JPH03119190A - Treatment of water of paper-making process - Google Patents

Treatment of water of paper-making process

Info

Publication number
JPH03119190A
JPH03119190A JP25709089A JP25709089A JPH03119190A JP H03119190 A JPH03119190 A JP H03119190A JP 25709089 A JP25709089 A JP 25709089A JP 25709089 A JP25709089 A JP 25709089A JP H03119190 A JPH03119190 A JP H03119190A
Authority
JP
Japan
Prior art keywords
water
paper
quaternary ammonium
making process
bentonite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25709089A
Other languages
Japanese (ja)
Other versions
JP2815194B2 (en
Inventor
Yasuto Otani
大谷 慶人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAMIPARUPU KENKYUSHO KK
Original Assignee
NIPPON KAMIPARUPU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAMIPARUPU KENKYUSHO KK filed Critical NIPPON KAMIPARUPU KENKYUSHO KK
Priority to JP25709089A priority Critical patent/JP2815194B2/en
Publication of JPH03119190A publication Critical patent/JPH03119190A/en
Application granted granted Critical
Publication of JP2815194B2 publication Critical patent/JP2815194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To provide a process for the treatment of water of paper-making process, exhibiting remarkable adsorptivity to suspending material and effective in neutral or higher pH range by adding a cationic surfactant having ammonium group and a specific composite particle to the water of paper-making process. CONSTITUTION:Composite particles consisting of (A) a cationic surfactant having quaternary ammonium group and (B) a mineral composed mainly of montmorillonite are added to water of paper-making process to effect the adsorption and separation of pollutant. Preferably, the component A is a quaternary ammonium surfactant having one or more 8-20C aliphatic chains and the component B is a mineral carrying positive electric charge in water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製紙工程水中の汚質物質を除去する方法に関す
るものである6さらに詳しくは本発明は、製紙工程水中
の汚質物質を、新規な吸着剤により吸着して分離する方
法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for removing pollutants in papermaking process water. The present invention relates to a method of adsorption and separation using an adsorbent.

〔従来の技術〕[Conventional technology]

本発明において製紙工程水とは、紙の抄造工程において
使用される、またはその過程で排出される水をいう、こ
れらの製紙工程水の中には、繊維質物の外に鉱物、コー
ティング剤、サイズ剤、インキ、顔料、木材樹脂、粘着
物などの原料処理工程からくる汚質物質を含有している
。近年、水使用量の低下を目的として積極的に用水を循
環使用するクローズド系原料処理工程が一最的となって
いるが、この場合には汚質物質の工程水中への蓄積が最
も問題となる。これらの物質は、バルブの汚染、スケー
ル、スライム、ピッチ、粘着物の発生、装置の腐食など
とともに使用薬品、特にP水剤、歩留まり向上剤などの
効果を低下させるなどの問題を引起こすおそれがある。
In the present invention, papermaking process water refers to water used in the papermaking process or discharged during that process.In addition to fibrous substances, the papermaking process water contains minerals, coating agents, and Contains pollutants from raw material processing processes such as agents, inks, pigments, wood resins, and adhesives. In recent years, closed-system raw material processing processes that actively recycle water have become the most popular method to reduce water consumption, but in this case, the accumulation of pollutants in the process water is the most problematic. Become. These substances may cause problems such as valve contamination, scale, slime, pitch, and sticky substances, and corrosion of equipment, as well as reducing the effectiveness of chemicals used, especially P-water agents and yield improvers. be.

従来、このような汚質物を除去する方法としては、硫酸
アルミニウム(アラム)、高分子電解質などの凝集剤や
、微細なタルク、ベントナイトのごとき吸着剤により処
理されて、パルプに均一に定着されて系外に除去される
か、あるいは循環水においては、積極的に凝集沈澱分離
もしくは浮上分離処理により除去されている。
Traditionally, such pollutants are removed by treatment with flocculants such as aluminum sulfate (alum) and polymer electrolytes, and adsorbents such as fine talc and bentonite, which are uniformly fixed on the pulp. It is removed outside the system, or in circulating water, it is actively removed by coagulation-sedimentation separation or flotation separation treatment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

アラムはこれらの対策に汎用されるが、使用可能なpH
範囲が狭く、中性以上では使用できないという難点があ
る。そのために高分子電解質が使用されるが、一般には
単独では効果が低いために複合して用いられる。しかし
、最適使用条件、特に使用量を厳格に制御する必要があ
り繁雑である。
Alum is commonly used for these measures, but the usable pH is
The disadvantage is that the range is narrow and it cannot be used above neutrality. Polymer electrolytes are used for this purpose, but they are generally ineffective when used alone, so they are used in combination. However, it is complicated and requires strict control of optimal usage conditions, especially the amount used.

タルク、ベントナイトなどの吸着剤の使用は、操作が簡
単で好ましいが、効果が低いのが欠点である。その一つ
の原因は製紙工程水の汚質物質は通常強く負に帯電して
おり、タルク、ベントナイトなどの吸着粒子も負に帯電
しているために、両者の静電的な反発力により吸着性が
落ちるためである。特に中性以上のpHでは負の帯電の
程度は強まるために、汚質物質の吸着はより困難となる
傾向にある。
The use of adsorbents such as talc and bentonite is preferred because of its ease of operation, but the disadvantage is that it is less effective. One reason for this is that the pollutants in the papermaking process water are usually strongly negatively charged, and adsorbent particles such as talc and bentonite are also negatively charged, so the electrostatic repulsion between the two causes them to become adsorbent. This is because it falls. In particular, at pH levels above neutrality, the degree of negative charge increases, and therefore adsorption of pollutants tends to become more difficult.

したがって、広いpH範囲で正に帯電する吸着剤であれ
ば、効率よくこれらの汚質物質を吸着できると思われる
Therefore, it seems that an adsorbent that is positively charged over a wide pH range can efficiently adsorb these pollutants.

本発明は以上のことに鑑み、これらの吸着剤を開発する
ことを主たる目的とする。
In view of the above, the main purpose of the present invention is to develop these adsorbents.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、4級アンモニウム基を有する陽イオ
ン性界面活性剤とモンモリロナイトを主成分とする鉱物
との複合粒子を製紙工程水に添加し、汚質物を吸着分離
することを特徴とする、製紙工程水の処理方法を提供す
るものである。4級アンモニウム基を有する陽イオン性
界面活性剤とモンモリロナイトを主成分とする粘土鉱物
を複合化させた粒子を用いることによって、広範なpH
で正に帯電し、製紙工程水中の汚質物質吸着に著しい効
果を発現することを見いだし、本発明を完成した。
That is, the present invention provides a paper manufacturing process characterized in that composite particles of a cationic surfactant having a quaternary ammonium group and a mineral mainly composed of montmorillonite are added to paper manufacturing process water to adsorb and separate pollutants. The present invention provides a method for treating process water. By using particles that are a composite of a cationic surfactant with a quaternary ammonium group and a clay mineral mainly composed of montmorillonite, it is possible to adjust to a wide range of pH levels.
The present invention has been completed based on the discovery that the material is positively charged and has a remarkable effect on adsorbing pollutants in the papermaking process water.

本発明で使用される4級アンモニウム基を有する界面活
性剤としては、直頷または有枝の長鎖炭化水素基を1つ
または2つ有するアンモニウム塩で、一般に次の化学式
で表されるものをさす。
The surfactant having a quaternary ammonium group used in the present invention is an ammonium salt having one or two direct or branched long chain hydrocarbon groups, and is generally represented by the following chemical formula. As expected.

R″ R−N”−R”  ・ X− 11 または、 RI+ R−N”−R’  ・ X− R″ ここでRおよびRoは、同一または異なった長鎖の炭化
水素基を示し、炭素数8〜20が好ましい。例えばオク
チル、デシル、ドデシル、セチル、ステアリル等が通常
使用される。R”で示す窒素に結合している長鎖炭化水
素基以外の基としては、低級炭化水素基、例えばメチル
、エチル、あるいはプロピル、ブチル等の基であっても
よい。Xは、4級アンモニウムの対イオンであり、例え
ばハロゲン(F−C1−、Br−、I−)、NO。
R"R-N"-R" ・X- 11 or RI+ RN"-R' ・X- R" Here, R and Ro represent the same or different long-chain hydrocarbon groups, and the number of carbon atoms is 8 to 20 is preferred. For example, octyl, decyl, dodecyl, cetyl, stearyl, etc. are usually used. Groups other than the long chain hydrocarbon group bonded to the nitrogen represented by R'' include lower hydrocarbon groups, e.g. It may be a group such as methyl, ethyl, propyl or butyl. X is a counter ion of quaternary ammonium, such as halogen (F-C1-, Br-, I-), NO.

ct(、COO−H3O,−などが挙げられる。ct(, COO-H3O,-, etc.).

その他のアンモニウム塩としては、上記のRまたはRo
で示される長鎖の炭化水素を有するピリジニウム塩、ベ
ンジル基を有するベンザルコニウム塩等も挙げることが
できる。
Other ammonium salts include the above R or Ro
Pyridinium salts having a long-chain hydrocarbon represented by the above, benzalkonium salts having a benzyl group, and the like can also be mentioned.

代表的な粘土鉱物には、おもにモンモリロナイト系粘土
鉱物とカオリナイト系粘土鉱物、セビオライト、アロフ
ェンなどがあるが、本発明に用いる粘土鉱物はモンモリ
ロナイトを主成分とし、化学式Al2O*・4SiOz
・H2(このH2はNa、 KCa、 Mgと交換可能
である)で表される鉱物で、具体的にはモンモリロナイ
ト、ベントナイト(交換イオンが主にNa、Caである
もの)、酸性白土(交換イオンの一部がH゛であるもの
)などが挙げられる。
Typical clay minerals include montmorillonite clay minerals, kaolinite clay minerals, seviolite, allophane, etc. The clay mineral used in the present invention has montmorillonite as its main component and has the chemical formula Al2O*4SiOz.
・A mineral represented by H2 (this H2 is exchangeable with Na, KCa, Mg), specifically montmorillonite, bentonite (exchange ions are mainly Na and Ca), acid clay (exchange ions are mainly Na and Ca), and acid clay (exchange ions are mainly Na and Ca). (part of which is H).

本発明で使用する複合粒子を製造するには、これらの陽
イオン性界面活性剤をモンモリロナイトを主成分とする
粘土鉱物に複合させる。複合の方法としては、適当な粒
度の粘土鉱物の水懸濁液に、界面活性剤の水溶液を添加
し、撹拌したのち、濾過、乾燥後、適宜粉砕して得るこ
とができる。その他、陽イオン性界面活性剤の水溶液あ
るいは有機溶媒溶液を粘度鉱物に吸収乾燥させることに
よっても製造可能である。
To produce the composite particles used in the present invention, these cationic surfactants are composited with clay minerals mainly composed of montmorillonite. As a composite method, it can be obtained by adding an aqueous solution of a surfactant to an aqueous suspension of clay minerals of appropriate particle size, stirring, filtering, drying, and pulverizing as appropriate. In addition, it can also be produced by absorbing and drying an aqueous solution or an organic solvent solution of a cationic surfactant into a clay mineral.

陽イオン性界面活性剤と粘土鉱物との配合割合は、広い
範囲で許容されるが、一応の目安としては、重量部で1
/100/〜100/100、好ましくは10/10o
〜40/100である。
The mixing ratio of cationic surfactant and clay mineral is permissible within a wide range, but as a rough guide, 1 part by weight is acceptable.
/100/~100/100, preferably 10/10o
~40/100.

モンモリロナイト系の粘土鉱物は強い陽イオン交換能力
があり、古くから吸着剤として使用されている。そのイ
オン交換能力のために有機分子や金属錯体をモンモリロ
ナイト系粘土鉱物の層間に侵入させ、粘土・有機物もし
くは粘土・金属複合体を造る方法が種々検討されている
。これらの複合体を吸着剤として用いる試みは、水和ア
ルミニウム、ヒドロキシルアンモニウム、ラウリルアミ
ン塩酸塩などを複合化させたものについて一部行われて
いるが、極めて少ないのが現状である。(例えば、遣水
技術1989年15巻2号45〜53頁参照)。
Montmorillonite clay minerals have a strong cation exchange ability and have been used as adsorbents since ancient times. Due to its ion exchange ability, various methods have been studied to create clay-organic substances or clay-metal composites by infiltrating organic molecules or metal complexes between the layers of montmorillonite clay minerals. Although some attempts have been made to use these composites as adsorbents, such as composites of hydrated aluminum, hydroxylammonium, laurylamine hydrochloride, etc., there are currently very few attempts. (For example, see 1989, Vol. 15, No. 2, pp. 45-53).

本発明は4級アンモニウム基を有する陽イオン性界面活
性剤を、モンモリロナイトを主成分とする粘土鉱物に複
合化させて製造した複合粒子を、製紙工程水中に添加し
て汚質物質を吸着させた後、パルプ上に吸着させて系外
に除去するか、生じた汚質物質吸着後の複合粒子を例え
ば凝集沈澱、遠心分離、浮上分離などの分離操作により
除去することによって製紙工程水中の汚質異物を除去し
ようとするものである。
In the present invention, composite particles produced by combining a cationic surfactant having a quaternary ammonium group with a clay mineral whose main component is montmorillonite are added to papermaking process water to adsorb pollutants. After that, the pollutants in the papermaking process water can be removed by adsorbing them onto the pulp and removing them from the system, or by removing the resulting composite particles after adsorbing the pollutants through separation operations such as coagulation sedimentation, centrifugation, and flotation. This is an attempt to remove foreign matter.

本発明の方法による、汚質物質の除去は、広いpH範囲
においてきわめて有効に行われる。
The removal of pollutants by the method of the present invention is very effective over a wide pH range.

本発明の汚質物質の除去を、いかなる理論によっても特
定するものではないが、以下の実施例からしみられるよ
うに、複合体のゼータ電位(表面電位の代わりに測定さ
れる値で水中での粒子の電荷の指標となる。単位:mV
、詳細は紙バルブ技術タイムス昭和61年5月号49〜
54ページを参照)が正の場合に除去率が非常に向上す
ることが認められ、この関係が除去率に寄与しているこ
とが窺える。
Although the removal of pollutants of the present invention is not specified by any theory, as can be seen from the following examples, the zeta potential (a value measured in place of the surface potential) of the complex in water. An indicator of the charge of particles.Unit: mV
For details, see Paper Valve Technology Times May 1986 issue 49~
It is recognized that the removal rate is greatly improved when the relationship (see page 54) is positive, and it can be seen that this relationship contributes to the removal rate.

以下に、実施例により本発明をさらに詳細に説明する。Below, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

視イ目(9311週−↓ ここで用いた4級アンモニウム系界面活性剤は、塩化テ
トラブチルアンモニウム(T13AC)、臭化テトラブ
チルアンモニウム(TBAB)、臭化オクチルトリ、メ
チルアンモニウム(OTM八Bへ、臭化ラウリル1〜リ
メチルアンモニウム(LTM八Bへ、塩化セチルトリメ
チルアンモニウム(CTM八〇へ、臭化セチルトリメチ
ルアンモニウム(CTM八Bへ、臭化ステアリルトリメ
チルアンモニウム(STM八Bへ、臭化ジオクチルジメ
チルアンモニウム(DODM八B)へ臭化ジラウリルジ
メチルアンモニウム(DCDMAB)、臭化ジセチルジ
メチルアンモニウム(DCDMAB)、臭化ジステアリ
ルジメチルアンモニウム(DSDM八B)へ臭化オクチ
ルステアリルジメチルアンモニウム(OSDH八B)へ
臭化ラウリルステアリルジメチルアンモニウム(LSD
M八B)へ臭化セチルピリジニウム(CPB)、臭化ス
テアリルピリジニウム(SPB)、塩化ベンザルコニウ
ム(Bzc)などである。
(Week 9311 - ↓ The quaternary ammonium surfactants used here were tetrabutylammonium chloride (T13AC), tetrabutylammonium bromide (TBAB), octyltribromide, methylammonium (OTM8B, Lauryl 1-limethylammonium bromide (to LTM8B, cetyltrimethylammonium chloride (CTM80), cetyltrimethylammonium bromide (to CTM8B, stearyltrimethylammonium bromide (to STM8B, dioctyl dimethyl bromide) Ammonium (DODM8B) to dilauryldimethylammonium bromide (DCDMAB), dicetyldimethylammonium bromide (DCDMAB), distearyldimethylammonium bromide (DSDM8B) to octylstearyldimethylammonium bromide (OSDH8B) Laurylstearyldimethylammonium hebromide (LSD
M8B) to cetylpyridinium bromide (CPB), stearylpyridinium bromide (SPB), benzalkonium chloride (Bzc), etc.

モンモリロナイトを主成分とする粘土鉱物としては代表
的なベントナイトを使用した。
Bentonite, a typical clay mineral whose main component is montmorillonite, was used.

4級アンモニウム塩の添加量はベントナイ1〜の陽イオ
ン交換容量0.9ミリ当量/gに相当する量を加えた。
The amount of quaternary ammonium salt added was equivalent to 0.9 milliequivalents/g of cation exchange capacity of 1~ bentonite.

例えば、STM八Bへ場合はベントナイト100部に対
して26部添加し、OTM八Bへ場合はベントナイト1
00部に対して19部を添加した。
For example, for STM 8B, add 26 parts to 100 parts of bentonite, and for OTM 8B, add 1 part of bentonite.
19 parts were added to 00 parts.

これらの4級アンモニウム塩の水溶液を、ベントナイト
水懸濁液に激しく撹拌しながら添加してしばらく放置後
、生成物を沢過、乾燥(60°Cで送風乾燥)した。
These aqueous solutions of quaternary ammonium salts were added to the bentonite aqueous suspension with vigorous stirring, and after being left for a while, the product was filtered and dried (by blow drying at 60° C.).

乾燥固体を粉砕機で粉砕し、所定の目の大きさの篩を通
過した粒子を試料とした。殆どの場合、100メツシユ
の篩を用いた。
The dry solid was pulverized using a pulverizer, and the particles that passed through a sieve with a predetermined mesh size were used as samples. In most cases a 100 mesh sieve was used.

たえ1ユ 比較のために種々のアミンもしくはアミン塩酸塩を複合
化させた試料も、合成例1に従って合成した。
For comparison, samples in which various amines or amine hydrochlorides were composited were also synthesized according to Synthesis Example 1.

止戎ILユ 後記する比較例に使用した、水相アルミニウムとベント
ナイ)・との複合体は、林らの方法(粘土科学第19巻
1号22〜32,1979年)に準じて調製した。
The composite of aqueous phase aluminum and bentonite used in the comparative example described below was prepared according to the method of Hayashi et al. (Clay Science, Vol. 19, No. 1, 22-32, 1979).

この複合粒子は吸着剤としての性能が高いといわれてい
るものである。
This composite particle is said to have high performance as an adsorbent.

ム のゼータ  ) 臭化セチルトリメチルアンモニウム(CTM八Bへの配
合量を変えたベントナイト複合体を調製し、それらのゼ
ータ電位を測定した。結果を表1に示す。
Bentonite composites containing different amounts of cetyltrimethylammonium bromide (CTM8B) were prepared, and their zeta potentials were measured. The results are shown in Table 1.

表1 実」L区−ユ 参考例で調製した複合粒子を、製紙工程の循環水(古紙
処理工程水、浮遊懸濁固形物Ji 100 ppm)に
0.1%添加して、pH4,5に調節した後、遠心分離
して上澄みの280 nmの紫外光の吸光度を測定した
。もとの循環水の吸光度を100として吸光度の減少率
を吸着除去率(%)とした。結果を表2に示す。
Table 1 0.1% of the composite particles prepared in Reference Example 1 were added to the circulating water of the paper manufacturing process (waste paper processing process water, suspended suspended solids Ji 100 ppm), and the pH was adjusted to 4.5. After adjustment, the mixture was centrifuged and the absorbance of the supernatant to ultraviolet light at 280 nm was measured. The absorbance of the original circulating water was set as 100, and the rate of decrease in absorbance was defined as the adsorption removal rate (%). The results are shown in Table 2.

CTM八8へ合量25%がベントナイトの陽イオン交換
容量とほぼ等量である。CTM八Bへ配合量が15%を
越えると、複合体粒子のゼータ電位は正に転じている。
The total amount of 25% of CTM88 is approximately equivalent to the cation exchange capacity of bentonite. When the amount added to CTM8B exceeds 15%, the zeta potential of the composite particles becomes positive.

pH10のアルカリ状態でも正の電荷を維持している。It maintains a positive charge even in an alkaline state of pH 10.

ゼータ電位が正になる15%配合量以上で減少率も急激
に増加しており、吸着性が飛躍的に増加していることが
明らかである。
It is clear that the reduction rate increases rapidly at a blending amount of 15% or more at which the zeta potential becomes positive, and the adsorptivity increases dramatically.

支11ユ 合成例1で調製したすべての複合粒子を実施例1で用い
た循環水に0.5%添加し、pH4,5に調整して実施
例2と同様に遠心分離後の上澄みの吸光度を測定して減
少率を求めた6結果は;TBAC:35.2、TBAB
 : 3B、7、OTM^B:59.1、LTM^B=
82.7、 CTM八Cへ90.9、 CTM^B :
  94.0、 STMΔB :  95.7、DOD
M^B:88.2、DLDNA[l : 95.9、[
lCDM^B : 96.0、DSDM^Bニア8.1
.0SDH八B:96.2、LSDM^B : 93.
4、CI’B : 93.0、SPB : 93.1、
Bzc : 90.6%であった。
11 Add 0.5% of all the composite particles prepared in Synthesis Example 1 to the circulating water used in Example 1, adjust the pH to 4.5, and measure the absorbance of the supernatant after centrifugation in the same manner as in Example 2. The 6 results of measuring the reduction rate are: TBAC: 35.2, TBAB
: 3B, 7, OTM^B:59.1, LTM^B=
82.7, CTM8C to 90.9, CTM^B:
94.0, STMΔB: 95.7, DOD
M^B: 88.2, DLDNA [l: 95.9, [
lCDM^B: 96.0, DSDM^B near 8.1
.. 0SDH8B: 96.2, LSDM^B: 93.
4, CI'B: 93.0, SPB: 93.1,
Bzc: 90.6%.

TBACおよびTBABと複合化したベントナイトでは
他のものに比べて効果が低く4つのブチル基をもつもの
は好ましくない、他の複合粒子ではいずれも除去効果は
高いが、OTM^B、LT14AB、 CTM^B、S
TM^Bを比較するとアルキル鎖の長いものほど効果は
高い傾向にある。
Bentonite composited with TBAC and TBAB has a lower effect than other particles, and those with four butyl groups are not preferred; other composite particles have high removal effects, but OTM^B, LT14AB, and CTM^ B,S
When comparing TM^B, there is a tendency that the longer the alkyl chain, the higher the effect.

″U−医一ユ CTM八Bへベントナイトに複合化させた粒子を実施例
1で用いた循環水に0.5%添加してpH4,5,7,
0,10,0に調節して実施例1と同様の実験を行った
。その結果、除去率はそれぞれ94.0%、96.0%
、91.0%であった。極めて広いpH範囲で高い除去
効果を示しな。
0.5% of particles composited with bentonite were added to the circulating water used in Example 1 to adjust the pH to 4, 5, 7,
An experiment similar to Example 1 was conducted by adjusting the values to 0, 10, and 0. As a result, the removal rates were 94.0% and 96.0%, respectively.
, 91.0%. It exhibits high removal efficiency over an extremely wide pH range.

Ll」ユ 実施例1で用いた循環水に微粉タルク、ベントナイトも
しくは酸処理カオリンを0.5%添加してpH4,5に
調節した後、実施例1と同様の実験を行った。その結果
、微粉タルクでは58.4、ベントナイトでは47.5
、酸処理カオリンでは26.7%の除去率であった。上
記粒子は製紙工程水の汚買物除去に汎用されているもの
であるが、本発明の複合粒子の効果にははるかに及ばな
い。
After adding 0.5% of finely divided talc, bentonite or acid-treated kaolin to the circulating water used in Example 1 to adjust the pH to 4.5, the same experiment as in Example 1 was conducted. The results were 58.4 for fine talc and 47.5 for bentonite.
For acid-treated kaolin, the removal rate was 26.7%. Although the above-mentioned particles are commonly used for removing pollutants from paper manufacturing process water, they are far less effective than the composite particles of the present invention.

【11ニ ジエチレントリアミン、オクヂルアミン、I・リオクチ
ルアミン、ラウリルアミン、ステアリルアミンの塩酸塩
を合成例1に準じてベントナイ1〜に複合化させて調製
した試料を添加率0.5%で実施例1と同様の実験を行
った。
[11 Example 1 A sample prepared by complexing diethylenetriamine, ocdylamine, I-lioctylamine, laurylamine, and stearylamine hydrochloride with bentonite 1~ according to Synthesis Example 1 at an addition rate of 0.5%. A similar experiment was conducted.

それぞれの減少率は51.5,41.5゜34.6,4
4.5,27.6%であった。アミンでは総じて4級ア
ンモニウム塩を複合化させた粒子はどの効果は得られな
い。
The respective reduction rates are 51.5, 41.5°34.6, 4
They were 4.5 and 27.6%. With amines, particles composited with quaternary ammonium salts generally do not provide any effect.

Ll」」 アルミニウム水和物をベントナイトに複合化させた試料
を0.5%の添加率で実施例1と同様の実験を行った結
果、pH4,5では90.7%の高い除去率が得られた
ものの、中性以上のpHでは効果は低下し、pH10,
0では17.5%の効果して得られなかった。
As a result of carrying out the same experiment as in Example 1 using a sample in which aluminum hydrate was composited with bentonite at an addition rate of 0.5%, a high removal rate of 90.7% was obtained at pH 4.5. However, the effect decreases at pH above neutral, and at pH 10,
0, the effect was 17.5% and could not be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように4級アンモニウム基を有する界面活
性剤とモンモリロナイトを主成分とする粘土鉱物を複合
化させた複合粒子は広いpH範囲で正の電荷を持ち、製
紙工程水中の汚質物質に対して著しい吸着能力を持つこ
とが判明し、これらの複合粒子で簡単に酒質物質処理が
可能となった。
As explained above, composite particles made by combining a surfactant with a quaternary ammonium group and a clay mineral mainly composed of montmorillonite have a positive charge in a wide pH range, and are effective against pollutants in papermaking process water. These composite particles were found to have a remarkable adsorption capacity, and it became possible to easily treat alcoholic substances with these composite particles.

加えて、従来困難であった中性以上のpHでの処理も可
能となった。
In addition, it has become possible to process at pH levels above neutral, which was previously difficult.

Claims (1)

【特許請求の範囲】 1、4級アンモニウム基を有する陽イオン性界面活性剤
とモンモリロナイトを主成分とする鉱物との複合粒子を
製紙工程水に添加し、汚質物を吸着分離することを特徴
とする、製紙工程水の処理方法。 2、陽イオン性界面活性剤が、炭素数8〜20の脂肪鎖
を少なくとも1つ以上有する4級アンモニウム系界面活
性剤である、請求項第1項記載の方法。 3、複合粒子が水中で正の電荷を有するものである、請
求項第1項記載の方法。
[Scope of Claims] Composite particles of a cationic surfactant having primary and quaternary ammonium groups and a mineral whose main component is montmorillonite are added to papermaking process water to adsorb and separate pollutants. A method for treating papermaking process water. 2. The method according to claim 1, wherein the cationic surfactant is a quaternary ammonium surfactant having at least one fatty chain having 8 to 20 carbon atoms. 3. The method according to claim 1, wherein the composite particles have a positive charge in water.
JP25709089A 1989-10-03 1989-10-03 Papermaking process water treatment method Expired - Lifetime JP2815194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25709089A JP2815194B2 (en) 1989-10-03 1989-10-03 Papermaking process water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25709089A JP2815194B2 (en) 1989-10-03 1989-10-03 Papermaking process water treatment method

Publications (2)

Publication Number Publication Date
JPH03119190A true JPH03119190A (en) 1991-05-21
JP2815194B2 JP2815194B2 (en) 1998-10-27

Family

ID=17301605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25709089A Expired - Lifetime JP2815194B2 (en) 1989-10-03 1989-10-03 Papermaking process water treatment method

Country Status (1)

Country Link
JP (1) JP2815194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156584A (en) * 1991-12-02 1993-06-22 Honshu Paper Co Ltd Method for recycling and treating waste paper
WO1996030585A1 (en) * 1995-03-30 1996-10-03 Nissin Kagaku Kenkyusho Co., Ltd. Pitch controlling agent and method for inhibiting pitch troubles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961642B (en) * 2010-08-31 2012-02-22 浙江长安仁恒科技股份有限公司 Method for preparing organic pollutant adsorbent for papermaking wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156584A (en) * 1991-12-02 1993-06-22 Honshu Paper Co Ltd Method for recycling and treating waste paper
WO1996030585A1 (en) * 1995-03-30 1996-10-03 Nissin Kagaku Kenkyusho Co., Ltd. Pitch controlling agent and method for inhibiting pitch troubles
US5800677A (en) * 1995-03-30 1998-09-01 Nissin Kagaku Kenkyusho Co., Ltd. Method for preventing pitch trouble

Also Published As

Publication number Publication date
JP2815194B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
CN1155754C (en) A process for the production of paper
Lü et al. Treatment of emulsified oil wastewaters by using chitosan grafted magnetic nanoparticles
TWI406814B (en) Process for preparing surface-reacted calcium carbonate and its use
JP2003500192A (en) Process for the treatment of essentially aqueous fluids derived from the processing of inorganic materials
CN103748282A (en) Hydrophobised calcium carbonate particles
JP2963770B2 (en) Kaolin clay treatment method for pitch control and treated clay
Onen et al. Removal of turbidity from travertine processing wastewaters by coagulants, flocculants and natural materials
TW440640B (en) Production of paper and paper board
US5573658A (en) Low brightness functional pigment from process by-product
Ponou et al. Evaluation of the flocculation and de-flocculation performance and mechanism of polymer flocculants
US5989714A (en) Synthetic mineral microparticles
JPH03119190A (en) Treatment of water of paper-making process
JP2834492B2 (en) Papermaking white water treatment method
Leiviskä et al. Characteristics and potential applications of coarse clay fractions from Puolanka, Finland
US5328880A (en) Fluidity of slurries of kaolin clay using tetraalkylammonium compounds
JP2902494B2 (en) Composite paper filler and its use
BRPI0409458B1 (en) papermaking process
US6183650B1 (en) Synthetic mineral microparticles and retention aid and water treatment systems and methods using such particles
US5147458A (en) Structured pigment from high TiO2 /Fe2 O3 kaolinite reject material
CN113149168A (en) Water treatment composition and preparation method thereof
HU210306B (en) Product for increasing of efficianci of water purificating apparatous
DE2008526A1 (en) Process for separating aluminum oxide from the silicic acid-containing materials contained in sands or ores containing aluminum oxide
JP4495007B2 (en) Papermaking wastewater treatment method and utilization method of silica sol in papermaking
Vorob’ev et al. Successive adsorption of polyacrylamide compounds from electrolyte solutions on the surface of kaolinitic clay particles
WO1996034684A1 (en) Elimination of waste materials in paper production