JPH0317350B2 - - Google Patents
Info
- Publication number
- JPH0317350B2 JPH0317350B2 JP59017436A JP1743684A JPH0317350B2 JP H0317350 B2 JPH0317350 B2 JP H0317350B2 JP 59017436 A JP59017436 A JP 59017436A JP 1743684 A JP1743684 A JP 1743684A JP H0317350 B2 JPH0317350 B2 JP H0317350B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- fuel cell
- air
- reformer
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 47
- 238000010248 power generation Methods 0.000 claims description 16
- 238000003303 reheating Methods 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明は、燃料電池発電システムに組込んで使
用されるターボコンプレツサシステムに関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a turbo compressor system that is incorporated into a fuel cell power generation system.
(ロ) 従来技術
燃料電池発電システムは、石油、石炭などを燃
料とする汽力発電システムに比べて高い熱効率を
得ることが可能であるうえに、環境保全性が良
く、立地上の融通性を有している。そのため、近
時、宇宙開発などの特殊用途の電源だけでなく、
ビル等に設置するための商用電力用電源としての
使途が種々検討されており、その実用化を目指し
て開発が活発化している。(b) Conventional technology Fuel cell power generation systems can achieve higher thermal efficiency than steam power generation systems that use oil, coal, etc. as fuel, and are also environmentally friendly and have flexibility in terms of location. are doing. Therefore, in recent years, not only power supplies for special purposes such as space exploration, but also
Various uses are being considered for use as a commercial power source for installation in buildings, etc., and development is intensifying with the aim of putting it into practical use.
燃料電池発電システムは、空気極と水素極との
間に電解質層を介設してなる燃料電池と、天然ガ
ス等の炭化水素系燃料を改質して前記水素極に燃
料となる水素ガスを供給する改質器と、前記空気
極および前記改質器に空気を供給する空気供給手
段とを備えている。そして、前記燃料電池の性能
は、各反応ガスの圧力の増大に伴つて向上する傾
向を示す。このため前記各反応ガスの動作圧力
は、例えば3〜6Kg/cm2g程度の値に設定され
る。このとき、空気の圧縮には多大の動力を必要
とし、その値の電池の発生エネルギーの約20%に
も達する。一方、電池の燃料ガスを生成するため
の改質反応は約800℃の高温で行なわれ、前記改
質器からは高い温度の排ガスが排出される。した
がつて、空気を圧縮するための動力システムの排
ガスエネルギーに求めることができれば、システ
ムの効率向上に大きな効果がある。 A fuel cell power generation system consists of a fuel cell that has an electrolyte layer interposed between an air electrode and a hydrogen electrode, and a hydrocarbon fuel such as natural gas that is reformed to supply hydrogen gas as fuel to the hydrogen electrode. A reformer for supplying air, and an air supply means for supplying air to the air electrode and the reformer. The performance of the fuel cell tends to improve as the pressure of each reaction gas increases. Therefore, the operating pressure of each of the reaction gases is set to a value of about 3 to 6 kg/cm 2 g, for example. At this time, compressing the air requires a large amount of power, amounting to about 20% of the energy generated by the battery. On the other hand, the reforming reaction for producing fuel gas for the battery is carried out at a high temperature of about 800° C., and high temperature exhaust gas is discharged from the reformer. Therefore, if the exhaust gas energy of a power system for compressing air can be calculated, it will have a significant effect on improving the efficiency of the system.
このような事情から近時の燃料電池発電システ
ムでは、前記空気供給手段としてターボコンプレ
ツサを採用する例が一般化している。すなわち、
ターボコンプレツサは、前記燃料電池の空気極お
よび改質器の入口に接続した給気系路にコンプレ
ツサを介設するとともに、前記空気極および改質
器の出口に接続した排気系路にタービンを介設
し、このタービンで前記コンプレツサを供給空気
圧が略一定になるように駆動するようにしたもの
で、前記排ガス等が有しているエネルギーをター
ビンで回収して空気を圧縮する仕事に利用しシス
テム効率の向上を図るものである。 Under these circumstances, in recent fuel cell power generation systems, it has become common to employ a turbo compressor as the air supply means. That is,
The turbo compressor has a compressor interposed in an air supply line connected to the air electrode of the fuel cell and the inlet of the reformer, and a turbine installed in the exhaust line connected to the air electrode and the outlet of the reformer. The turbine is used to drive the compressor so that the supplied air pressure is approximately constant, and the energy contained in the exhaust gas, etc. is recovered by the turbine and used for the work of compressing the air. This aims to improve system efficiency.
ところで、ビル等に個別に設置される比較的小
形の燃料電池発電システムでは、昼休み等の特定
の時間帯にその電力需要が大きく変化するという
特徴がみられる。そのため、かかるシステムで
は、燃料電池および改質器に供給する空気の量
を、例えば、約25%〜100%という広い範囲で変
更できるようにしたいという要望がある。しかし
ながら、一方では、前記燃料電池に供給する空気
の圧力は、前述した電池の性能面ならびに燃料電
池システムの制御面からの要請で比較的高い値の
一定値に維持したいという要望がある。したがつ
て、通常のターボコンプレツサを単に燃料電池の
空気圧縮用に適用しただけでは、その特性に限界
があるため、以上のような要望を満たすことがで
きない。すなわち、かかるシステムに使用される
ターボコンプレツサは、タービンのノズルを可変
式のものにして、コンプレツサの吐出圧力が常に
略一定の値を示すように制御する必要があるが、
コンプレツサの吐出圧力を一定に保持したまま流
量を絞り込んでゆくと、該コンプレツサがサージ
ングを起こして運転が不安定化することになり、
極端な場合には該コンプレツサの破損を招くおそ
れがある。すなわち、予め設定された吐出圧力が
高い場合には、コンプレツサの運転条件が流量の
少ない領域において第1図に斜線で示すサージン
グ発生領域Aに簡単に入つてしまうことになり正
常な給気圧縮作用を営ませることが困難になる。
そのため、単にこれだけのものでは、燃料電池に
供給する空気流量を25%〜100%というような広
い範囲で変化させることは困難である。 Incidentally, relatively small fuel cell power generation systems that are installed individually in buildings and the like have a characteristic in that their power demand changes significantly during specific time periods such as lunch breaks. Therefore, in such systems, there is a desire to be able to vary the amount of air supplied to the fuel cell and the reformer over a wide range, for example, from about 25% to 100%. However, on the other hand, there is a desire to maintain the pressure of the air supplied to the fuel cell at a relatively high constant value in view of the performance of the cell and the control of the fuel cell system. Therefore, simply applying a normal turbo compressor to compress air in a fuel cell cannot satisfy the above requirements because of its limited characteristics. In other words, the turbo compressor used in such a system must have a variable turbine nozzle to control the discharge pressure of the compressor so that it always exhibits a substantially constant value.
If the flow rate is reduced while the discharge pressure of the compressor is held constant, the compressor will cause surging and the operation will become unstable.
In extreme cases, the compressor may be damaged. In other words, when the preset discharge pressure is high, the operating conditions of the compressor easily enter the surging generation region A shown by diagonal lines in Fig. 1 when the flow rate is low, resulting in normal supply air compression. It becomes difficult to run a business.
Therefore, it is difficult to vary the air flow rate supplied to the fuel cell over a wide range of 25% to 100% with just this type of device.
(ハ) 目的
本発明は、このような事情に着目してなされた
もので、吐出圧力を一定の値に維持したうえでコ
ンプレツサへの供給空気流量を広い範囲に亘つて
自在に制御するようにしてもサージング等の不都
合を招くことがなく、したがつて、電力需要が幅
広く変化するような条件下で使用される燃料電池
発電システムにも好適に採用し得る燃料電池発電
用ターボコンプレツサシステムを提供することを
目的とする。(C) Purpose The present invention has been made in view of the above circumstances, and is designed to freely control the flow rate of air supplied to the compressor over a wide range while maintaining the discharge pressure at a constant value. The present invention provides a turbo compressor system for fuel cell power generation that does not cause inconveniences such as surging even when the power is used, and can therefore be suitably adopted for fuel cell power generation systems used under conditions where power demand varies widely. The purpose is to provide.
(ニ) 構成
本発明は、かかる目的を達成するために、燃料
電池の空気極および改質器の入口に接続した給気
系路コンプレツサを介設するとともに、前記空気
極および改質器の出口に接続した排気系路に可変
ノズル式のタービンを介設し、このタービンで前
記コンプレツサを供給空気圧が略一定になるよう
に駆動するようにした燃料電池発電用のターボコ
ンプレツサシステムにおいて、前記コンプレツサ
の出口と前記タービンと入口とをバイパス系路を
介して連通させ、このバイパス系路に、前記燃料
電池および改質器への供給空気量が少ない運転領
域で開成する流量調節弁、または、該流量調節弁
と助燃炉とを設けたことを特徴とする。(D) Structure In order to achieve the above object, the present invention provides an air supply line compressor connected to the air electrode of the fuel cell and the inlet of the reformer, and also provides a compressor connected to the air electrode and the outlet of the reformer. In a turbo compressor system for fuel cell power generation, a variable nozzle type turbine is interposed in an exhaust system path connected to the compressor, and the turbine drives the compressor so that the supplied air pressure is approximately constant. The outlet of the turbine and the inlet are communicated via a bypass line, and the bypass line is provided with a flow control valve that is opened in an operating region where the amount of air supplied to the fuel cell and the reformer is small; It is characterized by being equipped with a flow control valve and an auxiliary combustion furnace.
(ホ) 実施例
以下、本発明の実施例を図面を参照して説明す
る。(e) Examples Examples of the present invention will be described below with reference to the drawings.
実施例 1(第2図)
第2図は本燃料電池発電用ターボコンプレツサ
システムを示すもので、1は燃料電池、2は改質
器、3はターボコンプレツサである。燃料電池1
は、図面に模式的に示すように、多孔成電極4の
一面側に水素室5を形成してなる水素極6と、多
孔性電極7の一面側に空気室8を形成してなる空
気極9との間に電解質11を介設してなるもの
で、前記水素室5に燃料たる水素ガスを逐次供給
するとともに前記空気室8に圧縮空気を供給する
ことによつて発電を行ない得るようになつてい
る。また、改質器2は、天然ガス等の炭化水素系
燃料を改質して水素ガスを発生させ、この水素ガ
スを前記燃料電池1の水素極6に逐次供給し得る
ように構成したもので、導入口2aから燃料と圧
縮空気が導入され排出口2bから高温の排ガスが
放出されるようになつている。また、ターボコン
プレツサ3は、コンプレツサ12を可変ノズル1
3を有したタービン14により駆動するようにし
たものである。そして、始端を大気に開口させ終
端を前記燃料電池の空気室8の入口8aおよび前
記改質器2の入口2aに接続した給気系路15の
途中に前記コンプレツサ12を介設するととも
に、始端を前記空気質8の出口8bおよび前記改
質気2の出口2bに接続し終端を大気に開放した
排気系路16の途中に前記タービン14を介設し
ている。また、前記コンプレツサ12の出口と前
記タービン14の入口とをバイパス系路17を介
して連通させ、このバイパス経路17に流量調節
弁18を介設している。この流量調節弁18は、
前記燃料電池1および改質機2への供給空気量が
少ない運転領域で開成するようになつており、例
えば、前記給気系路15を流れる空気流量と前記
ターボコンプレツサの回転速度とを入力信号とし
て作動するアクチユエータ(図示せず)等によつ
て開閉制御される。Embodiment 1 (FIG. 2) FIG. 2 shows the turbo compressor system for fuel cell power generation, in which 1 is a fuel cell, 2 is a reformer, and 3 is a turbo compressor. fuel cell 1
As schematically shown in the drawing, a hydrogen electrode 6 has a hydrogen chamber 5 formed on one side of a porous electrode 4, and an air electrode has an air chamber 8 formed on one side of a porous electrode 7. 9, an electrolyte 11 is interposed between the hydrogen chamber 5 and the hydrogen chamber 5, so that power can be generated by sequentially supplying hydrogen gas as fuel to the hydrogen chamber 5 and compressed air to the air chamber 8. It's summery. The reformer 2 is configured to reform a hydrocarbon fuel such as natural gas to generate hydrogen gas, and to sequentially supply this hydrogen gas to the hydrogen electrode 6 of the fuel cell 1. Fuel and compressed air are introduced through the inlet 2a, and high-temperature exhaust gas is discharged through the exhaust port 2b. Further, the turbo compressor 3 connects the compressor 12 to the variable nozzle 1.
It is designed to be driven by a turbine 14 having a turbine 3. The compressor 12 is interposed in the middle of an air supply line 15 whose starting end is open to the atmosphere and whose terminal end is connected to the inlet 8a of the air chamber 8 of the fuel cell and the inlet 2a of the reformer 2. The turbine 14 is interposed in the middle of an exhaust line 16 which is connected to the outlet 8b of the air quality 8 and the outlet 2b of the reformed gas 2 and whose terminal end is open to the atmosphere. Further, the outlet of the compressor 12 and the inlet of the turbine 14 are communicated via a bypass line 17, and a flow rate regulating valve 18 is interposed in the bypass line 17. This flow rate control valve 18 is
It is designed to open in an operating region where the amount of air supplied to the fuel cell 1 and the reformer 2 is small, and for example, the flow rate of air flowing through the air supply line 15 and the rotation speed of the turbo compressor are input. Opening/closing is controlled by an actuator (not shown) that operates as a signal.
なお、20,21は、前記燃料電池1および前
記改質機2への空気供給量を調節するための流量
調節弁である。 Note that 20 and 21 are flow rate control valves for adjusting the amount of air supplied to the fuel cell 1 and the reformer 2.
このような構成のものであれば、燃料電池1の
空気極出口の余剰空気および改質器2の排ガスに
よつてタービン14が作動し、コンプレツサ12
が駆動される。それによつて、給器系路15を流
通する空気が所要圧力にまで圧縮され、逐次燃料
電池1の空気室8および改質器2に供給されて発
電が行なわれる。そして、このシステムでは、前
記タービン14の可変ノズル13の開度を調節す
ることによつて、前記コンプレツサ12から吐出
される圧縮空気の圧力を一定に保つたままで、前
記燃料電池1および改質器2に供給する空気量
を、例えば、約25%〜100%の範囲で制御するこ
とができ、幅広い電力需要の変化に対応すること
ができる。なお、かかる制御を行なうに当り、前
記コンプレツサ12の運転条件が第1図に示すサ
ージング発生領域Aに入つてしまう場合には、流
量調節弁18を適度に開成させる。その結果、コ
ンプレツサ12から吐出される空気の一部がバイ
パス系路17を通してタービン側へ導かれる。そ
のため、該コンプレツサ12を通過する空気の流
量が増大し、該コンプレツサ12の運転条件がサ
ージライン1よりも右側の正常運転領域Bへ戻さ
れることになり、サージングの発生が有効に防止
される。したがつて、このようなものであれば、
運転の不安定化やコンプレツサの破損等を招くこ
となしに幅広い電力需要の変化に無理なく対応す
ることができるものである。 With such a configuration, the turbine 14 is operated by excess air at the air electrode outlet of the fuel cell 1 and the exhaust gas from the reformer 2, and the compressor 12
is driven. As a result, the air flowing through the feed system path 15 is compressed to a required pressure, and is sequentially supplied to the air chamber 8 of the fuel cell 1 and the reformer 2 to generate electricity. In this system, by adjusting the opening degree of the variable nozzle 13 of the turbine 14, the pressure of the compressed air discharged from the compressor 12 is kept constant, and the fuel cell 1 and the reformer 2 can be controlled within a range of, for example, about 25% to 100%, making it possible to respond to a wide range of changes in power demand. In carrying out such control, if the operating conditions of the compressor 12 fall into the surging occurrence region A shown in FIG. 1, the flow control valve 18 is opened appropriately. As a result, a portion of the air discharged from the compressor 12 is guided to the turbine side through the bypass line 17. Therefore, the flow rate of air passing through the compressor 12 increases, and the operating conditions of the compressor 12 are returned to the normal operating region B on the right side of the surge line 1, thereby effectively preventing the occurrence of surging. Therefore, if it is like this,
It is possible to easily respond to a wide range of changes in power demand without causing instability in operation or damage to the compressor.
実施例 2(第3図)
前述した実施例1と同様なシステム(同一また
は相当部分には同一の記号を付して説明を省略す
る)において、前記バイパス系路17の途中に助
燃炉22を設けている。助燃炉22は、外部から
逐次供給される燃料を燃焼させて前記バイパス系
路17を流通する空気に熱エネルギを付加するよ
うにしたものである。Embodiment 2 (FIG. 3) In a system similar to that of Embodiment 1 described above (the same symbols are attached to the same or corresponding parts and the explanation is omitted), an auxiliary combustion furnace 22 is provided in the middle of the bypass line 17. It is set up. The auxiliary combustion furnace 22 burns fuel sequentially supplied from the outside to add heat energy to the air flowing through the bypass line 17.
このような構成のものであれば、前記実施例1
と同様な作用効果が得られるだけでなく助燃炉2
2によりタービン14の出力不足を補うことがで
き、安定した運転を保証することができるという
利点がある。すなわち、電力需要が急増して改質
器等の温度上昇がまにあわずタービン動力が一時
的に不足する場合や、ターボコンプレツサの特性
上、あるいは運転域で常にタービン動力が不足す
るような場合には、前記助燃炉22に燃料を供給
してバイパス系路を流れる空気に熱エネルギを付
加してその動力不足を補うことができ、幅広い運
転領域に亘つて適正な作動を担保することができ
る。 If it has such a configuration, the above-mentioned Example 1
Not only can you obtain the same effect as the auxiliary combustion furnace 2.
2 has the advantage of being able to compensate for the lack of output of the turbine 14 and ensuring stable operation. In other words, when the demand for electricity suddenly increases and the temperature of the reformer etc. does not rise in time, resulting in a temporary shortage of turbine power, or due to the characteristics of the turbo compressor, or when there is always a shortage of turbine power in the operating range. By supplying fuel to the auxiliary combustion furnace 22 and adding heat energy to the air flowing through the bypass system, it is possible to compensate for the lack of power, and it is possible to ensure proper operation over a wide range of operation.
なお、バイパス系路の流量調節弁を開閉する手
段は前記のものに限られないのは勿論であり、本
発明の趣旨を逸脱しない範囲で種々変形が可能で
ある。 It goes without saying that the means for opening and closing the flow control valve of the bypass system is not limited to the one described above, and various modifications can be made without departing from the spirit of the present invention.
(ヘ) 効果
本発明は、以上のような構成であるから、吐出
圧力を一定の値に維持したうえでコンプレツサへ
の供給空気流量を広い範囲に亘つて自在に制御す
るようにしてもサージング等の不都合を招くこと
がなく、したがつて、電力需要が幅広く変化する
ような条件下で使用される燃料電池発電システム
にも好適に採用し得る燃料電池発電用ターボコン
プレツサシステムを提供できるものである。(F) Effect Since the present invention has the above-described configuration, even if the flow rate of air supplied to the compressor is freely controlled over a wide range while maintaining the discharge pressure at a constant value, surging etc. will not occur. It is possible to provide a turbo compressor system for fuel cell power generation that does not cause any inconvenience, and can therefore be suitably adopted in fuel cell power generation systems used under conditions where power demand varies widely. be.
第1図はコンプレツサの特性を示す特性説明
図、第2図は本発明の一実施例を示すシステム説
明図、第3図は本発明の他の実施例を示すシステ
ム説明図である。
1……燃料電池、2……改質器、3……ターボ
コンプレツサ、9……空気極、12……コンプレ
ツサ、13……可変ノズル、14……タービン、
17……バイパス系路、18……流量調節弁、2
2……助燃炉。
FIG. 1 is a characteristic explanatory diagram showing the characteristics of a compressor, FIG. 2 is a system explanatory diagram showing one embodiment of the present invention, and FIG. 3 is a system explanatory diagram showing another embodiment of the present invention. 1... Fuel cell, 2... Reformer, 3... Turbo compressor, 9... Air electrode, 12... Compressor, 13... Variable nozzle, 14... Turbine,
17...Bypass system line, 18...Flow rate control valve, 2
2... auxiliary combustion furnace.
Claims (1)
した給気系路にコンプレツサを介設するととも
に、前記空気極および改質器の出口に接続した排
気系路に可変ノズル式のタービンを介設し、この
タービンで前記コンプレツサを供給空気圧が略一
定になるように駆動するようにした燃料電池発電
用のターボコンプレツサシステムにおいて、前記
コンプレツサの出口と前記タービンの入口とをバ
イパス系路を介して連通させ、このバイパス系路
に前記燃料電池および改質器への供給空気量が少
ない運転領域で開成する流量調節弁を設けたこと
を特徴とする燃料電池発電用ターボコンプレツサ
システム。 2 燃料電池の空気極および改質器の入口に接続
した給気系路にコンプレツサを介設するととも
に、前記空気極および改質器の出口に接続した排
気系路に可変ノズル式のタービンを介設し、この
タービンで前記コンプレツサを供給空気圧が略一
定になるように駆動するようにした燃料電池発電
用のターボコンプレツサシステムにおいて、前記
コンプレツサの出口と前記タービンの入口とをバ
イパス系路を介して連通させ、このバイパス系路
に、前記燃料電池および改質器への供給空気量が
少ない運転領域で開成する流量制御弁と、該バイ
パス系路を流れる空気に熱エネルギに付与する助
熱炉とを設けたことを特徴とする燃料電池発電用
ターボコンプレツサシステム。[Claims] 1. A compressor is interposed in the air supply line connected to the air electrode of the fuel cell and the inlet of the reformer, and a compressor is installed in the exhaust line connected to the air electrode and the outlet of the reformer. In a turbo compressor system for fuel cell power generation in which a nozzle-type turbine is provided and the turbine drives the compressor so that the supplied air pressure is substantially constant, an outlet of the compressor and an inlet of the turbine are connected. A turbo for fuel cell power generation, characterized in that the bypass system is provided with a flow control valve that opens in an operating region where the amount of air supplied to the fuel cell and the reformer is small. compressor system. 2 A compressor is interposed in the air supply line connected to the air electrode of the fuel cell and the inlet of the reformer, and a variable nozzle type turbine is interposed in the exhaust line connected to the air electrode and the outlet of the reformer. In a turbo compressor system for fuel cell power generation, the compressor is driven by the turbine so that the supplied air pressure is substantially constant, and the outlet of the compressor and the inlet of the turbine are connected via a bypass line. a flow control valve that is opened in an operating region where the amount of air supplied to the fuel cell and the reformer is small; and a reheating furnace that imparts thermal energy to the air flowing through the bypass system. A turbo compressor system for fuel cell power generation, characterized by being provided with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59017436A JPS60160574A (en) | 1984-01-30 | 1984-01-30 | Turbo-compressor system for fuel cell power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59017436A JPS60160574A (en) | 1984-01-30 | 1984-01-30 | Turbo-compressor system for fuel cell power generation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60160574A JPS60160574A (en) | 1985-08-22 |
JPH0317350B2 true JPH0317350B2 (en) | 1991-03-07 |
Family
ID=11943971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59017436A Granted JPS60160574A (en) | 1984-01-30 | 1984-01-30 | Turbo-compressor system for fuel cell power generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60160574A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0828225B2 (en) * | 1985-12-24 | 1996-03-21 | 石川島播磨重工業株式会社 | Atmospheric pressure fuel cell power plant |
DE4021097A1 (en) * | 1990-07-02 | 1992-01-09 | Siemens Ag | FUEL CELL POWER PLANT |
US7771883B2 (en) * | 2004-01-27 | 2010-08-10 | Gm Global Technology Operations, Inc. | Virtual compressor operational parameter measurement and surge detection in a fuel cell system |
JP6168028B2 (en) * | 2014-11-05 | 2017-07-26 | トヨタ自動車株式会社 | Fuel cell system |
JP6881225B2 (en) * | 2017-10-20 | 2021-06-02 | トヨタ自動車株式会社 | Fuel cell system and fuel cell system control method |
JP6954157B2 (en) * | 2018-01-31 | 2021-10-27 | トヨタ自動車株式会社 | Fuel cell system |
-
1984
- 1984-01-30 JP JP59017436A patent/JPS60160574A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60160574A (en) | 1985-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0317350B2 (en) | ||
JP2585210B2 (en) | Fuel cell power plant | |
JP2001015134A (en) | Combined power generating device of fuel cell with gas turbine | |
JPH0317349B2 (en) | ||
JP2922209B2 (en) | Fuel cell power generation system | |
JP3137147B2 (en) | Control method for turbine compressor device for fuel cell facility | |
JPS60160575A (en) | Turbo-compressor system for fuel cell power generation | |
JPS60160579A (en) | Starting of fuel cell power generation system | |
JPS6179856A (en) | Method of starting turbo-compressor | |
JPS5975571A (en) | Method for operating power generating system with fuel cell | |
JPS6180761A (en) | Control system of fuel cell power generation system | |
JPH0317353B2 (en) | ||
JPH01112671A (en) | Operating method for fuel cell power plant | |
JPS6180764A (en) | Control method for fuel cell power generation system | |
JPS60160580A (en) | Starting of fuel cell power generation system | |
JPH0317352B2 (en) | ||
JPS63195334A (en) | Turbocompressor system | |
JPS61198567A (en) | Fuel cell power generating system | |
JPH0521081A (en) | Fused carbonate fuel cell power generator | |
JPS6039771A (en) | System for controlling interelectrode pressure of fuel cell | |
JPS6298571A (en) | Controlling method for fuel cell power generating system | |
JPH0612077B2 (en) | Fuel cell power generation system | |
JPH0419964A (en) | Method and device for controlling amount of air for cathode of molten carbonate fuel cell | |
JPH0345867B2 (en) | ||
JPS6180765A (en) | Control method for fuel cell power generation system |