JPH0317443A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH0317443A JPH0317443A JP15331389A JP15331389A JPH0317443A JP H0317443 A JPH0317443 A JP H0317443A JP 15331389 A JP15331389 A JP 15331389A JP 15331389 A JP15331389 A JP 15331389A JP H0317443 A JPH0317443 A JP H0317443A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- wall
- passage
- passage member
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 96
- 238000005192 partition Methods 0.000 claims abstract description 13
- 238000012546 transfer Methods 0.000 claims description 47
- 239000000567 combustion gas Substances 0.000 abstract description 18
- 239000007789 gas Substances 0.000 abstract description 15
- 239000007788 liquid Substances 0.000 abstract description 12
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 238000001704 evaporation Methods 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000002309 gasification Methods 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 15
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000032258 transport Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Central Heating Systems (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明・↓よ燃焼ガス等の高温ガスにより冷媒を加熱し
冷暖房装置に利用する熱交換器に関するものである.
従来の技術
被加熱側流体に冷媒を用いて、燃焼ガスにより加熱して
液状冷媒を蒸発気化させて潜熱により熱を運び暖房を行
うものに第5図に示すような冷媒加熱暖房機がある。こ
れは燃焼ガスと冷媒との熱交換器lと放熱器2を密閉管
路3で連結すると共に密閉管路3中に設けた冷媒ポンプ
や圧縮機等の冷媒搬送機4により冷媒を強制循環するも
のである.第6図は、熱交換器1の従来例を示したもの
で(特開昭59−107167号公報)、水平方向に延
びるアルミニューム製の円筒状内周面に複数のフィン5
を設け、外周面軸方向にはパイプ保持部6及び冷媒が内
部を流れる銅材質からなるバイプ7を設けたもので、バ
ーナー8からの燃焼ガスを円筒状内面9に水平横方向に
流して、冷媒加熱機4により送られてきた水平横方向の
パイプ7内を流れる冷媒を加熱するものである.
しかし、この暖房システムでは冷媒搬送に外部動力が必
要であり、さらに熱交換効率の向上も含めた暖房運転時
のランニングコストを低減することが望まれている。[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a heat exchanger that heats a refrigerant with high-temperature gas such as combustion gas and is used in air-conditioning equipment. 2. Description of the Related Art A refrigerant heater as shown in FIG. 5 uses a refrigerant as the fluid to be heated, heats it with combustion gas, evaporates the liquid refrigerant, and transports the heat using latent heat to perform heating. In this system, a heat exchanger l for combustion gas and refrigerant and a radiator 2 are connected through a sealed pipe 3, and the refrigerant is forcibly circulated by a refrigerant conveying device 4 such as a refrigerant pump or a compressor installed in the sealed pipe 3. It is something. FIG. 6 shows a conventional example of the heat exchanger 1 (Japanese Unexamined Patent Publication No. 59-107167).
A pipe holding part 6 and a pipe 7 made of copper material through which the refrigerant flows are provided in the axial direction of the outer peripheral surface, and the combustion gas from the burner 8 flows horizontally and laterally into the cylindrical inner surface 9. This heats the refrigerant flowing through the horizontal pipe 7 that is sent by the refrigerant heater 4. However, this heating system requires external power to transport the refrigerant, and it is desired to reduce running costs during heating operation, including improving heat exchange efficiency.
また、この種熱交換装置の従来公知技術として、特開昭
63−105395号公報および実開昭63−1794
64号公報に示されたものがある。In addition, as conventionally known techniques for this type of heat exchange device, Japanese Patent Laid-Open No. 63-105395 and Utility Model Laid-Open No. 63-1794
There is one shown in Publication No. 64.
これらには縦方向の多数の冷媒通路を形成した冷媒通路
部材が用いられているが、さらに冷媒の流れ抵抗の低減
、バーナーの燃焼ガスから冷媒への熱交換効率のアップ
、伝熱フィンから冷媒通路部材への熱のスムーズな伝達
と温度の均一化、熱交換装置の構威の簡略化と小形化等
の!I!題を有しているものである.
発明が解決しようとする課題
暖房運転時のランニングコスト低減には冷媒搬送用の外
部動力が無くして無動力で熱搬送することが有効である
。無動力熱搬送により、冷媒加熱暖房を行う場合、液状
冷媒が加熱されて発生する気体冷媒の自然循環力が重要
となる.
この種の暖房装置は、従来は第5図,第6図に示すよう
に冷媒加熱熱交換器1のような構成であり、冷媒は水平
方向で、且つ連続した一通路としてパイプ7内を流れる
ので、加熱されて気液二相混合状態の冷媒の気体戒分が
スムーズに出口に向かって流れないため冷媒の淀みを生
じ、局部的な異常過熱を発生したり、冷媒の流れ抵抗が
大きく、熱交換効率も低い。また燃焼室と熱交換部が一
体であるため熱交換量が燃焼状態により不均一であるた
め局部過熱を生じ冷媒の熱分解あるいは機器の異常温度
上昇など、機器の信頼性能上の課題があった。These devices use refrigerant passage members that form many refrigerant passages in the vertical direction, but they also reduce the flow resistance of the refrigerant, increase the efficiency of heat exchange from the combustion gas of the burner to the refrigerant, and allow the refrigerant to flow from the heat transfer fins to the refrigerant. Smooth heat transfer to passage members, uniform temperature, and simplification and miniaturization of the heat exchange device structure! I! It has a problem. Problems to be Solved by the Invention In order to reduce running costs during heating operation, it is effective to eliminate external power for transporting refrigerant and transport heat without power. When performing refrigerant heating and heating using non-powered heat transfer, the natural circulation force of the gas refrigerant generated when the liquid refrigerant is heated is important. Conventionally, this type of heating device has a configuration such as a refrigerant heating heat exchanger 1 as shown in FIGS. 5 and 6, in which the refrigerant flows horizontally in a pipe 7 as one continuous passage. As a result, the gas fraction of the heated refrigerant in a two-phase gas-liquid state does not flow smoothly toward the outlet, resulting in stagnation of the refrigerant, resulting in localized abnormal overheating and large flow resistance of the refrigerant. Heat exchange efficiency is also low. In addition, since the combustion chamber and heat exchange section are integrated, the amount of heat exchanged is uneven depending on the combustion state, resulting in local overheating, which can lead to thermal decomposition of the refrigerant or abnormal temperature rises in the equipment, leading to issues with equipment reliability. .
また従来の公知技術である特開昭63−105395号
公報および実開昭63−179464号公報に示された
ものは、多数の通路を形成した冷媒通路部材の伝熱フィ
ン側はF焼ガスの熱を伝熱フィンを介して集中して受け
る.このため冷媒通路部材の伝熱フィン側の板厚は伝熱
フィンと反対側よりを厚くして熱の移動をスムーズにし
ないと部分的に温度の不均一を生しやすく、冷媒を効率
よく加熱することができず、さらに冷媒通路部材に発生
する熱応力も大きく耐久的に課題がある.
従来公知技術は、冷媒通路部材の伝熱フィン側とこれと
反対側の板厚が同じであり上記の課題を有している.
また燃焼ガス中のイオウ分.結露水等および高温ガスに
よりフィン及びフィン側の冷媒通路部材は厳しい腐食環
境にあり、孔食等によりフロン冷媒が燃焼ガス中へ洩れ
て有害ガス化するのを防止する必要があり従来公知技術
はこれらに課題を有している。Furthermore, in the conventional known techniques disclosed in Japanese Unexamined Patent Publication No. 63-105395 and Japanese Utility Model Application No. 63-179464, the heat transfer fin side of the refrigerant passage member forming a large number of passages is Heat is concentrated and received through heat transfer fins. For this reason, the thickness of the heat transfer fin side of the refrigerant passage member must be thicker than the side opposite the heat transfer fin to ensure smooth heat transfer, otherwise the temperature will likely become uneven in some areas and the refrigerant will not be heated efficiently. Furthermore, the thermal stress generated in the refrigerant passage members is large, which poses problems in terms of durability. The conventionally known technology has the above-mentioned problem because the thickness of the refrigerant passage member on the heat transfer fin side and the opposite side are the same. Also, the sulfur content in combustion gas. The fins and refrigerant passage members on the fin side are in a severe corrosive environment due to condensed water, etc. and high-temperature gas, and it is necessary to prevent fluorocarbon refrigerant from leaking into combustion gas and turning into harmful gas due to pitting corrosion, etc., and conventionally known techniques There are issues with these.
さらに公知技術は冷媒通路部材が燃焼室の両サイドに設
けられ、これらを連通させるために管を用いるなど構戒
が複雑で熱容量も大きくコストも高い課題を有している
。Furthermore, the known technology has problems in that the refrigerant passage members are provided on both sides of the combustion chamber, and the structure is complicated, such as using pipes to communicate them, and the heat capacity is large, and the cost is high.
本発明は上記従来例の!$111を解決するもので、冷
媒の均一な加熱と熱交換効率の向上、冷媒の円滑な流れ
と熱交換装置の均一な温度分布と安全性,耐久性の向上
、構戒の簡略化と小形化.低コスト化をはかることを目
的とする.
課題を解決するための手段
上記課題を解決するために本発明の熱交換装置は、縦方
向の多数の通路を形戒した冷媒通路部材と、前記通路と
連通し冷媒通路部材に固着された入口ヘソグー管および
出口ヘソグー管と、冷媒通路部材の片面に密着固定した
伝熱隔壁部材と、伝熱隔壁部材に固着された伝熱フィン
と、前記通路を形成した冷媒通路部材の伝熱フィン側の
壁の板厚を伝熱フィンと反対側の壁の板厚よりも厚くし
たものである。The present invention is the same as the above conventional example! It solves the problem of $111 by uniformly heating the refrigerant, improving heat exchange efficiency, smoothing the flow of the refrigerant, uniform temperature distribution and safety of the heat exchange device, improving durability, simplifying the structure and making it more compact. . The purpose is to reduce costs. Means for Solving the Problems In order to solve the above problems, the heat exchange device of the present invention includes a refrigerant passage member having a plurality of vertical passages, and an inlet communicating with the passages and fixed to the refrigerant passage member. A heso goo tube and an outlet hesogoo tube, a heat transfer partition member closely fixed to one side of the refrigerant passage member, a heat transfer fin fixed to the heat transfer partition member, and a heat transfer fin side of the refrigerant passage member forming the passage. The thickness of the wall is thicker than the thickness of the wall on the opposite side from the heat transfer fins.
作用
本発明は上記した構或によって冷媒通路部材の伝熱フィ
ン側の温度が均一になり、また燃焼ガスの腐食に対して
余裕度が拡大する.
一つの冷媒通路部材の中を冷媒が流れるため均一に分流
される。さらに冷媒通路部材が片側のみの簡略化された
基本構戒となる.
実施例
以下、本発明の実施例を添付図面にもとづいて説明する
.第1図〜第4図において、10は燃料供給装置に接続
したバーナー8に連通して設けた燃焼室であり、Uは伝
熱隔壁部材であり、l2は高温ガス通路であり伝熱隔壁
部材11と密着し燃焼室IOに連通して設けた燃焼ガス
出口13と排気通路14を有している。15は伝熱隔壁
部材11の外面に熱的に連結させた冷媒通路部材であり
縦方向の通路l6が多数設けられている。この通路16
を形成する冷媒通路部材15の伝熱フィン22A側の壁
15aとこれと反対側の壁15bがあり、壁15bより
も壁15aの板厚を厚くしている.17は冷媒通路部材
15の下端に設けた入口ヘッダー管、18は冷媒通路部
材16の上端に設けた出口ヘッダー管でありそれぞれ入
口管19、出口管20を接続しこのおのおのにより冷媒
回路と接続しており、入口ヘッダー管17の他端には下
方に曲折しオイル抜き管21を設けてある.入口ヘッダ
ー管17と出口ヘッダー管l8はそれぞれ縦方向の通路
l6により連通している.22A,22Bは伝熱隔壁部
材11の内側に熱的に接するように設けられた伝熱フィ
ンであり波形状に屈曲させて多数枚としてある。燃焼室
10の高温ガス通路12と接しない残りの外面は全面を
覆う断熱材23が設けてある.燃焼ガス出口13に上下
に複数を多数のフィンで分割し上下に通路を構戒した伝
熱フィン22A, 22Bとこのフィンで分割した上下
の通824. 25の他方を前記伝熱フィン22の外周
を通り集合する排気通路26. 27と伝熱フィン22
の下部に連通した排気管28を設けてある。Effects of the present invention With the above-described structure, the temperature on the heat transfer fin side of the refrigerant passage member becomes uniform, and the margin against corrosion of combustion gas is increased. Since the refrigerant flows through one refrigerant passage member, the refrigerant is evenly divided. Furthermore, the basic structure is simplified with only one side of the refrigerant passage member. EXAMPLES Hereinafter, examples of the present invention will be explained based on the attached drawings. In FIGS. 1 to 4, 10 is a combustion chamber provided in communication with a burner 8 connected to a fuel supply device, U is a heat transfer partition member, and 12 is a high temperature gas passage, which is a heat transfer partition member. It has a combustion gas outlet 13 and an exhaust passage 14 which are provided in close contact with the combustion chamber 11 and communicated with the combustion chamber IO. A refrigerant passage member 15 is thermally connected to the outer surface of the heat transfer partition member 11, and is provided with a large number of vertical passages 16. This passage 16
There is a wall 15a on the side of the heat transfer fins 22A of the refrigerant passage member 15 forming the refrigerant passage member 15, and a wall 15b on the opposite side.The wall 15a is thicker than the wall 15b. 17 is an inlet header pipe provided at the lower end of the refrigerant passage member 15, and 18 is an outlet header pipe provided at the upper end of the refrigerant passage member 16, which connects the inlet pipe 19 and the outlet pipe 20, respectively, to the refrigerant circuit. At the other end of the inlet header pipe 17, an oil drain pipe 21 is bent downward. The inlet header pipe 17 and the outlet header pipe l8 are each communicated by a longitudinal passage l6. 22A and 22B are heat transfer fins provided so as to be in thermal contact with the inside of the heat transfer partition member 11, and are bent into a wave shape to form a large number of heat transfer fins. A heat insulating material 23 is provided to cover the entire remaining outer surface of the combustion chamber 10 that does not come in contact with the high temperature gas passage 12. The combustion gas outlet 13 has heat transfer fins 22A and 22B which are divided vertically by a large number of fins and have passages arranged above and below, and upper and lower passages 824 divided by the fins. 25 through the outer periphery of the heat transfer fins 22 and the exhaust passage 26. 27 and heat transfer fins 22
An exhaust pipe 28 communicating with the lower part of the exhaust pipe 28 is provided.
上記横戒に於で、燃料の供給装置により供給した燃料を
バーナー8で燃焼し、燃焼室10に発生した高温ガスは
燃焼ガス出口13を通り高温ガス通路l2の伝熱フィン
22A,22Bの間の通路24. 25を通り、排気通
路26. 27から排気管28より排気する。In the above horizontal command, the fuel supplied by the fuel supply device is combusted in the burner 8, and the high temperature gas generated in the combustion chamber 10 passes through the combustion gas outlet 13 between the heat transfer fins 22A and 22B of the high temperature gas passage 12. Passage 24. 25 and the exhaust passage 26. 27 and exhaust through an exhaust pipe 28.
冷媒入口管17を通って入口ヘッダー管l7に入った液
冷媒は冷媒通路部材15の下部より多数の縦方向の通路
l6に分流し、伝熱フィン22A,22Bが高温ガス通
路12内の燃焼ガスから熱を熱的に連結された冷媒通路
部材I5に伝熱し、この冷媒通路部材I5の縦方向の通
路l6内の冷媒を十分に加熱する。そこで加熱された液
状冷媒は気化蒸発を開始し液の中に気泡を生じる気液二
相状態となる。発生した気泡は浮力効果で縦方向に設け
た通路16内を下方から上方に上昇し、特に燃焼ガスを
燃焼室lOから燃焼ガス出口13を出たのち高温ガス通
路12で冷媒に伝熱する。そして、均一加熱はまた通路
16内の流れの抵抗を低減させることにより気泡発生が
増大し、気泡上昇力は強められ自然循環力が強くなると
共にまだ気化していない液冷媒を伴って通路l6の上部
へ冷媒を送る気泡ポンプ作用が発生する.さらに通路1
6の上部,下部においても設けた伝熱フィン22A,2
2B以外の伝熱隔壁1l全而も伝熱面積となり高温ガス
通路12を流れる加熱流体より効率よく吸熱し通路16
内の気液二相状態の冷媒をさらに加熱して自然循環力を
さらに増大させる.通路1Gの上端に達した冷媒は出口
ヘソグー管l8に流入し冷媒出口管20より放熱器(図
示せず)に向かって流出する。The liquid refrigerant that has entered the inlet header pipe l7 through the refrigerant inlet pipe 17 is divided into a number of vertical passages l6 from the lower part of the refrigerant passage member 15, and the heat transfer fins 22A and 22B transfer the combustion gas in the hot gas passage 12. The heat is transferred to the thermally connected refrigerant passage member I5, and the refrigerant in the longitudinal passage l6 of the refrigerant passage member I5 is sufficiently heated. The heated liquid refrigerant then begins to vaporize and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated bubbles rise from below to above in the vertically provided passage 16 due to the buoyancy effect, and in particular, heat is transferred to the refrigerant in the high temperature gas passage 12 after the combustion gas exits the combustion gas outlet 13 from the combustion chamber IO. The uniform heating also reduces the flow resistance in the passage 16, thereby increasing the generation of bubbles, increasing the bubble rising force, increasing the natural circulation force, and bringing the liquid refrigerant that has not yet vaporized into the passage 16. A bubble pump action occurs that sends the refrigerant to the top. Further passage 1
Heat transfer fins 22A, 2 provided also at the upper and lower parts of 6
The entire heat transfer partition wall 1l other than 2B becomes a heat transfer area and absorbs heat more efficiently than the heated fluid flowing through the high temperature gas passage 12.
This further increases the natural circulation force by further heating the gas-liquid two-phase refrigerant inside. The refrigerant that has reached the upper end of the passage 1G flows into the outlet pipe 18 and flows out from the refrigerant outlet pipe 20 toward a radiator (not shown).
このように縦方向の通路16の下部から上部に至るまで
加熱することにより自然循環を高めるだけでなく、下部
において伝熱フィン22Bにより強《加熱することで自
然循環力をさらに増加させる.発明の効果
以上のように本発明の熱交換装置は、縦方向の多数の通
路を形成した冷媒通路部材と、前記通路と連通し冷媒通
路部材に固着された人口ヘツダー管および出口ヘッダー
管と、冷媒通路部材の片面に密着固定した伝熱隔壁部材
と、伝熱隔壁部材に固着された伝熱フィンと、前記通路
を形成した冷媒通路部材の伝熱フィン側の板厚を伝熱フ
ィンと反対側の板厚よりも厚くしたもので次のような効
果を期待できる。In this way, by heating from the bottom to the top of the vertical passage 16, not only the natural circulation is enhanced, but also the natural circulation force is further increased by intense heating by the heat transfer fins 22B at the bottom. Effects of the Invention As described above, the heat exchange device of the present invention comprises: a refrigerant passage member forming a large number of longitudinal passages; an artificial header pipe and an outlet header pipe that communicate with the passages and are fixed to the refrigerant passage member; The heat transfer partition member closely fixed to one side of the refrigerant passage member, the heat transfer fins fixed to the heat transfer partition member, and the thickness of the heat transfer fin side of the refrigerant passage member that formed the passage are opposite to that of the heat transfer fins. The following effects can be expected by making the plate thicker than the side plate.
(1)伝熱フィン側の冷媒通路部材の壁の板厚を伝熱フ
ィンと反対側よりも厚くしたことによって、波状のフィ
ンが一定間隔をもって固着し温度差を生じる伝熱隔壁部
材に密着固定した冷媒通路部材の温度が均一となり、通
路中の冷媒を効率よく加熱することができると共に熱応
力が抑制され変形.破損を防止し、燃焼ガスの腐食に対
しても安全性が向上する.また部分的な温度差による過
熱と冷媒の熱分解も防止される。(1) By making the thickness of the wall of the refrigerant passage member on the heat transfer fin side thicker than on the side opposite to the heat transfer fin, the wavy fins are fixed at regular intervals and tightly fixed to the heat transfer partition member, which causes a temperature difference. The temperature of the refrigerant passage member becomes uniform, and the refrigerant in the passage can be efficiently heated, and thermal stress is suppressed to prevent deformation. This prevents damage and improves safety against corrosion from combustion gas. It also prevents overheating and thermal decomposition of the refrigerant due to local temperature differences.
さらに冷媒通路部材を上下部で例えば伝熱フィンと反対
側に曲げ加工し、この曲げ部分で加工時外周の壁の板厚
が減少しても、加工前の壁の板厚をより厚くしてあるた
め伝熱フィンと反対側の冷媒通路部材の壁の板厚より厚
いか又は同一厚さとなる.従ってこの曲げ部分での耐圧
,対腐食性に問題を生じない。Furthermore, by bending the upper and lower parts of the refrigerant passage member toward the opposite side of the heat transfer fins, for example, even if the thickness of the outer wall decreases during processing at this bent part, the thickness of the wall before processing can be made thicker. Therefore, it is thicker than or the same thickness as the wall of the refrigerant passage member on the opposite side of the heat transfer fins. Therefore, there are no problems with pressure resistance or corrosion resistance at this bent portion.
図
(2)通路中の冷媒が均一に加熱されることによって気
泡ポンプ作用が一層発揮され冷媒の円滑な流れと、冷媒
搬送の無動力化が可能となり低ランニングコストの暖房
ができる.
(3)冷媒通路部材が片側のみとなり横戒の大幅な簡略
化と小形化が図れる.Figure (2) By uniformly heating the refrigerant in the passage, the bubble pump effect is further enhanced, allowing for smooth flow of the refrigerant and non-motorized refrigerant transport, allowing heating with low running costs. (3) The refrigerant passage member is only on one side, allowing for significant simplification and miniaturization of the horizontal line.
Claims (1)
通路と連通し冷媒通路部材に固着された入口ヘッダー管
および出口ヘッダー管と、冷媒通路部材の片面に密着固
定した伝熱隔壁部材と、この伝熱隔壁部材に固着された
伝熱フィンと、前記通路を形成した冷媒通路部材の伝熱
フィン側の板厚を伝熱フィンと反対側の板厚よりも厚く
した熱交換装置。a refrigerant passage member forming a large number of vertical passages; an inlet header pipe and an outlet header pipe that communicate with the passages and are fixed to the refrigerant passage member; a heat transfer partition member closely fixed to one side of the refrigerant passage member; A heat exchange device in which the heat transfer fins fixed to the heat transfer partition member and the refrigerant passage member forming the passage are thicker on the side of the heat transfer fins than on the side opposite to the heat transfer fins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153313A JP2548380B2 (en) | 1989-06-15 | 1989-06-15 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153313A JP2548380B2 (en) | 1989-06-15 | 1989-06-15 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0317443A true JPH0317443A (en) | 1991-01-25 |
JP2548380B2 JP2548380B2 (en) | 1996-10-30 |
Family
ID=15559762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1153313A Expired - Fee Related JP2548380B2 (en) | 1989-06-15 | 1989-06-15 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548380B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478701A (en) * | 1992-04-30 | 1995-12-26 | Samsung Electronics Co., Ltd. | Method for fabricating a read only optical disc |
US11662037B2 (en) | 2019-01-18 | 2023-05-30 | Coolit Systems, Inc. | Fluid flow control valve for fluid flow systems, and methods |
US11661936B2 (en) | 2013-03-15 | 2023-05-30 | Coolit Systems, Inc. | Sensors, multiplexed communication techniques, and related systems |
US11725886B2 (en) | 2021-05-20 | 2023-08-15 | Coolit Systems, Inc. | Modular fluid heat exchange systems |
US11994350B2 (en) | 2007-08-09 | 2024-05-28 | Coolit Systems, Inc. | Fluid heat exchange systems |
US12101906B2 (en) | 2007-08-09 | 2024-09-24 | Coolit Systems, Inc. | Fluid heat exchanger |
-
1989
- 1989-06-15 JP JP1153313A patent/JP2548380B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478701A (en) * | 1992-04-30 | 1995-12-26 | Samsung Electronics Co., Ltd. | Method for fabricating a read only optical disc |
US11994350B2 (en) | 2007-08-09 | 2024-05-28 | Coolit Systems, Inc. | Fluid heat exchange systems |
US12101906B2 (en) | 2007-08-09 | 2024-09-24 | Coolit Systems, Inc. | Fluid heat exchanger |
US11661936B2 (en) | 2013-03-15 | 2023-05-30 | Coolit Systems, Inc. | Sensors, multiplexed communication techniques, and related systems |
US11662037B2 (en) | 2019-01-18 | 2023-05-30 | Coolit Systems, Inc. | Fluid flow control valve for fluid flow systems, and methods |
US11725886B2 (en) | 2021-05-20 | 2023-08-15 | Coolit Systems, Inc. | Modular fluid heat exchange systems |
Also Published As
Publication number | Publication date |
---|---|
JP2548380B2 (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0317443A (en) | Heat exchanger | |
US8042496B2 (en) | Hot-water supply system having supplementary heat exchanger | |
JPH03129296A (en) | Method of heating the flow of gaseous fluid and its device | |
JP2845566B2 (en) | Heat exchanger | |
JPH03158650A (en) | Heat exchanger | |
JP2845563B2 (en) | Heat exchanger | |
JPH0351666A (en) | Heat exchanger | |
JPH0317442A (en) | Heat exchanger | |
JP2605869B2 (en) | Heat exchange equipment | |
JP2861544B2 (en) | Heat exchanger | |
JP2845564B2 (en) | Heat exchanger | |
JP2841975B2 (en) | Heat exchanger | |
JP2532630B2 (en) | Refrigerant heater | |
JPH0351665A (en) | Heat exchanger | |
JP2619956B2 (en) | Heat exchanger | |
JPH05118778A (en) | Heat exchanger | |
JP2568648B2 (en) | Heat exchange device and method of manufacturing the same | |
JP2584047B2 (en) | Heat exchanger | |
JP3021860B2 (en) | Heat exchanger | |
JP2845565B2 (en) | Heat exchanger | |
KR200195781Y1 (en) | Heating system of warm water | |
JP3019548B2 (en) | Heat exchanger | |
JPS5934879B2 (en) | pump | |
JPH0351663A (en) | Heat exchanger | |
JPS63286657A (en) | Hot-water supplier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |