JPH0257719A - Cooling method and cooling device for electromagnetic bearing - Google Patents

Cooling method and cooling device for electromagnetic bearing

Info

Publication number
JPH0257719A
JPH0257719A JP20470488A JP20470488A JPH0257719A JP H0257719 A JPH0257719 A JP H0257719A JP 20470488 A JP20470488 A JP 20470488A JP 20470488 A JP20470488 A JP 20470488A JP H0257719 A JPH0257719 A JP H0257719A
Authority
JP
Japan
Prior art keywords
groove
electromagnetic bearing
cooling
bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20470488A
Other languages
Japanese (ja)
Inventor
Isao Mishiro
三代 勲
Ryoichi Kaneko
金子 了市
Tomoaki Inoue
知昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20470488A priority Critical patent/JPH0257719A/en
Publication of JPH0257719A publication Critical patent/JPH0257719A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To interrupt heat conduction to an electromagnetic bearing effectively by providing a groove on the external surface of a rotating shaft or the internal surface of an electromagnetic coil fitted closely to the rotating shaft and flowing cooling fluid through the groove. CONSTITUTION:Cooling fluid enters a circular duct 11 provided on the periphery of a bearing casing 1 through a pipe 12. The fluid passes through a through hole 13 and a splined groove 9, cools a rotating shaft 37, and comes out of a ring 51. Though any cooling means is not provided linearly on a thrust bearing section S, the thrust electromagnetic bearing section S is protected from heat since the heat conducted from a blade 33 and a disk 34 is dissipated by means of the cooling fluid flowing through the splined groove 9 before it reaches the thrust electromagnetic bearing sections S. Thus the groove 9 is provided on the rotating shaft 37 on which the cylindrical core 3 of the electromagnetic bearing is closely fitted to allow the cooling fluid to pass through, heat conduction to the electromagnetic bearing S can be effectively interrupted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転体が稼働状態で高温となる回転機器の軸
を支持している電磁軸受を冷却する方法及び冷却装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and a cooling device for cooling an electromagnetic bearing supporting a shaft of a rotating device whose rotating body becomes hot during operation.

本発明において高温とは、電磁軸受のコイル部の絶縁材
の耐熱限界温度以上の温度をいう。
In the present invention, high temperature refers to a temperature that is higher than the heat resistance limit temperature of the insulating material of the coil portion of the electromagnetic bearing.

〔従来の技術〕[Conventional technology]

電磁軸受は、コアに巻回したコイルに通電し、その電磁
吸引力によって回転体を空間に浮上させ、無接触状態で
回転自在に支持する機器である。
An electromagnetic bearing is a device that energizes a coil wound around a core and uses the electromagnetic attraction force to levitate a rotating body in space and support it rotatably without contact.

この電磁軸受に関する最近の技術については、日本機械
学会誌第90巻第821号122ページ「電磁軸受形回
転機器の開発」が公知である。
The latest technology regarding electromagnetic bearings is known in the Journal of the Japan Society of Mechanical Engineers, Vol. 90, No. 821, p. 122, "Development of Electromagnetic Bearing Type Rotating Equipment."

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

例えば蒸気タービンやガスタービンのロータの如く、稼
働状態において高温となる回転体の軸を電磁軸受で支持
しようとすると、電磁コイルの絶縁材を高熱から防護す
るための冷却が必要である。
For example, when an electromagnetic bearing is used to support the shaft of a rotating body, such as a rotor of a steam turbine or a gas turbine, which becomes hot during operation, cooling is required to protect the insulating material of the electromagnetic coil from high heat.

本発明の目的は、高温で運転される回転部材の軸を支持
する電磁軸受への伝熱を有効に遮断し得る冷却方法、及
び簡単な構成で上記の発明方法を実施し得る冷却装置を
提供しようとするものである。
An object of the present invention is to provide a cooling method that can effectively block heat transfer to an electromagnetic bearing that supports the shaft of a rotating member that is operated at high temperatures, and a cooling device that can implement the above-described method with a simple configuration. This is what I am trying to do.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために創作した本発明の基本的原
理は、回転軸と、該回転軸に嵌着された電磁コイルのコ
アとの境界面に溝を設けて、この溝に冷却用流体を流通
させるものである。
The basic principle of the present invention, which was created to achieve the above object, is that a groove is provided at the interface between the rotating shaft and the core of the electromagnetic coil fitted to the rotating shaft, and a cooling fluid is provided in the groove. It distributes.

上記の溝は、軸の外周面に設けてもよく、またコアの内
周面に設けてもよい。
The above-mentioned groove may be provided on the outer circumferential surface of the shaft, or may be provided on the inner circumferential surface of the core.

上記の原理を実用化するための具体的構成として1本発
明の方法は上記の軸の外周面又はコアの内周面に溝を設
け、上記の溝に冷却用流体を流通せしめる。
As a concrete configuration for putting the above principle into practical use, one method of the present invention is to provide a groove on the outer circumferential surface of the shaft or the inner circumferential surface of the core, and to allow a cooling fluid to flow through the groove.

また、上記発明方法を実施するために創作した本発明の
装置は、前記の軸の外周面又はコアの内周面に設けた溝
と、上記の溝に冷却用流体を供給する手段とよりなる。
Further, the device of the present invention created to carry out the above-mentioned method of the present invention comprises a groove provided on the outer peripheral surface of the shaft or the inner peripheral surface of the core, and means for supplying a cooling fluid to the groove. .

前記の電磁軸受が電磁スラスト軸受を併設している場合
、前記の溝は該スラスト軸受よりも高温回転体寄りに、
即ち、熱流方向について上流側に設けることが望ましい
When the electromagnetic bearing is also equipped with an electromagnetic thrust bearing, the groove is located closer to the high-temperature rotating body than the thrust bearing.
That is, it is desirable to provide it on the upstream side in the direction of heat flow.

〔作用〕[Effect]

従来技術における電磁軸受の冷却は、該電磁軸受部の外
側を空気冷却することしか考えていなかった・ 前述の本発明方法の構成によれば冷却用流体(空気であ
ってもよい)を、直接的に軸に触れさせて流動させる。
In conventional techniques, the cooling of electromagnetic bearings was only concerned with cooling the outside of the electromagnetic bearing with air. According to the configuration of the method of the present invention described above, cooling fluid (which may be air) is directly supplied. Let it flow by touching the shaft.

而して、高温回転体から電磁軸受のコイル部分への熱流
は回転軸を通る。
Thus, heat flow from the high-temperature rotating body to the coil portion of the electromagnetic bearing passes through the rotating shaft.

従って、伝熱経路の途中で軸を冷却することによって極
めて有効に電磁軸受部の熱的保護が行われ得る。
Therefore, by cooling the shaft midway through the heat transfer path, the electromagnetic bearing can be thermally protected extremely effectively.

その上、溝を設けることによって冷却流体→金属部材間
の伝熱面積が増加し、有効な冷却が行われる。
Moreover, by providing the grooves, the heat transfer area between the cooling fluid and the metal member is increased, and effective cooling is performed.

また、本発明の装置は、軸の外周又はコア内周の溝と、
上記の溝に冷却用流体を供給する手段とを備えているの
で、前記の溝の中へ冷却用流体を流通せしめるという本
発明方法を容易に、かつ確実に実施することが出来る。
Further, the device of the present invention includes a groove on the outer circumference of the shaft or the inner circumference of the core;
Since the apparatus is provided with a means for supplying cooling fluid to the grooves, the method of the present invention for flowing cooling fluid into the grooves can be carried out easily and reliably.

本発明の装置が適用の対象としている円筒状コアはジャ
ーナル電磁軸受部の構成部材であるが、この電磁軸受が
スラスト電磁軸受を併設している場合は、本発明装置に
よって冷却する円筒状コアをスラスト電磁軸受よりも伝
熱方向について上流側に配設しておくと、熱流が円筒状
コア部で遮断され(若しくは著しく減少せしめられ)る
ので、スラスト電磁軸受は熱的に保護される。
The cylindrical core to which the device of the present invention is applied is a component of the journal electromagnetic bearing, but if this electromagnetic bearing is also equipped with a thrust electromagnetic bearing, the cylindrical core to be cooled by the device of the present invention is When disposed upstream of the thrust electromagnetic bearing in the heat transfer direction, the heat flow is blocked (or significantly reduced) by the cylindrical core, so the thrust electromagnetic bearing is thermally protected.

〔実施例〕〔Example〕

第1図(A)は本発明に係る冷却装置の一実施例を備え
た電磁軸受の断面図である。同図CB)は、(A)図に
対応せしめて付記した温度分布図表である。
FIG. 1(A) is a sectional view of an electromagnetic bearing equipped with an embodiment of a cooling device according to the present invention. Figure CB) is a temperature distribution chart added in correspondence with Figure (A).

本例は蒸気タービンに本発明を適用した1例であって、
定格運転時における回転体(タービンロータ)温度40
0℃である。これに比して電磁軸受のコイルに用いた絶
縁エナメルの耐熱度は220℃(0種絶縁の耐熱度)で
ある。
This example is an example in which the present invention is applied to a steam turbine,
Rotating body (turbine rotor) temperature during rated operation 40
It is 0°C. In comparison, the heat resistance of the insulating enamel used for the coil of the electromagnetic bearing is 220°C (heat resistance of class 0 insulation).

軸受ケーシング1は軸受箱50に固定され、ジャーナル
電磁軸受(ラジアル方向の軸受)の静止側コア2を固定
的に支持している。
The bearing casing 1 is fixed to a bearing box 50 and fixedly supports the stationary core 2 of the journal electromagnetic bearing (radial direction bearing).

上記静止側コア2には電磁コイル4が巻回される。An electromagnetic coil 4 is wound around the stationary core 2 .

回転側コア3は円筒状をなし、回転軸37に嵌着されて
、前記静止側コア2と同心状に微小間隙を介して嵌合し
、磁束ループを形成して磁気力によって浮動的に支持さ
れている。
The rotating core 3 has a cylindrical shape, is fitted onto the rotating shaft 37, and is fitted concentrically with the stationary core 2 through a small gap, forming a magnetic flux loop and floatingly supported by magnetic force. has been done.

前記の回転軸37の外周にはスプライン状の溝9が削成
され、回転側コアはそのランド部に外嵌固着されている
A spline-shaped groove 9 is cut on the outer periphery of the rotating shaft 37, and the rotating core is externally fitted and fixed to the land portion.

本発明を実施する際、前記のスプライン状の溝9は直線
状でもヘリカル状でもよい、また、その歯形は必ずしも
精密であることを要しない。
When carrying out the present invention, the spline-shaped groove 9 may be linear or helical, and its tooth profile does not necessarily need to be precise.

上記のスプライン状の溝9は、少なくとも円筒状の回転
側コア3の長さLに対応する区間に削成する。本例にお
いては更に図の右方に延長して削設し、軸貫通部リング
51の外側に達している。
The spline-shaped groove 9 is cut in a section corresponding to at least the length L of the cylindrical rotating core 3. In this example, it is further extended to the right in the figure and is cut to reach the outside of the shaft penetrating ring 51.

図示の10は、上記延長部のスプライン状溝9を覆って
いるスリーブである。
The illustrated numeral 10 is a sleeve that covers the spline groove 9 of the extension.

冷却用流体(本例においては常温の大気は、パイプ12
によって導入され、軸受ケーシング1の外周に設けられ
た輪状のダクト11に入り、連通孔13を流通して前記
のスプライン状溝9を流通し、回転軸37を冷却してリ
ング51の外側に放出される。
The cooling fluid (in this example, ambient temperature atmosphere) is supplied to the pipe 12.
It enters the annular duct 11 provided on the outer periphery of the bearing casing 1, flows through the communication hole 13, flows through the spline groove 9, cools the rotating shaft 37, and is discharged to the outside of the ring 51. be done.

一方、この実施例におけるタービン高温部は、ディスク
34に植設されたブレード33がノズル32から高温高
圧の蒸気を吹きつけられ、昇温して回転する。上記のノ
ズル32はダイヤフラム31に設置されている。30は
チエスト、36は蒸気のシール用ラビリンスである。
On the other hand, in the high-temperature part of the turbine in this embodiment, the blades 33 installed in the disk 34 are blown with high-temperature, high-pressure steam from the nozzle 32, and are heated and rotated. The nozzle 32 described above is installed on the diaphragm 31. 30 is a chest, and 36 is a labyrinth for sealing steam.

図示の8部はスラスト電磁軸受部であって、回転軸37
の端部近傍に固着されたフランジ状のカラー5と、上記
のカラー5を挟んで、微小間隙を介して対向する1対の
コア6、コア7と、コイル8とによって構成されている
Part 8 in the figure is a thrust electromagnetic bearing part, and the rotating shaft 37
It is composed of a flange-shaped collar 5 fixed near the end of the core 6, a pair of cores 6 and 7, and a coil 8, which face each other with a small gap in between, with the collar 5 in between.

本例においては、このスラスト軸受部Sに対して直接的
には冷却手段を設けていないが、ブレード33.ディス
ク34からの熱伝導がスラスト電磁軸受部Sに達する途
中で、スプライン状の溝9を流れる冷却流体で冷却され
るので、スラスト電磁軸受部Sは熱的に保護された位置
にあり、過熱の虞れが無い。
In this example, although no cooling means is provided directly to the thrust bearing portion S, the blade 33. On the way to the thrust electromagnetic bearing part S, the heat conduction from the disk 34 is cooled by the cooling fluid flowing through the spline-shaped groove 9, so the thrust electromagnetic bearing part S is in a thermally protected position and is prevented from overheating. There is no danger.

本発明を実施する際、スラスト電磁軸受Sをラジアル電
磁軸受の回転側コア3(回転軸に嵌着される円筒状の部
材)よりも熱流方向について下流側に配設することが望
ましい。
When carrying out the present invention, it is desirable to arrange the thrust electromagnetic bearing S on the downstream side in the heat flow direction of the rotating side core 3 (cylindrical member fitted to the rotating shaft) of the radial electromagnetic bearing.

万一の停電事故を考慮して、回転軸37の軸端はバック
アップ軸受15によりケーシング14に対して支持され
ている。 39.40はナツトである。
In consideration of the unlikely event of a power outage accident, the shaft end of the rotating shaft 37 is supported with respect to the casing 14 by a backup bearing 15. 39.40 is nuts.

本例においては冷却用流体の供給により、軸受箱50内
が正圧に保たれる。このため、電磁軸受部に空気中の水
分や塵埃が侵入したりする虞れが無b)。
In this example, the inside of the bearing box 50 is maintained at a positive pressure by supplying the cooling fluid. Therefore, there is no risk of moisture or dust in the air entering the electromagnetic bearing.

図示を省略するが上記と異なる実施例として、回転軸3
7の外周に溝(例えばスプライン状の溝9)を削設する
代りに、円筒状の回転側コア3の内周面に溝を設けて冷
却用流体を流通させても前記と同様の効果が得られる。
Although not shown, as an embodiment different from the above, the rotating shaft 3
Instead of cutting a groove (for example, a spline-shaped groove 9) on the outer circumference of the core 7, a groove may be provided on the inner circumference of the cylindrical rotating core 3 to allow the cooling fluid to flow through the same effect. can get.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法は電磁軸受の円筒状
コアと回転軸との嵌合面に沿って1回転軸若しくは円筒
状コアに溝を設けて冷却用流体を流通せしめるので、回
転軸を伝導してきた熱流がこの部分で遮断され(乃至は
著しく弱められ)。
As explained above, in the method of the present invention, a groove is provided in the rotating shaft or the cylindrical core along the fitting surface between the cylindrical core and the rotating shaft of the electromagnetic bearing to allow the cooling fluid to flow. The heat flow that has been conducted is blocked (or significantly weakened) at this part.

該回転側コアに巻回されたコイルの絶縁被膜の過熱を防
止することができる。
Overheating of the insulating coating of the coil wound around the rotating core can be prevented.

また、本発明の装置は、回転軸と回転側コアとの嵌合面
に沿った溝と、上記の溝に冷却用流体を供給する手段と
を設けたので、前記の発明方法を容易に実施することが
できる。
Furthermore, since the device of the present invention is provided with a groove along the fitting surface between the rotating shaft and the rotating core, and a means for supplying cooling fluid to the groove, the method of the present invention can be easily carried out. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明に係る冷却装置の一実施例を設け
た電磁軸受の断面図、同図(B)は上記断面図に対応せ
しめて描いた温度分布を示す図表である。 1・・・軸受ケーシング、2中ジヤーナル電磁軸受の静
止側コア、3・・・同じく円筒状の回転側コア、4・・
・電磁コイル、5・・・スラスト電磁軸受のカラー6.
7・・・同静止側のコア、8・・・コイル、9・・・ス
プライン状の溝、11・・・ダクト、12・・・パイプ
、32・・・タービンノズル、33・・・タービンブレ
ード、34・・・タービンディスク。
FIG. 1(A) is a cross-sectional view of an electromagnetic bearing equipped with an embodiment of the cooling device according to the present invention, and FIG. 1(B) is a chart showing temperature distribution drawn in correspondence with the above-mentioned cross-sectional view. 1... Bearing casing, 2. Stationary side core of the medium journal electromagnetic bearing, 3... Similarly cylindrical rotating side core, 4...
- Electromagnetic coil, 5... Collar of thrust electromagnetic bearing 6.
7... Core on stationary side, 8... Coil, 9... Spline groove, 11... Duct, 12... Pipe, 32... Turbine nozzle, 33... Turbine blade , 34...turbine disk.

Claims (1)

【特許請求の範囲】 1、高温で運転される回転部材の軸を支持する電磁軸受
を冷却する方法において、上記の軸が電磁石の円筒状コ
アと対向している面に溝を設け、上記の溝に冷却用の流
体を流通せしめることを特徴とする、電磁軸受の冷却方
法。 2、高温で運転される回転部材の軸を支持する電磁軸受
を冷却する方法において、上記の軸に嵌着される円筒状
コアの内周面に溝を設け、上記の溝に冷却用の流体を流
通せしめることを特徴とする、電磁軸受の冷却方法。 3、高温で運転される回転部材の軸を支持する電磁軸受
を冷却する装置において、上記の軸が電磁軸受の電磁石
の円筒状コアに対向している面に設けた溝と、上記の溝
に冷却用流体を供給する手段とよりなることを特徴とす
る、電磁軸受の冷却装置。 4、高温で運転される回転部材の軸を支持する電磁軸受
を冷却する装置において、上記の軸に嵌着された電磁石
の円筒状コアの内周面に設けた溝と、上記の溝に冷却用
流体を供給する手段とを設けたことを特徴とする、電磁
軸受の冷却装置。 5、前記の円筒状コア及び溝は、前記の軸の推力を受け
ているスラスト電磁軸受よりも、該軸内を伝導する熱流
方向に関して上流側に設けられたものであることを特徴
とする、請求項3又は同4に記載した電磁軸受の冷却装
置。
[Claims] 1. In a method for cooling an electromagnetic bearing that supports the shaft of a rotating member operated at high temperatures, a groove is provided on the surface where the shaft faces the cylindrical core of the electromagnet; A method for cooling an electromagnetic bearing, characterized by flowing a cooling fluid through a groove. 2. In a method for cooling an electromagnetic bearing that supports the shaft of a rotating member that is operated at high temperatures, a groove is provided on the inner peripheral surface of the cylindrical core that is fitted to the shaft, and a cooling fluid is poured into the groove. A cooling method for an electromagnetic bearing, characterized by causing a flow of . 3. In a device for cooling an electromagnetic bearing that supports the shaft of a rotating member operated at high temperatures, a groove provided in the surface where the shaft faces the cylindrical core of the electromagnet of the electromagnetic bearing, and a groove provided in the above groove. A cooling device for an electromagnetic bearing, comprising a means for supplying a cooling fluid. 4. In a device that cools an electromagnetic bearing that supports the shaft of a rotating member that operates at high temperatures, a groove provided on the inner peripheral surface of the cylindrical core of the electromagnet fitted to the shaft, and a cooling 1. A cooling device for an electromagnetic bearing, comprising means for supplying a cooling fluid. 5. The cylindrical core and the groove are provided upstream of the thrust electromagnetic bearing receiving the thrust of the shaft with respect to the direction of heat flow conducted within the shaft. A cooling device for an electromagnetic bearing according to claim 3 or 4.
JP20470488A 1988-08-19 1988-08-19 Cooling method and cooling device for electromagnetic bearing Pending JPH0257719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20470488A JPH0257719A (en) 1988-08-19 1988-08-19 Cooling method and cooling device for electromagnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20470488A JPH0257719A (en) 1988-08-19 1988-08-19 Cooling method and cooling device for electromagnetic bearing

Publications (1)

Publication Number Publication Date
JPH0257719A true JPH0257719A (en) 1990-02-27

Family

ID=16494932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20470488A Pending JPH0257719A (en) 1988-08-19 1988-08-19 Cooling method and cooling device for electromagnetic bearing

Country Status (1)

Country Link
JP (1) JPH0257719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538425B1 (en) 1999-11-29 2003-03-25 Fuji Machine Mfg. Co., Ltd. Method of measuring accuracy of electric-component mounting system
EP1522749A1 (en) * 2002-07-12 2005-04-13 Mitsubishi Denki Kabushiki Kaisha Magnetic bearing spindle
DE19731313B4 (en) * 1997-03-21 2012-12-06 Siemens Ag Large synchronous motor with variable speed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731313B4 (en) * 1997-03-21 2012-12-06 Siemens Ag Large synchronous motor with variable speed
US6538425B1 (en) 1999-11-29 2003-03-25 Fuji Machine Mfg. Co., Ltd. Method of measuring accuracy of electric-component mounting system
EP1522749A1 (en) * 2002-07-12 2005-04-13 Mitsubishi Denki Kabushiki Kaisha Magnetic bearing spindle
EP1522749A4 (en) * 2002-07-12 2005-10-12 Mitsubishi Electric Corp Magnetic bearing spindle
US7224094B2 (en) 2002-07-12 2007-05-29 Mitsubishi Denki Kabushiki Kaisha Magnetic bearing spindle

Similar Documents

Publication Publication Date Title
JPS61152926A (en) Bearing protective apparatus for protecting gas bearing
JPS63277443A (en) Generator with built-in piping
US3149819A (en) Device for protecting a bearing against heat
JPH05502706A (en) Turbocharger with improved roller bearing shaft bearing device
JP3754671B2 (en) Magnetic bearing device
JPH0257719A (en) Cooling method and cooling device for electromagnetic bearing
JPH05199708A (en) Rotary electric machine
JP3706013B2 (en) High temperature rotating union
JP2707995B2 (en) Liquid cooled rotary electric machine
JPH01243834A (en) Rotary electric machine
JP2003274607A (en) Cooling structure for generator
JP4426259B2 (en) Gas turbine equipment and gas turbine power generation equipment
JPH04265427A (en) Engine part mounting device
US2521535A (en) Dynamoelectric machine with bearing cooling means
JPH03253726A (en) Gas turbine rotor
JPH04138050A (en) Cooling construction of main spindle with built-in motor
JPH034911Y2 (en)
JPS60176433A (en) Rotary electric machine
JPH07123636A (en) Retarder in vehicle
JPH0232495B2 (en) JISEIRYUSHISHIKIDENJIRENKETSUSOCHI
JPH02303340A (en) Claw-pole type synchronous generator
JPH02228230A (en) Motor
JP3273959B2 (en) Motor cooling device
JP2573178Y2 (en) Temperature rise prevention structure for compressor torque transmission
JPH0142659Y2 (en)