期間及び降温期間
の熱履歴を制御することも可能になるので、レジスト物
性を所望のものにすることができるという効果もある。
以上の例では、ウェーハ3は熱板1に直接的に載置した
が、熱板1上に数p突出する球体状の物を少なくとも3
点設けて、これによって半導体ウェーハ3を3点支持す
るようにすると、半導体つ工−ハ3は熱板〕に直接接触
せず、熱板1にゴミが存在していても、そのゴミが半導
体ウェーハ3の裏面に付着するのを防止することができ
る。この場合には、ウェーハ3と熱板〕との間に空気が
入るので、ウェーハ3に対する温度制御はその分だけ遅
れることになるが、この発明においては、温度をモニタ
ーするのではなく、熱流束をモニターするので、ウェー
ハ3の温度を予測した加熱制御を良好に行なうことがで
き、制御の遅れを小さくすることができるという特長も
ある。
なお、熱流センサ8の取り付は位置は、被処理体に与え
られる熱流束を検出できる位置であれば良く、例えば熱
板1内に設けてもよい。
また、加熱手段は、熱板に発熱抵抗体を埋め込んだもの
に限らず、種々の発熱手段を用いたものが使用でき、例
えば熱板に薄膜状の発熱体を被着したものを用いるよう
にすることもできる。この場合、熱板の熱容量を小さく
すべく、できる限り薄い熱板を使用すれば、上述の熱流
束による温度制御の性能を、さらに発揮させることが可
能となる。
また、被処理体は半導体ウェーハに限らず、例えばLC
D基板、ガラス基板、プリント基板等にも適用できるこ
とは言うまでもない。
また、以上の例は、枚葉式の場合であるが、バッチ処理
の場合にも適用できることはもちろんである。
さらに、上述の実施例ではレジスト塗布後のベーキング
に適用したが、現像液塗布後のベーキングや、イオン注
入、CVD、エツチング、アッシングなどの処理前のベ
ーキング、処理中のベーキングなどにも適用してもよい
。
また、さらに、ベーキング装置に限らず、成膜装置、ア
ッシング装置、その他の熱処理装置にも、この発明が適
用できることは容易に理解できよう。Hereinafter, an embodiment of the heat treatment apparatus according to the present invention will be described with reference to the drawings, taking as an example a case where it is applied to a baking apparatus for a photolithography process. In FIG. 1, a hot plate 1 is made of metal, and a heat generating resistor 2 is embedded therein. A semiconductor wafer 3 is placed on the hot plate 1, and the hot plate 1 allows
Heating is controlled as described below. For example, a switching element, in this example 5SR (Solid 5
Power is supplied via the tate Relay) 5. In this case, the switching of the 5SR5 is controlled by a PWM (pulse width modulation) signal SM from a temperature control circuit 10 including a computer as described later, and the heating resistor 2 is supplied with an alternating current for a time corresponding to the pulse width of the signal SM. A current flows, and the heating resistor 2 generates heat according to the amount of power supplied. Therefore, by changing the pulse width of the PWM signal SM, the amount of power per period T of the signal SM supplied to the heating resistor 2 can be adjusted, and the temperature of the hot plate 1 can be controlled. That is, in this case, the temperature of the hot plate 1 is P
The temperature rises microscopically due to power being supplied to the heat generating resistor 2 during the period of the pulse width W of the WM signal SM, and the power to the heat generating resistor 2 is cut off during the period after the pulse width period. This results in an average temperature with the microscopically decreasing temperature. Therefore, if we assume that the temperature rising and falling characteristics of the hot plate 1 are equal, then for example, the pulse width W in one cycle T of the PWM signal SM is 1/2T, that is, the duty ratio is 50.
%, the temperature of the hot plate 1 does not change, but if the pulse width W of the PWM signal SM becomes wider than 1/2T, the temperature of the hot plate 1 rises at a slope according to the pulse width W, and vice versa. , if the pulse width W of the PWM signal SM becomes narrower than 1/2T, the temperature of the hot plate 1 decreases at a slope according to the pulse width W. thus,
By changing the pulse width W of the PWM signal SM, the temperature of the hot plate 1 can be freely controlled. A temperature sensor 6 made of, for example, a thermocouple or a resistance temperature sensor is provided near the surface of the hot plate 1 on which the wafer 3 is placed, and the output of this temperature sensor 6 is supplied to a thermometer 7 . Then, an output signal corresponding to the temperature detected by the thermometer 7 is sent to the temperature control circuit 1.
0. Further, a heat flow sensor 8 is provided near the surface of the wafer 3, and the output of this heat flow sensor 8 is supplied to a heat flow meter 9.
A heat flux q is determined, and this heat flux q is determined by the temperature control circuit 10.
is supplied to This heat flow sensor 8 is made of a thin plate material (thickness d
), and the heat flux q flowing through this thin plate is
It can be obtained from the following formula. q−^・ΔT ... (4) Here, Δ
T is the temperature difference between the front and back surfaces of the thin plate, and since λ and d are known, the heat flux q can be obtained from the heat flow meter 9 by measuring this ΔT, for example, with a differential thermocouple provided in the heat flow sensor 8. I can do it. The temperature control circuit 10 predicts the temperature change of the wafer 3 from this heat flux q (based on the principle shown in equation (3) above). Note that the hot plate 1 is provided with a semiconductor wafer 3 supported thereon.
A bottle (not shown) to be lifted from the hole is inserted through the hole. Furthermore, the semiconductor wafer 3 is transported onto the hot plate 1 by a transport mechanism (not shown), and is moved onto the hot plate 1 by raising and lowering the pins.
It is loaded and unloaded. Next, a baking process using a heat treatment apparatus configured as shown in FIG. 1 will be described. First, the aforementioned pin (not shown) is pushed up from the surface of the hot plate 1. Then, the semiconductor wafer 3 that has been transported is placed on these protruding pins. Next, the pin is lowered to place the semiconductor wafer 3 on the hot plate 1 and hold it by suction. Then, by heat conduction from the hot plate 1, the semiconductor wafer 1\3 is heated according to the following temperature control. In this example, as described above, the temperature control circuit 10 is equipped with a computer, and the baking pattern input means 11 such as a keyboard is used to create an appropriate thermal history depending on the type of the object to be processed, such as the semiconductor wafer 3. A specification (recipe) for achieving this is input, stored, and temperature control is performed according to this recipe. Figure 3 shows an example of this recipe, in which the room temperature rises from 20°C to 120°C with a predetermined slope within 60 seconds, then the temperature is maintained at 120°C for 60 seconds, and then the room temperature rises to 120°C for 60 seconds. In order to be able to reproduce the thermal history of cooling to 20°C, for example, as shown in Figure 3, each point PO to P8 is determined, and the time and temperature information at each of these points PO to P8 is input. Enter the recipe by . In the temperature control circuit 10, during the temperature increase period from points PO to P3 and the temperature decrease period from points P5 to P8, two adjacent
From the information of the points (for example, Pi-PO), find the temperature gradient between these two points, and calculate P of the pulse width W that creates this temperature gradient.
WM signal SM is supplied to 5SR5. At this time, the heat flux from the hot plate 1 is detected by the heat flux meter 9 based on an output signal proportional to the temperature difference detected by the heat flux sensor 8, and the correlation between this heat flux and the wafer temperature change determined in advance is (Equation (5) described later), the pulse width W of the signal SM is controlled so as to sequentially correct the error between the temperature calculated from the recipe and the temperature of the wafer 3 estimated from this heat flux. be done. Here, ρCp T; temperature 1t1 hour, q: heat flux, y; coordinate L; distance ρ between the wafer and heat flow sensor; room air density, cp, heat capacity of air; heat flow sensor body, S; wafer 71 surface f ( L,
t); A function expressing a certain relationship between q and qs.
In this step, the temperature information from the temperature sensor 6 is referenced secondarily to verify the control temperature result. During the temperature stabilization period between points P3 and P5, the temperature control circuit 1 refers to the temperature measurement information from only the temperature sensor 6.
0 controls the heating resistor 2. This is because the hot plate 1 has a relatively large heat capacity, and after the temperature has stabilized, disturbances hardly affect it. However, when it is in a state where it is affected by a disturbance, it is better to control the heating resistor 2 by also referring to the heat flux from the heat flux meter 9. In addition, as a temperature control method in this case, for example, a linear control method such as a PID control method can be used. That is, for example, the momentary temperature (reference temperature) is determined based on the slope determined from the above two points of information during the temperature rising period, and the wafer temperature estimated from this reference temperature and the heat flux detected by the heat flux meter 9 is calculated. Find the error from the temperature in step 3, find the amount of power supplied from this temperature error, and calculate P
The pulse width W of the WM signal SM is set accordingly. As described above, the heat flux passing through the wafer 3, which is the object to be processed, is detected by the heat flow meter 9, and the temperature is predicted and controlled from this heat flux, thereby controlling the temperature rising period and the temperature falling period in the baking process. It is possible to control accurately with good response, and resists with uniform physical properties can be obtained from wafers of the same type. Furthermore, since it becomes possible to control the thermal history during the temperature rising period and the temperature falling period, there is also the effect that the physical properties of the resist can be made desired. In the above example, the wafer 3 was placed directly on the hot plate 1, but at least three spherical objects protruding several points above the hot plate 1 were placed.
By providing three points to support the semiconductor wafer 3, the semiconductor tool 3 does not come into direct contact with the hot plate, and even if there is dust on the hot plate 1, the dust will not reach the semiconductor. Adhesion to the back surface of the wafer 3 can be prevented. In this case, since air enters between the wafer 3 and the hot plate, the temperature control for the wafer 3 is delayed by that amount.However, in this invention, instead of monitoring the temperature, the heat flux Since the temperature of the wafer 3 is monitored, heating control that predicts the temperature of the wafer 3 can be performed satisfactorily, and the delay in control can be reduced. The heat flux sensor 8 may be mounted at any position as long as it can detect the heat flux applied to the object to be processed, and may be mounted within the hot plate 1, for example. In addition, the heating means is not limited to one in which a heating resistor is embedded in a heating plate, but can use various heating means, such as one in which a thin film heating element is attached to a heating plate. You can also. In this case, if a hot plate as thin as possible is used in order to reduce the heat capacity of the hot plate, it becomes possible to further exhibit the performance of temperature control using the above-mentioned heat flux. In addition, the object to be processed is not limited to semiconductor wafers, for example, LC
Needless to say, it can also be applied to D substrates, glass substrates, printed circuit boards, etc. Further, although the above example is for a single wafer process, it is of course applicable to a batch process as well. Furthermore, although the above embodiment was applied to baking after resist application, it can also be applied to baking after developer application, baking before processing such as ion implantation, CVD, etching, ashing, etc., and baking during processing. Good too. Furthermore, it is easy to understand that the present invention is applicable not only to baking equipment but also to film forming equipment, ashing equipment, and other heat treatment equipment.
【発明の効果】【Effect of the invention】
以上説明したように、この発明によれば、熱流センサに
より、被処理体を貫通する加熱手段からの熱流束を検知
し、その熱流束に基づいて温度を予δ−1して制御する
ものであるから、制御の遅れを小さくでき、昇温及び降
温を迅速に行うことが可能になると共に、昇温及び降温
履歴を制御することも可能になる。
また、外乱の存在する状態では、外乱の影響を温度変化
として現象的に現れる前に熱流束の変化として検知する
ことができるので、安定した温度制御を行なうことがで
きる。As explained above, according to the present invention, the heat flux from the heating means penetrating the object to be processed is detected by the heat flux sensor, and the temperature is controlled by presetting δ-1 based on the heat flux. Therefore, the delay in control can be reduced, the temperature can be raised and lowered quickly, and the history of temperature increases and decreases can also be controlled. Further, in a state where a disturbance exists, since the influence of the disturbance can be detected as a change in heat flux before it appears as a phenomenon as a temperature change, stable temperature control can be performed.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は、この発明による熱処理装置をベーキング装置
に適用した場合の一実施例を示す図、第2図は、ベーキ
ング時の温度履歴の一例を示す図、第3図は、ベーキン
グ工程における温度制御のためのレシピの一例を説明す
るための図である。
1;熱板
2;発熱抵抗体
3;半導体ウェーハ
8;熱流センサ
9;熱流計
10;温度制御回路FIG. 1 is a diagram showing an example of applying the heat treatment device according to the present invention to a baking device, FIG. 2 is a diagram showing an example of the temperature history during baking, and FIG. 3 is a diagram showing the temperature during the baking process. FIG. 3 is a diagram for explaining an example of a recipe for control. 1; Hot plate 2; Heating resistor 3; Semiconductor wafer 8; Heat flow sensor 9; Heat flow meter 10; Temperature control circuit