JPH03127322A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH03127322A
JPH03127322A JP26550989A JP26550989A JPH03127322A JP H03127322 A JPH03127322 A JP H03127322A JP 26550989 A JP26550989 A JP 26550989A JP 26550989 A JP26550989 A JP 26550989A JP H03127322 A JPH03127322 A JP H03127322A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
noise
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26550989A
Other languages
Japanese (ja)
Other versions
JP2906480B2 (en
Inventor
Toru Nagaoka
徹 長岡
Masayuki Mizushiri
水尻 雅之
Tadashi Nakagawara
中川原 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26550989A priority Critical patent/JP2906480B2/en
Publication of JPH03127322A publication Critical patent/JPH03127322A/en
Application granted granted Critical
Publication of JP2906480B2 publication Critical patent/JP2906480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a medium having high coercive force and low noise and is suitable for high density recording by using a specified CoCrZrHf magnetic alloy layer. CONSTITUTION:The medium consists of a nonmagnetic substrate 1 comprising an aluminum alloy covered with a Ni-P plating film or the like, Cr base layer 2, magnetic metal layer 3, and carbon protective layer 4. The magnetic metal layer 3 has the composition of Co100-(x+Y+w)CrxHfYZrw, wherein X, Y, and W (at.%) satisfy that 5.0<=X<=18.0, 0.2<=Y<=3.0, 0.2<=W<=3.0, and 0.2<=Y+W<=3.0. By this constitution, the magnetic recording medium has high coercive force in the intrasurface direction with lower noise, which is suitable for high-density recording.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、面内記録型のハードディスクを媒体等に利用
される、特に高保持力を有し、かつ低ノイズで高密度記
録ができることを特徴とする磁気記録体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the use of a longitudinal recording type hard disk as a medium, etc., which has a particularly high retention force and is capable of high-density recording with low noise. The present invention relates to a characteristic magnetic recording medium.

(従来の技術) 近年、情報量の増大に伴い、記録密度の高い磁気記録体
の要望が高く、合金磁性薄膜を有する磁気記録体の研究
開発が活発である。磁気記録体には大別して面内方向に
磁気異方性を有する面内記録型と垂直方向に磁気異方性
を有する垂直記録型とがある。しかしながら垂直記録型
は磁気ヘッドの浮上量、C3S特性、耐久性などにおい
て現状技術では対応できないため、面内記録型の方が実
用レベルではすぐれている。
(Prior Art) In recent years, as the amount of information has increased, there has been a strong demand for magnetic recording bodies with high recording density, and research and development of magnetic recording bodies having alloy magnetic thin films has been active. Magnetic recording media can be roughly divided into in-plane recording types that have magnetic anisotropy in the in-plane direction and perpendicular recording types that have magnetic anisotropy in the perpendicular direction. However, the perpendicular recording type cannot be met with current technology in terms of the flying height of the magnetic head, C3S characteristics, durability, etc., and therefore the longitudinal recording type is superior at a practical level.

この種の面内磁気記録媒体としては非磁性基板上にCr
層を介してCo磁性合金層を形成してなるものが知られ
ており、その合金組成について種々検討され、高保持力
を有するCoCrNL磁性合金層が提案されている(特
開昭61−120330号公報)。
This type of longitudinal magnetic recording medium uses Cr on a non-magnetic substrate.
It is known that a Co magnetic alloy layer is formed between layers, and various studies have been conducted on the alloy composition, and a CoCrNL magnetic alloy layer with high coercivity has been proposed (Japanese Patent Laid-Open No. 120330/1989). Public bulletin).

このCo Cr Ni系磁性合金の場合、下地Cr層の
厚さが3000人でCo Cr Ni磁性膜の厚さが5
00人の磁気記録体ではNi15原子%の含有量で最高
の保持力800エールステツド(以下、Oeと略す)が
得られている。
In the case of this CoCrNi magnetic alloy, the thickness of the underlying Cr layer is 3000mm and the thickness of the CoCrNi magnetic film is 5mm thick.
The highest coercive force of 800 Oe (hereinafter abbreviated as Oe) was obtained in the magnetic recording material of 00 people with a Ni content of 15 atomic %.

(発明が解決しようとする課題) しかしながら、最近の磁気記録分野では、ますます高密
度記録化が要求され、さらに高保持力を有し、かつ低ノ
イズのものが要求されるようになってきた。しかしなが
ら、上記従来の技術ではその保持力は800 (Oe)
程度であり、かつノイズが大きく、これらの要求を満す
ことができない。
(Problem to be solved by the invention) However, in recent years in the field of magnetic recording, there has been a demand for higher-density recording, as well as higher coercivity and lower noise. . However, in the above conventional technology, the holding force is 800 (Oe)
However, the noise is large, and these requirements cannot be met.

本発明は上記目的を達成するために、磁気記録体の磁性
合金層の組成について鋭意検討した結果、CoCrtl
f、、CoCrZr、 CoCrZrHf組威の磁性合
金層によって、より高性能のものが得られることを見出
し、本発明を完成するに至った。
In order to achieve the above object, the present invention has been made as a result of intensive study on the composition of the magnetic alloy layer of the magnetic recording body.
The present inventors have discovered that higher performance can be obtained by using a magnetic alloy layer consisting of CoCrZr, CoCrZrHf, and CoCrZrHf, and have completed the present invention.

(課題を解決するための手段) すなわち、本発明は以下を要旨とするものである。非磁
性基材面上にCr層を介して磁性金属層を介してなる磁
気記録体において、前記磁性金属層は、X、Y、Wを原
子%としたとき、Co 、。。〜(x*V+w) Cr
、 Flfy Zrwで表わされ、5.0≦X≦18.
0.0.2≦Y≦3.0.0.2≦W≦3.0.0.2
≦Y+W≦3.0の組成比をもつことを特徴とする磁気
記録体(以下合金の組成含有量は原子%で示す)。
(Means for Solving the Problems) That is, the gist of the present invention is as follows. In a magnetic recording body formed of a Cr layer and a magnetic metal layer on a nonmagnetic base material surface, the magnetic metal layer is Co, where X, Y, and W are expressed as atomic %. . ~(x*V+w)Cr
, Flfy Zrw, 5.0≦X≦18.
0.0.2≦Y≦3.0.0.2≦W≦3.0.0.2
A magnetic recording body characterized by having a composition ratio of ≦Y+W≦3.0 (hereinafter, the compositional content of the alloy is expressed in atomic %).

以下、さらに本発明について詳しく説明する。The present invention will be further explained in detail below.

本発明の非磁性基材はアルごニウム合金、ガラス、セラ
ミック等強度と平滑性が出せるものを使用する。
The non-magnetic base material used in the present invention is one that provides strength and smoothness, such as argonium alloy, glass, or ceramic.

該基材上に必要により、ニッケル・リンなどからなる硬
質層を設けてもよい。その表面をポリッシングマシンな
どの精密研磨機で研磨し、表面粗さをRa30人程度の
ものとする。次に磁性合金層が異方性配向しやすいよう
に、間怠円状の数100入程度の溝をつける。この上に
、スパッタリング等によりCr層を作製する。例えばD
Cマグネトロンスパッタリングの場合、電圧300〜8
00 V T:Arガス圧10−”−10−3Torr
で実施する。下地Cr層の膜厚は500〜4000Åが
好ましい。500人未満では保持力が低下し、4000
人をこえてはスパッタリング時間がかかるので好ましく
ない。
If necessary, a hard layer made of nickel, phosphorous, etc. may be provided on the base material. The surface is polished with a precision polishing machine such as a polishing machine to obtain a surface roughness of about 30 Ra. Next, about 100 intermittent circular grooves are formed so that the magnetic alloy layer can be easily anisotropically oriented. A Cr layer is formed thereon by sputtering or the like. For example, D
For C magnetron sputtering, voltage 300~8
00 V T: Ar gas pressure 10-”-10-3Torr
It will be carried out. The thickness of the underlying Cr layer is preferably 500 to 4000 Å. If the number of people is less than 500, the holding power will decrease, and the number of people will be 4000.
Sputtering using more than one person is not preferable because sputtering takes time.

本発明における磁性合金層はスパッタリング法により、
付着させることが好ましい。Cr、 Hf、 ZrO組
成はターゲットの材質を変えることによって変化させる
ことができ、又その膜厚はスパッタリングの時間によっ
て変えることができるが、磁性合金層の組成はCo 1
00− +x*y+w>CrXHfy Zr、で表わさ
れ、5.0≦X≦18.0.0.2≦Y≦3.0.、O
,,2≦W≦3.0.0.2≦Y十W≦3.0であると
きに、800 (Os)以上の高い保持力を有し、かつ
低ノイズの高密度磁気記録体を得ることができる。さら
に好ましくは10≦X≦17.0.4≦Y≦1.5.0
.4≦W≦1.5.0.4≦Y+W≦1.5であり、そ
れによってより高い保持力を有する磁気記録体を得るこ
とができる。
The magnetic alloy layer in the present invention is formed by sputtering.
It is preferable to attach it. The composition of Cr, Hf, and ZrO can be changed by changing the material of the target, and the film thickness can be changed by changing the sputtering time, but the composition of the magnetic alloy layer is Co1.
00- +x*y+w>CrXHfy Zr, 5.0≦X≦18.0.0.2≦Y≦3.0. , O
,, Obtaining a high-density magnetic recording body having a high coercive force of 800 (Os) or more and low noise when 2≦W≦3.0.0.2≦Y10W≦3.0 be able to. More preferably 10≦X≦17.0.4≦Y≦1.5.0
.. 4≦W≦1.5.0.4≦Y+W≦1.5, and thereby a magnetic recording medium having higher coercive force can be obtained.

これらの組成範囲外ではいずれも保持力が小さく高密度
記録には適していない。
If the composition is outside these ranges, the holding power is low and the composition is not suitable for high-density recording.

又、磁性合金層の膜厚は200〜3000人が好ましい
。膜厚200人未満では磁荷が小さく所定の出力が出な
い。3000人をこえてはスパッタリング時間が長くか
かるとともに、記録密度が小さくなる。
Further, the thickness of the magnetic alloy layer is preferably 200 to 3000 layers. If the film thickness is less than 200 mm, the magnetic charge will be small and the desired output will not be produced. If the number of people exceeds 3000, sputtering time will be longer and the recording density will be lower.

次に磁性合金層の保護層としてカーボン膜をスパッタリ
ングにより被着させる。この保護層の厚さは50〜50
0人位が好ましい。
Next, a carbon film is deposited by sputtering as a protective layer for the magnetic alloy layer. The thickness of this protective layer is 50-50
Preferably 0 people.

このようにして、第1図に示す構成の磁気記録体が得ら
れる。
In this way, a magnetic recording body having the configuration shown in FIG. 1 is obtained.

第1図中、lはニッケル・リンメツキ膜などを有するア
ルミニウム合金の非磁性基材であり、2は下地層として
のCr層、3は磁性金属層、4は保護膜としてのカーボ
ン保護層を示す。
In Fig. 1, l is a non-magnetic aluminum alloy base material having a nickel plating film, etc., 2 is a Cr layer as an underlayer, 3 is a magnetic metal layer, and 4 is a carbon protective layer as a protective film. .

磁気記録体の保持力は試料振動型磁力計を用いて膜面に
平行及び垂直に磁界を印加し、測定する。
The coercive force of a magnetic recording medium is measured by applying a magnetic field parallel and perpendicular to the film surface using a sample vibrating magnetometer.

通常磁気記録体の記録密度(BPl、ビット・パー・イ
ンチ)は保持力(Hc)と残留磁束密度(Br)、と磁
性合金層の膜厚(δ)に大きく依各周波数の信号を記録
し、その再生時に生じるノイズスペクトルをスペクトル
アナライザーを用いて測定することができる。ノイズは
Hc、 Br、δによって異なるのでHc及びBr・δ
の値が同じ条件で比較する必要がある。
Normally, the recording density (BPl, bits per inch) of a magnetic recording medium largely depends on the coercive force (Hc), residual magnetic flux density (Br), and thickness (δ) of the magnetic alloy layer. , the noise spectrum generated during playback can be measured using a spectrum analyzer. Since noise differs depending on Hc, Br, and δ, Hc and Br・δ
It is necessary to compare the values under the same conditions.

これを第2図に従ってさらに説明すると、第2図は実施
例7と比較例5の磁性合金m戒を有する磁気記録体につ
いて、第3表の測定条件で測定したスペクトルを示す。
To further explain this with reference to FIG. 2, FIG. 2 shows spectra measured under the measurement conditions shown in Table 3 for the magnetic recording bodies having the magnetic alloys of Example 7 and Comparative Example 5.

すなわち、曲線AはCoCr1.5Ni、。(比較例5
)の磁性合金層を有する磁気記録体のノイズスペクトル
の測定データを示し、曲線BはCoCr++Hfzの磁
性合金層を有する磁性記録体のノイズスペクトルの測定
データを示す。曲線Cはシステムノイズを示す。従って
、磁気記録体のノイズは磁気記録体のノイズスペクトル
とシステムノイズスペクトルとの間で囲まれた面積が磁
気記録体のノイズであり、その面積が小さい程、ノイズ
レベルが低いことを意味する。
That is, curve A is CoCr1.5Ni. (Comparative example 5
Curve B shows the measurement data of the noise spectrum of a magnetic recording body having a magnetic alloy layer of CoCr++Hfz. Curve C shows the system noise. Therefore, the noise of the magnetic recording body is the area surrounded by the noise spectrum of the magnetic recording body and the system noise spectrum, and the smaller the area, the lower the noise level.

〈実施例〉 以下に実施例をあげて、本発明を具体的に説明する。<Example> The present invention will be specifically described below with reference to Examples.

(実施例1〜24、比較例1〜5) アルミニウム合金基板(外径95mm、肉厚25帥、厚
さ1.3mm)の表面に無電解メツキ法により膜厚20
amのN1−Pメツキ膜を形威し、その表面をラッピン
グマシンで精密研磨し、非磁性基板を作製した。この非
磁性基板上にDCマグネトロンスパッタリング法により
、下地層としてCr層、磁性金属1JcocrHf又は
CoCrZr又はCoCrHfZr、保護膜としてのカ
ーボン層を順次、次の製造条件で形成し、磁気記録体を
作製した。
(Examples 1 to 24, Comparative Examples 1 to 5) A film with a thickness of 20 mm was formed by electroless plating on the surface of an aluminum alloy substrate (outer diameter 95 mm, wall thickness 25 mm, thickness 1.3 mm).
A non-magnetic substrate was prepared by molding an am N1-P plating film and precision polishing its surface using a lapping machine. A Cr layer as an underlayer, a magnetic metal 1JcocrHf or CoCrZr or CoCrHfZr, and a carbon layer as a protective film were sequentially formed on this nonmagnetic substrate by DC magnetron sputtering under the following manufacturing conditions to produce a magnetic recording body.

スパッタリングは直径20cmのターゲット3個を用い
、初期排気の到達真空度7.OXl0−’ Torr、
Arガス圧5X10−’ Torr 、基板温度230
 ’Cで実施した。
Sputtering uses three targets with a diameter of 20 cm, and the ultimate vacuum level of initial exhaust is 7. OXl0-' Torr,
Ar gas pressure 5X10-' Torr, substrate temperature 230
It was carried out in 'C.

磁性金属層の組成を変えるためにペース合金であるCa
1l? Cr13のターゲット(直径20cm)上に添
加成分であるH「のチップ(5mmX5mm )の個数
を変化させてのせた。
Ca is a pace alloy to change the composition of the magnetic metal layer.
1l? The number of chips (5 mm x 5 mm) of H", which is an additive component, was placed on a Cr13 target (diameter 20 cm) with varying numbers.

これによって得られた磁気記録体は、N1−Pメ。The magnetic recording body thus obtained was N1-P.

ツキ膜厚20μmのアルミニウム合金の非磁性基材、1
500大の下地Cr層、600人の磁性金属層、300
人の保護膜としてのカーボン層から構成されていた。
Non-magnetic base material of aluminum alloy with a thickness of 20 μm, 1
500mm base Cr layer, 600mm magnetic metal layer, 300mm
It was composed of a carbon layer that served as a protective layer for humans.

また比較のため、ターゲットを変えた以外は実施例1〜
24と同じ条件で磁気記録体を製造し、比較例1〜4の
Hf、 Zr又はHf+Zrは0.4%のもの及び比較
例5の従来の磁性金属層Iv、cocr7.5Ni :
l。の磁気記録体を得た。実施例1〜24、比較例1〜
5の磁気記録体は試料振動型磁力計を用いて、膜面に平
行及び垂直に磁界を印加して、得られた磁気特性を比較
して判断した結果、すべて面内方向に磁気異方性を持っ
ていることを確認するこができた。
For comparison, Example 1~ except that the target was changed.
Magnetic recording bodies were manufactured under the same conditions as in No. 24, and Hf, Zr or Hf+Zr was 0.4% in Comparative Examples 1 to 4, and conventional magnetic metal layer Iv, cocr7.5Ni in Comparative Example 5:
l. A magnetic recording medium was obtained. Examples 1-24, Comparative Examples 1-
The magnetic recording material No. 5 was judged by applying a magnetic field parallel and perpendicular to the film surface using a sample vibrating magnetometer and comparing the obtained magnetic properties, and found that all magnetic recording materials had magnetic anisotropy in the in-plane direction. I was able to confirm that I have this.

またこれらの磁気記録体の保持力を測定した結果、ll
f及びZrの含有量と保持力の測定結果を第1表に示す
In addition, as a result of measuring the holding force of these magnetic recording bodies, ll
Table 1 shows the measurement results of f and Zr contents and holding power.

このとき、残留磁束密度と膜厚の積Br・δが500ガ
ウス・ミクロン(G・μm)となるように膜厚を調整し
た。その結果、0.2≦Y≦3.OSo、2≦W≦3.
0.0.2≦y十w≦3.0(7)範囲で保持力が80
0 (Os)より大きく、特ニ0.4≦Y≦2.0.0
.5≦W≦1.5.0.2:Y+W≦2.0ノ範囲では
1000(Oe)以上の高保持力を示した。これに対し
、比較例1〜4のY、、W又はy+wが0.4%のもの
は保持力の800 (Oe)より低く、高密度記録には
適さないことがわかった。比較例5の従来の磁性金属組
成C(ICr7.s N15o(D磁気記録体の保持力
は800 (Oe)であった。
At this time, the film thickness was adjusted so that the product Br·δ of residual magnetic flux density and film thickness was 500 Gauss·microns (G·μm). As a result, 0.2≦Y≦3. OSo, 2≦W≦3.
Holding force is 80 in the range of 0.0.2≦y1w≦3.0 (7)
Greater than 0 (Os), especially 20.4≦Y≦2.0.0
.. In the range of 5≦W≦1.5.0.2: Y+W≦2.0, a high holding force of 1000 (Oe) or more was exhibited. On the other hand, Comparative Examples 1 to 4 in which Y, W, or y+w was 0.4% had a coercive force lower than 800 (Oe), and were found to be unsuitable for high-density recording. The coercive force of the conventional magnetic metal composition C (ICr7.s N15o (D) of Comparative Example 5 was 800 (Oe).

それらの磁気記録体のノイズについて、前記した方法に
よってスペクトルアナライザーを用いて第2表に示す条
件で測定した周波数2MHz〜l0M1(zの範囲でノ
イズスペクトルを測定し、前記した方法により、磁気記
録体の測定ノイズスペクトルとシステムノイズスペクト
ルで囲まれた面積より磁気記録体のノイズを算出した。
Regarding the noise of those magnetic recording bodies, the noise spectrum was measured in the frequency range of 2MHz to 10M1 (z) using a spectrum analyzer under the conditions shown in Table 2. The noise of the magnetic recording medium was calculated from the area surrounded by the measured noise spectrum and the system noise spectrum.

その結果を第3表に示す。The results are shown in Table 3.

この結果から明からなように実施例2.7、l。As is clear from this result, Example 2.7, l.

I4.18のものは高い周波数まで、低ノイズを維持す
ることが可能であるのに対し、従来の磁性金属層成であ
る比較例5のものは高いノイズを示した。
While the I4.18 one was able to maintain low noise up to high frequencies, the one of Comparative Example 5, which was a conventional magnetic metal layer, showed high noise.

第 1 表 注 磁性合金組成CoCr1.、HfyZrw (z !刀
i子2)。
Table 1 Magnetic alloy composition CoCr1. , HfyZrw (z! Katana Iko 2).

但し比較例5はCoCr、 5Ni3゜第 表 (実施例25〜29、比較例6〜7) 実施例1〜24と同様、DCマグネトロンスパッターを
用い、1500人の下地Cr層を形成し、その上にCo
Crx Hfl、。となるように、C,llf合金のタ
ーゲットの上にCrのチップをのせて、Crの含有量を
変えて、600大の磁性金属層を作製し、さら4こ30
0人のカーボン層を作製した。
However, in Comparative Example 5, CoCr, 5Ni3° Table (Examples 25 to 29, Comparative Examples 6 to 7) Similar to Examples 1 to 24, a 1500-layer base Cr layer was formed using DC magnetron sputtering, and then Co
Crx Hfl,. A Cr chip was placed on a C,llf alloy target, and a 600-sized magnetic metal layer was fabricated by varying the Cr content so that
A carbon layer of 0 people was produced.

また比較のため、実施例25〜29と同じ条件で磁気記
録体を製造し第2表比較例6〜7のCr含有量0.20
%のものを得た。
For comparison, magnetic recording bodies were manufactured under the same conditions as Examples 25 to 29, and the Cr content of Comparative Examples 6 to 7 in Table 2 was 0.20.
I got %.

これらの磁気記録体の保持力を測定した結果を第4表に
示す。Crの含有量が約13%で保持力は最大となり、
Cr含有量が5.0≦X≦18.0の範囲で保持力80
0 (Oe)より高いものが得られた。
Table 4 shows the results of measuring the holding forces of these magnetic recording bodies. When the Cr content is approximately 13%, the holding power is maximum,
Retention force 80 when Cr content is in the range of 5.0≦X≦18.0
A value higher than 0 (Oe) was obtained.

第 表 注、磁性合金組成CoCr、Hf+、。(%は原子%)
Table Note: Magnetic alloy composition CoCr, Hf+. (% is atomic%)
.

(発明の効果) 本願発明による磁気記録体は面内方向で高い保持力を有
し、かつノイズの低減をはかることが可能であり、高密
度記録に好適であることが判明した。
(Effects of the Invention) It has been found that the magnetic recording body according to the present invention has a high coercive force in the in-plane direction, can reduce noise, and is suitable for high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録体の断面図。 lは非磁性基材、2はCr層、3は磁性金属層、4はカ
ーボン保護層。 第2図はスペクトルアナライザーによるノイズスペクト
ルの測定例である。 曲線AはCoCr?、5 N15oの磁性金属を有する
磁気記録体のノイズスペクトル。 曲線BはCoCr+Jfz、。の磁性金属を有する磁気
記録体のノイズスペクトル。 曲線Cはシステムノイズスペクトル。
FIG. 1 is a sectional view of the magnetic recording medium of the present invention. 1 is a non-magnetic base material, 2 is a Cr layer, 3 is a magnetic metal layer, and 4 is a carbon protective layer. FIG. 2 is an example of noise spectrum measurement by a spectrum analyzer. Is curve A CoCr? , 5 Noise spectrum of a magnetic recording medium having N15o magnetic metal. Curve B is CoCr+Jfz. Noise spectrum of a magnetic recording medium containing magnetic metal. Curve C is the system noise spectrum.

Claims (1)

【特許請求の範囲】[Claims] 1、非磁性基材面上にCr層を介して磁性金属層を形成
してなる磁気記録体において、前記磁性金属層は、X、
Y、Wを原子%としたとき、Co_1_0_0_−_(
_x_+_y_+_w)Cr_XHf_YZr_Wで表
わされ、5.0≦X≦18.0、0.2≦Y≦3.0、
0.2≦W≦3.0、0.2≦Y+W≦3.0の組成比
をもつことを特徴とする磁気記録体。
1. In a magnetic recording body formed by forming a magnetic metal layer on a non-magnetic base material surface via a Cr layer, the magnetic metal layer comprises X,
When Y and W are expressed as atomic percent, Co_1_0_0_-_(
_x_+_y_+_w) Cr_XHf_YZr_W, 5.0≦X≦18.0, 0.2≦Y≦3.0,
A magnetic recording body characterized by having a composition ratio of 0.2≦W≦3.0 and 0.2≦Y+W≦3.0.
JP26550989A 1989-10-12 1989-10-12 Magnetic recording medium Expired - Fee Related JP2906480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26550989A JP2906480B2 (en) 1989-10-12 1989-10-12 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26550989A JP2906480B2 (en) 1989-10-12 1989-10-12 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH03127322A true JPH03127322A (en) 1991-05-30
JP2906480B2 JP2906480B2 (en) 1999-06-21

Family

ID=17418150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26550989A Expired - Fee Related JP2906480B2 (en) 1989-10-12 1989-10-12 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2906480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196323A (en) * 1992-10-30 1994-07-15 Nec Corp Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196323A (en) * 1992-10-30 1994-07-15 Nec Corp Magnetic recording medium

Also Published As

Publication number Publication date
JP2906480B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US5736262A (en) Magnetic recording medium
US4865916A (en) Magnetic recording medium method for producing the same, and method for recording and reproduction using the same and magnetic head
JPH03127322A (en) Magnetic recording medium
US7144641B2 (en) Magnetic backlayer
JPH0877544A (en) Magnetic recording medium and its production
US5013583A (en) Method of producing a magnetic recording medium
JPH0268716A (en) Production of magnetic disk medium
JPH09147357A (en) Production of magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPS61199233A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JPH11111524A (en) Magnetic recording medium, magnetic alloy film and sputtering target
JPH0793738A (en) Magnetic recording medium
JPH0268711A (en) Magnetic recording medium
JPH04157619A (en) Magnetic disk
JPH04134718A (en) Magnetic recording medium
JPH03283016A (en) Magnetic recording medium
JPS6015817A (en) Vertical magnetic recording medium
JPH03125322A (en) Magnetic recording medium
JPS60191429A (en) Vertically magnetized recording body
JPH08227515A (en) Magnetic recording medium for in-plane recording and production thereof
JPH0334122A (en) Magnetic recording medium and production thereof
JP2000057554A (en) Magnetic disk

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees