JPH0248657B2 - SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO - Google Patents

SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO

Info

Publication number
JPH0248657B2
JPH0248657B2 JP18636587A JP18636587A JPH0248657B2 JP H0248657 B2 JPH0248657 B2 JP H0248657B2 JP 18636587 A JP18636587 A JP 18636587A JP 18636587 A JP18636587 A JP 18636587A JP H0248657 B2 JPH0248657 B2 JP H0248657B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
yarn
layer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18636587A
Other languages
Japanese (ja)
Other versions
JPS6433228A (en
Inventor
Junzo Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP18636587A priority Critical patent/JPH0248657B2/en
Publication of JPS6433228A publication Critical patent/JPS6433228A/en
Publication of JPH0248657B2 publication Critical patent/JPH0248657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、三層構造を有する複合糸、詳しくは
金属繊維を芯繊維とし、これに中間層を形成する
芳香族ポリアミド繊維、最外層を形成する天然繊
維及び/又は化合繊繊維を加撚しつつ巻付けた複
合糸に関し、特にその優れた被覆性を特長とし、
用途範囲を大幅に拡大しうる超高強力複合糸及び
その製造方法に関するものである。 (従来の技術) 従来、芳香族ポリアミド繊維は高強力有機繊維
として、ロープ・ケーブル類・安全防護布・コー
テイング基布等、様々な工業用途に適するものと
して高く評価されている。 一方、有機繊維に匹適する加工性との金属の特
性とを兼ね備えたステンレス鋼繊維等の金属繊維
も又、繊維産業のあらゆる分野に用途を拓き様々
な応用が試みられている。 そこで上記の両繊維の長所を生かし、且つ短所
を補つたより強力な超高強力繊維を求め、ステン
レス鋼繊維等の金属繊維を芳香族ポリアミド繊維
で被覆した複合糸が注目されている。この複合糸
は両繊維の高強度、高切断強度、耐熱性等の特性
を両者の複合による相乗効果でより強調し、且つ
金属繊維においてやや劣る織布加工等の加工性を
向上せしめると共に金属繊維の電気伝導性及び熱
伝導性を抑制する作用効果を有し、安全作業用手
袋等の素材として好適なものである。 しかしながら、上記の複合糸においては鞘部が
芳香族ポリアミド繊維で構成されているため、該
繊維の短所がこの複合糸の短所となり、それが用
途拡大の上での大きな妨げとなつている。即ち、
芳香族ポリアミド繊維は変褐色が甚だしく、外気
に触れるとすぐに変褐色の問題が起こることは不
可避であり、それ故用途開発も工業用、作業用に
とどまりがちで一般にはなかなか受入れられない
のが実情である。 このような芳香族ポリアミド繊維の短所を補う
ための手段として、該繊維を他の繊維で被覆した
ものが提案されている。これは芳香族ポリアミド
繊維を他の繊維、変褐色の問題なく表面に現れる
に好適な繊維で被覆し、前記の問題を解決するた
めのものである。 然して、上記の実情に鑑み、三層構造の複合
糸、即ち金属繊維を芯繊維とし、これに芳香族ポ
リアミド繊維を被覆して超高強力繊維を得、更に
これに適宜選択される最外層繊維を被覆して芳香
族ポリアミド繊維の短所カバーしうる複合糸が求
められることとなる。しかしこのような複合糸を
通常のリング・トラベラー法等により製造しよう
としても、芯繊維に対する中間層繊維の被覆及び
最外層繊維の被覆が完全になされることは不可能
であるか、或いは可能であるとしても極めて困難
であり、紡出上あらゆる問題を伴つている。 (発明が解決しようとする問題点) 上述の三層構造の複合糸において、その被覆性
の良否は極めて重大な問題である。即ち、最外層
繊維の被覆が不完全で糸の表面に裸部が残つたも
のは、これを繊布とした場合、裸部がところどこ
ろに露出し、染色してもこの裸部は染色されずに
残るため商品価値がひどく損われることを免れな
い。然してこの染色においては2浴染法を採るこ
ととなるが、これはめんどうな手間と時間とを要
するものである。 そこで本発明者は、この三層構造の複合糸の紡
出において、完全且つ強力な被覆性を護得しうる
手段としてオープン・エンド紡績法の吸着加撚方
式、DREF方式を採用することが適切であるとの
知見を得た。このDREF方式については特開昭56
−53213号に開示されている通り、その機構上あ
らゆる複合糸を製断しうるものであるが、本発明
のように金属繊維を芯繊維とした三層構造の超高
強力複合糸を、完全且つ強力な被覆作用のもとに
裸部の全くない状態で製造することは極めて困難
であつた。 上記三層構造の複合糸の最終的な品質は、芯繊
維に対する中間層繊維の被覆性に依るところが大
であつて、この被覆が完全且つ強力になされてい
ないと必然的に最外層繊維の被覆も不完全とな
り、裸部の多い不良糸となることは不可避であ
る。 本発明は、ステンレス鋼繊維等の金属繊維を芳
香族ポリアミド繊維で完壁に被覆し、更にこれを
天然繊維及び/又は化合繊繊維で裸部なく被覆す
ることで、金属繊維及び芳香族ポリアミド繊維の
特性を充分に生かし、且つ表面上は天然繊維及
び/又は化合繊繊維の外観及び性質を呈ぜしめ、
染色性並びに加工性に優れた三層構造の複合糸及
びその製造方法の提供を目的とするものである。 (問題点を解決するための手段) 上記の目的を達成するために、本発明の三層構
造の複合糸は次のような構成をなしている。即
ち、オープン・エンド紡績法の吸着加撚方式によ
つて得られる三層構造の複合糸であつて、芯繊維
をステンレス鋼繊維等の金属繊維の単線ワイヤ
ー、フイラメント糸、又は紡績糸とし、該芯繊維
を芳香族ポリアミド繊維のステープルにより被覆
して中間層を形成し、更にこれを天然繊維及び/
又は化合繊繊維のステープルにより被覆して最外
層を形成してなり、且つ該最外層の摩耗強さを
JIS L1095 7、10、1A法において20以上とし、
前記中間層の摩耗強さを同法において40以上とし
たことを要旨とするものである。また第2番目の
発明は上記の本発明の三層構造の複合糸を得るの
に最適な製造方法であつて、芯繊維をステンレス
鋼繊維等の金属繊維の単線ワイヤー、フイラメン
ト糸、又は紡績糸とし、中間層を芳香族ポリアミ
ド繊維のステープル、最外層を天然繊維及び/又
は化合繊繊維のステープルにより夫々被覆形成し
た三層構造の複合糸を製造するに際し、中間層繊
維を粗糸用延伸機構から、芯繊維を芯繊維供給路
から、前記粗糸用延伸機構のフロントローラーの
直前に配設された合流用ガイドへ、該合流用ガイ
ドにおける前記両繊維の重なり状態を制御する調
整手段に経由せしめた上で夫々連続供給し、しか
る後これを互いに密接状態で同方向に回転する2
つの平行な吸引ドラム間並びに糸引出しロールに
通過せしめると同時に、該吸引ドラム上方のロー
ル延伸機構から案内通路を経由せしめた最外層繊
維を前記吸引ドラム間へ供給し、該最外層の摩耗
強さがJIS L1095 7、10、1A法において20以上
であり、前記中間層の摩耗強さが同法において40
以上である複合糸を製造することを要旨とするも
のである。 (作用) 上述の通り、本発明の三層構造の複合糸は、そ
の独特な製造方法により裸部のない完全且つ強力
な被覆が施されたものであつて、製繊及び製編時
において被覆された繊維がはがれてしまうことが
なく、且つ染色性並びに加工性に優れているた
め、高品質な超高強力織編布を提供しうるのであ
る。 即ち、芯繊維と中間層繊維とを夫々別個の供給
路から、吸引ドラム直前に位置するフロントロー
ラーニツプ点における両繊維の重なり状態を最適
なものに選択設定した上で吸引ドラム間に送り出
して加撚被覆を施すため、表面が滑らかで被覆し
難い金属繊維に対しても裸部のない完全な被覆が
なされることとなる。然して、このように形成さ
れた二層糸へ、延伸により平行にされ且つ個別化
された最外層繊維を吸引ドラム上方より供給し、
被覆によつてこの二層糸の加撚を固定するもので
ある。こうして得られた三層構造の複合糸は、芯
繊維に対する中間層繊維の被覆を完全且つ強力な
ものとした上でこれを最外層繊維により固定した
ものであるからその被覆性は極めて優れ、8種の
繊維の特長を存分に生かしたものである。 以下、本発明の実施例を図面に基づき詳述す
る。 (実施例) 第1図は本発明の三層構造の複合糸の一実施例
を示す説明図である。同図において1は芯繊維で
あつてステンレス鋼繊維等の金属繊維、2は中間
層繊維の芳香族ポリアミド繊維、3は最外層のス
テープル繊維であつて天然繊維及び/又は化合繊
繊維より適宜選択して用いられる。 先ず本発明の複合糸の製造方法について、該方
法を実施する装置の一実施例を示す第2図及び第
3図に基づき説明する。これらの図において、4
は糸条走行方向に向かつて増大する周速を有する
複数のロールからなる粗糸用延伸機構であつて、
該ロール対夫々の直前には粗糸ガイド5が配設さ
れている。然して、ケンス(C1)より引出され
たスライバー等の繊維束(中間層繊維)2は、前
記延伸機構4並びに粗糸ガイド5を経由しつつ延
伸され、フロントローラー6の直前の合流用ガイ
ド7に供給される。 一方、芯繊維1は、芯繊維供給路8及び芯繊維
ガイド9を経て、前記の合流用ガイド7に供給さ
れるようになつている。 前記延伸機構4の延伸線上には、互いに密接し
て並置されて周方向に回転する2つの平行な吸引
ドラム10が設けられており、前記合流用ガイド
7に供給された芯繊維1と中間層繊維2は、フロ
ントローラー6のニツプ点を出た直後に前記吸引
ドラム10に吸引され、その回転によつて加撚が
行なわれつつ芯繊維1に中間層繊維2のフリース
が巻付けられるようになつている。 また、吸引ドラム10の上方には別のロール延
伸機構11が設けられており、該ロール延伸機構
11の出口ロール対12と吸引ドラム10との間
には吸引区域の範囲で開口する案内通路13が存
在している。然して、ケンス(C2)から引出さ
れた繊維束は前記ロール延伸機構11を介して延
伸により平行にされ且つ個別化されて、最外層繊
維3として吸引ドラム10間へ供給され、芯繊維
1への中間層繊維2の加撚被覆を固定しつつ最外
層の被覆を施すのである。 こうして形成された三層構造の複合糸Yは、糸
引出しロール14によつて前記吸引ドラム10の
軸線に対して平行に引出される。 更に、上述の装置においては芯繊維ガイド9と
粗糸ガイド5のうち少なくともいずれか一方を糸
条走行方向に対して直角方向に位置調節可能とし
ている。これは、フロントローラー6直前に配設
された合流用ガイド7において芯繊維1と中間層
繊維2とを最適な形態に重ねた上でフロントロー
ラー6に送り出すためのものであつて、この構成
としては、 〔A〕 芯繊維ガイド9は固定し、粗糸ガイド5を
調節することにより、合流用ガイド7に供給さ
れた芯繊維1の位置に応じて中間層繊維2を合
流用ガイド7へ供給することと、 〔B〕 粗糸ガイド5は固定し、芯繊維ガイド9を
調節することにより、合流用ガイド7上の芯繊
維1の位置を、供給されてくる中間層繊維2の
位置に応じて調節することと、 〔C〕 芯繊維ガイド9及び粗糸ガイド5の両者共
を調節することにより、合流用ガイド7におけ
る芯繊維1の位置並びにそれに適応した中間層
繊維2の供給位置を調節すること、 の3者があり、これらのうちから適宜選択する。 上述の3構成について実施比較したところ、構
成〔B〕よりは〔A〕、即ち合流用ガイド7に供
給された芯繊維1の位置に応じて中間層繊維2の
供給位置を、粗糸ガイド5の位置調節によつて調
節することの方が容易且つ確実であつた。更に、
より微妙な調整は当然〔C〕の構成によつて可能
となる。即ち、芯繊維ガイド9及び粗糸ガイド5
の両者を共に位置調節可能としておけば、状況に
応じて最適な形態を実施することができ好適であ
る。 上述のようにガイド5,9を糸条走行方向に対
して直角方向に位置調節可能な状態に取付ける機
構としては様々な公知手段が用いられる。例え
ば、第5図A及びBに示すようなボルト、ナツト
形式のもの、即ちガイド5,9を機台15に取付
ける穴部にボルト16を設け、それをナツト17
によつて適宜締めつけることにより、前記ガイド
5,9を糸条走行方向に対して直角方向(矢印A
方向)に位置調節可能とするものが挙げられる。 尚、粗糸ガイド5については、粗糸用延伸機構
4域に複数箇所、本実施例においては3箇所に配
設されているが、これらすべてに前述の位置調節
機構を設ける必要はなく、合流用ガイド7直前の
もののみを位置調節可能とすることで充分な効果
が得られる。 本発明において、芯繊維の金属繊維とは、常識
的に繊維加工が可能であつて一般繊維と同程度の
柔かさを有するものを指し、銀、銅、ニツケル、
鉄、アルミニウム、或いはこれらを有機合成繊維
の表面にメツキしたもの等、様々なものが存在す
るが、特に化学的に安定で容易に発銹しないこ
と、単線ワイヤー、フイラメント糸、紡績糸のい
ずれの形態でも用いられること等の特長を有する
ステンレス鋼繊維が好ましく使用される。 また、最外層の天然繊維とは、綿、羊毛、麻等
を示し、化合繊繊維とは、ポリエステル、ポリア
ミド、アクリル系繊維、レーヨン、アセテート等
を示す。尚、これらの中から最外層繊維を選択す
る際には、本発明の目的を考慮し、変褪色の問題
のないもの、更には染色性の優れたものを選ぶこ
とが好適である。 本発明にて述べる摩耗強さとはJIS L1095一般
紡績糸試験方法7、10摩耗強さ7、10、1A法に
準じ、第6図に示すような試験機18を用いて行
なつた。該試験機18において、径7.6cmの金属
円筒に研摩紙(JIS R6258耐水研摩紙1200番)を
巻き、これに試料(糸)を0.3gf/tex
{0.00265N/tex}の荷重をかけて接触させ、前
記円筒の回転速度を1分間に130回とし、距離10
cm間を往復運動させる。 然して、 (a) 最外層繊維が摩耗し、中間層繊維が表面に現
れた時点、 及び引続き摩擦し、 (b) 芯繊維が表面に現れた時点、 までの往復摩擦回数を夫々測定し、最外層繊維の
摩耗強さは上記(a)まで、中間層繊維の摩耗強さは
上記(b)までの往復摩擦回数で示している。この試
験回数は10回とし、その平均値で表すものとす
る。 具体例 1 芯繊維…ステンレス単線ワイヤー (ワイヤー径0.13M/M) 中間層繊維…芳香族ポリアミド繊維ステープル (繊度2.0、繊維長38M/M)30% 最外層繊維…エステルステープル 12% (繊度1.8、繊維長38M/M) 上記三層構造の複合糸を本発明の製造方法によ
つて製造し、前述の摩耗強さの試験を行なつた。 また比較例として、同様の三層構造を有する複
合糸をDREF方式を用いた従来の製造方法、即ち
フロントローラー直前の合流用ガイドにおける芯
繊維と中間層繊維との重なり状態を制御する調節
手段を設けない製造方法により製造した。 夫々の2箇所から試料をとり試験を行なつた結
果を下表に示す。
(Industrial Application Field) The present invention relates to a composite yarn having a three-layer structure, specifically, a metal fiber as a core fiber, an aromatic polyamide fiber forming an intermediate layer, a natural fiber forming an outermost layer, and/or a metal fiber as a core fiber. Composite yarn made by twisting and wrapping synthetic fibers is particularly characterized by its excellent covering properties.
The present invention relates to an ultra-high strength composite yarn that can greatly expand the range of applications and a method for producing the same. (Prior Art) Aromatic polyamide fibers have been highly evaluated as high-strength organic fibers suitable for various industrial applications such as ropes, cables, safety protection fabrics, and coating base fabrics. On the other hand, metal fibers such as stainless steel fibers, which have processability comparable to organic fibers and properties of metals, are also being used in various fields of the textile industry, and various applications are being attempted. Therefore, in search of a stronger ultra-high tenacity fiber that takes advantage of the advantages of both of the above-mentioned fibers and compensates for their disadvantages, attention is being paid to composite yarns in which metal fibers such as stainless steel fibers are coated with aromatic polyamide fibers. This composite yarn emphasizes the characteristics of both fibers, such as high strength, high cutting strength, and heat resistance, through the synergistic effect of combining them, and improves the processability of metal fibers, such as weaving, which is slightly inferior to metal fibers. It has the effect of suppressing electrical conductivity and thermal conductivity, and is suitable as a material for safety work gloves and the like. However, since the sheath portion of the above-mentioned composite yarn is composed of aromatic polyamide fibers, the disadvantages of the fibers become disadvantages of this composite yarn, and this is a major hindrance to expanding its uses. That is,
Aromatic polyamide fibers have a severe discoloration, and it is unavoidable that the problem of discoloration will occur as soon as they come into contact with the outside air.For this reason, the development of applications tends to be limited to industrial and work use, and it is difficult for the general public to accept it. This is the reality. As a means to compensate for the disadvantages of aromatic polyamide fibers, it has been proposed to coat the fibers with other fibers. This is intended to solve the above-mentioned problem by covering aromatic polyamide fibers with other fibers, fibers suitable for appearing on the surface without the problem of browning. However, in view of the above-mentioned circumstances, we have developed a three-layer composite yarn, that is, a metal fiber as a core fiber, which is coated with an aromatic polyamide fiber to obtain an ultra-high strength fiber, and which is further coated with an appropriately selected outermost layer fiber. There is a need for a composite yarn that can cover the disadvantages of aromatic polyamide fibers. However, even if one tries to manufacture such a composite yarn by the usual ring traveler method, it is impossible or impossible to completely cover the core fiber with the intermediate layer fiber and the outermost layer fiber. If anything, it is extremely difficult and involves all kinds of problems in spinning. (Problems to be Solved by the Invention) In the above-mentioned three-layered composite yarn, the quality of its coverage is an extremely important issue. In other words, if the outermost fiber layer is incompletely covered and some bare parts remain on the surface of the yarn, when this is made into textiles, the bare parts will be exposed in some places, and even if dyed, these bare parts will not be dyed. As a result, the value of the product will inevitably be severely damaged. However, this dyeing requires a two-bath dyeing method, which requires a lot of effort and time. Therefore, the present inventor found that it is appropriate to adopt the open-end spinning method, adsorption twisting method, and DREF method as a means of achieving complete and strong coverage in spinning this three-layer composite yarn. We obtained the knowledge that Regarding this DREF method, please refer to the Japanese Patent Application Laid-Open No. 56
As disclosed in No. 53213, it is possible to cut all types of composite yarn due to its mechanism, but it is possible to completely cut an ultra-high strength composite yarn with a three-layer structure with metal fiber as the core fiber as in the present invention. Moreover, it was extremely difficult to manufacture the product without any bare parts under a strong coating action. The final quality of the three-layer composite yarn described above largely depends on the coverage of the middle layer fibers over the core fibers, and if this coverage is not complete and strong, the outermost layer fibers will inevitably be covered. It is inevitable that the yarn will also be incomplete, resulting in a defective yarn with many bare parts. The present invention completely coats metal fibers such as stainless steel fibers with aromatic polyamide fibers, and further coats them with natural fibers and/or synthetic fibers without any bare parts, thereby making the metal fibers and aromatic polyamide fibers make full use of the characteristics of fibers, and superficially exhibit the appearance and properties of natural fibers and/or synthetic fibers,
The object of the present invention is to provide a three-layer composite yarn with excellent dyeability and processability, and a method for producing the same. (Means for Solving the Problems) In order to achieve the above object, the three-layer composite yarn of the present invention has the following configuration. That is, it is a three-layer composite yarn obtained by the adsorption twisting method of the open-end spinning method, in which the core fiber is a single wire, filament yarn, or spun yarn of metal fiber such as stainless steel fiber. The core fibers are covered with staples of aromatic polyamide fibers to form an intermediate layer, which is further covered with natural fibers and/or staples of aromatic polyamide fibers.
or coated with synthetic fiber staples to form the outermost layer, and the abrasion strength of the outermost layer is
JIS L1095 7, 10, 1A method, 20 or more,
The gist is that the abrasion strength of the intermediate layer is set to 40 or more according to the same method. The second invention is an optimal manufacturing method for obtaining the three-layer composite yarn of the present invention, in which the core fiber is a single wire, filament yarn, or spun yarn of metal fiber such as stainless steel fiber. When manufacturing a composite yarn with a three-layer structure in which the middle layer is covered with aromatic polyamide fiber staples and the outermost layer is covered with natural fiber and/or synthetic fiber staples, the middle layer fibers are covered with a roving drawing mechanism. From there, the core fibers are passed through a core fiber supply path to a merging guide disposed immediately before the front roller of the roving drawing mechanism, and then to an adjusting means for controlling the overlapping state of both fibers in the merging guide. After that, they are continuously supplied, and then they are rotated in the same direction in close contact with each other.
At the same time, the outermost layer fibers are passed between two parallel suction drums and through a yarn drawing roll, and at the same time, the outermost layer fibers are passed from a roll stretching mechanism above the suction drums through a guide path to between the suction drums, and the abrasion strength of the outermost layer is increased. is 20 or more according to JIS L1095 7, 10, 1A method, and the abrasion strength of the intermediate layer is 40 or more according to the same method.
The gist of this invention is to manufacture the composite yarn as described above. (Function) As mentioned above, the three-layer composite yarn of the present invention is completely and strongly coated with no bare parts due to its unique manufacturing method, and the coating is completely and strongly coated during spinning and knitting. Since the woven fibers do not peel off and have excellent dyeability and processability, it is possible to provide a high quality ultra-high strength woven or knitted fabric. That is, the core fibers and the intermediate layer fibers are fed from separate supply paths between the suction drums after the overlapping state of both fibers at the front roller nip point located just before the suction drum is selected and set to the optimum state. Since the twisted coating is applied, even metal fibers with smooth surfaces that are difficult to coat can be completely coated without bare parts. Therefore, the outermost layer fibers, which have been made parallel and individualized by drawing, are fed to the two-layer yarn thus formed from above the suction drum,
The coating fixes the twisting of the two-layer yarn. The thus obtained three-layer composite yarn has extremely excellent covering properties since the core fiber is completely and strongly covered by the intermediate layer fiber and then fixed by the outermost layer fiber. It takes full advantage of the characteristics of the fibers of seeds. Hereinafter, embodiments of the present invention will be described in detail based on the drawings. (Example) FIG. 1 is an explanatory diagram showing an example of a three-layer composite yarn of the present invention. In the figure, 1 is the core fiber, which is a metal fiber such as stainless steel fiber, 2 is the intermediate layer fiber, which is an aromatic polyamide fiber, and 3 is the outermost layer, which is the staple fiber, which is appropriately selected from natural fibers and/or synthetic fibers. It is used as First, the method for manufacturing a composite yarn of the present invention will be explained based on FIGS. 2 and 3, which show an embodiment of an apparatus for carrying out the method. In these figures, 4
is a roving drawing mechanism consisting of a plurality of rolls having a circumferential speed that increases in the yarn running direction,
A roving guide 5 is disposed immediately in front of each pair of rolls. The fiber bundle (intermediate layer fiber) 2 such as a sliver drawn out from the can (C 1 ) is drawn while passing through the drawing mechanism 4 and the roving guide 5, and then passed through the merging guide 7 just before the front roller 6. is supplied to On the other hand, the core fiber 1 is supplied to the above-mentioned merging guide 7 via a core fiber supply path 8 and a core fiber guide 9. Two parallel suction drums 10 are provided on the drawing line of the drawing mechanism 4 and rotate in the circumferential direction while being closely juxtaposed to each other. Immediately after the fibers 2 leave the nip point of the front roller 6, they are sucked into the suction drum 10, and their rotation twists them so that the fleece of the intermediate layer fibers 2 is wrapped around the core fibers 1. It's summery. Further, another roll stretching mechanism 11 is provided above the suction drum 10, and a guide passage 13 that opens within the suction area is provided between the exit roll pair 12 of the roll stretching mechanism 11 and the suction drum 10. exists. The fiber bundle pulled out from the can (C 2 ) is stretched through the roll stretching mechanism 11 to be made parallel and individualized, and is supplied between the suction drums 10 as the outermost layer fibers 3, and then to the core fibers 1. The outermost layer is coated while the twisted coat of the intermediate layer fibers 2 is fixed. The thus formed three-layer composite yarn Y is drawn out in parallel to the axis of the suction drum 10 by a yarn drawing roll 14. Furthermore, in the above-mentioned apparatus, the position of at least one of the core fiber guide 9 and the roving guide 5 can be adjusted in a direction perpendicular to the yarn running direction. This is to stack the core fibers 1 and intermediate layer fibers 2 in an optimal form in the merging guide 7 disposed just before the front roller 6, and then send them to the front roller 6. [A] By fixing the core fiber guide 9 and adjusting the roving guide 5, the intermediate layer fibers 2 are supplied to the merging guide 7 according to the position of the core fiber 1 supplied to the merging guide 7. [B] By fixing the roving guide 5 and adjusting the core fiber guide 9, the position of the core fiber 1 on the merging guide 7 can be adjusted according to the position of the intermediate layer fiber 2 being supplied. [C] By adjusting both the core fiber guide 9 and the roving guide 5, the position of the core fiber 1 in the merging guide 7 and the corresponding feeding position of the intermediate layer fiber 2 can be adjusted. There are three options: to do so, and to choose from these as appropriate. When comparing the three configurations mentioned above, it was found that configuration [A] was preferred over configuration [B], that is, the supply position of the intermediate layer fiber 2 was changed according to the position of the core fiber 1 supplied to the roving guide 7. It was easier and more reliable to make the adjustment by adjusting the position of. Furthermore,
Naturally, more delicate adjustment is possible with the configuration [C]. That is, the core fiber guide 9 and the roving guide 5
It is preferable that the positions of both of the above are adjustable so that the optimum form can be implemented depending on the situation. As mentioned above, various known means can be used as a mechanism for attaching the guides 5, 9 so that their positions can be adjusted in a direction perpendicular to the thread running direction. For example, a bolt or nut type as shown in FIGS.
By appropriately tightening the guides 5 and 9 with
One example is one whose position can be adjusted in the direction (direction). The roving guides 5 are provided at multiple locations in the roving stretching mechanism 4 area, three locations in this example, but it is not necessary to provide the above-mentioned position adjustment mechanism for all of these. A sufficient effect can be obtained by making the position of only the one immediately in front of the guide 7 adjustable. In the present invention, the core fiber metal fibers refer to those that can be processed in common sense and have the same softness as ordinary fibers, such as silver, copper, nickel, etc.
There are various materials such as iron, aluminum, or those plated on the surface of organic synthetic fibers, but in particular, they are chemically stable and do not rust easily, and are suitable for single wire, filament yarn, and spun yarn. Preferably, stainless steel fibers are used because they have the advantage that they can be used in any form. Furthermore, the natural fibers of the outermost layer include cotton, wool, hemp, etc., and the synthetic fibers include polyester, polyamide, acrylic fiber, rayon, acetate, etc. When selecting the outermost layer fiber from among these, it is preferable to consider the purpose of the present invention and to select one that does not have the problem of discoloration or fading, and furthermore, one that has excellent dyeability. The abrasion strength described in the present invention was measured in accordance with JIS L1095 general spun yarn testing method 7, 10 abrasion strength 7, 10, 1A method using a testing machine 18 as shown in FIG. In the tester 18, a metal cylinder with a diameter of 7.6 cm is wrapped with abrasive paper (JIS R6258 waterproof abrasive paper No. 1200), and the sample (thread) is wrapped around it at a rate of 0.3 gf/tex.
A load of {0.00265N/tex} was applied to the cylinder, the rotation speed of the cylinder was 130 times per minute, and the distance was 10.
Move back and forth between cm. Therefore, we measured the number of reciprocating frictions until (a) when the outermost layer fibers wore out and the intermediate layer fibers appeared on the surface, and (b) when the core fibers appeared on the surface, and calculated the maximum number of times. The abrasion strength of the outer layer fibers is shown in (a) above, and the abrasion strength of the middle layer fibers is shown in terms of the number of reciprocating frictions up to (b) above. The number of tests shall be 10, and the average value shall be used. Specific example 1 Core fiber...stainless steel single wire (wire diameter 0.13M/M) Middle layer fiber...aromatic polyamide fiber staple (fineness 2.0, fiber length 38M/M) 30% Outer layer fiber...ester staple 12% (fineness 1.8, Fiber length: 38M/M) The above-mentioned three-layer composite yarn was produced by the production method of the present invention, and the above-mentioned abrasion strength test was conducted. In addition, as a comparative example, a composite yarn having a similar three-layer structure was manufactured using a conventional manufacturing method using the DREF method, that is, an adjustment means for controlling the overlapping state of the core fiber and intermediate layer fiber in the merging guide just before the front roller. Manufactured by a manufacturing method not provided. Samples were taken from each of the two locations and tested, and the results are shown in the table below.

【表】 維の摩耗強さ
具体例 2 芯繊維…ステンレス単線ワイヤー (ワイヤー径0.1M/M) 中間層繊維…芳香族ポリアミド繊維ステープル (繊度1.5 繊維長38M/M)30% 最外層繊維…綿ステープル 15% (繊度4.5 繊維長31M/M) 上記の構造の複合糸について、具体例1と同様
の試験を行なつた。その結果を下表に示す。
[Table] Specific examples of abrasion strength of fibers 2 Core fiber...stainless steel single wire (wire diameter 0.1M/M) Middle layer fiber...aromatic polyamide fiber staple (fineness 1.5, fiber length 38M/M) 30% Outer layer fiber...cotton Staple 15% (Fineness 4.5 Fiber length 31M/M) The same test as in Example 1 was conducted on the composite yarn having the above structure. The results are shown in the table below.

【表】 上記の2つの具体例を示された結果より明らか
な如く、本発明の三層構造の複合糸は本発明の独
特な製造方法によつて得られたものであつて、試
料としてどの部分をとつてもその最外層繊維の摩
耗強さは20以上、中間層繊維の摩耗強さは40以上
であるが、一方従来の複合糸、即ち同一の素材を
用い同一の三層構造を有するにも拘らず前記の数
値に満たないものでは、複合糸として完全に不良
であつて、製繊の際の筬との摩擦等によつて被覆
が容易にはがれる等の問題が頻出する。つまり、
複合糸として全く裸部がなく、製繊、製編によつ
ても表面にムラを呈さないもの、変褐色の問題を
免れ一浴染法にて容易に美しく染色されうる超高
強力糸は、本発明によつて得られた三層構造の複
合糸、即ち最外層繊維の摩耗強さが20以上、好ま
しくは25以上、更に好ましくは30以上であり、中
間層繊維の摩耗強さが40以上、好ましくは45以
上、更に好ましくは50以上のものである。 前記具体例2にて製造した本発明の三層構造の
複合糸を製繊したところ、表面には全くムラがな
く綿繊布の外観を呈し、綿染色で美しく染色され
た。更に具体例1の複合糸を用いて手袋を製造
し、使用テストを行なつたところ、上方からの刃
物による加重に対しても顕著な抵抗力を示し、50
cm上より肉切包丁を振り降ろしてもその刃が手袋
内部のものを傷つけることはなかつた。 (発明の効果) 以上述べた通り、本発明の三層構造の複合糸
は、ステンレス鋼繊維等の金属繊維を芳香族ポリ
アミド繊維で被覆することにより、両者の高強
度、高切断強度、耐熱性等の特性をより効果的に
生かすと共に、金属繊維においてやや劣る加工性
を向上せしめ、更にこれを天然繊維及び/又は化
合繊繊維で被覆することで変褐色の問題を解消
し、一般糸条の外観を呈ぜしめた超高強力複合糸
である。 また、本発明の製造方法においては、従来極め
て困難であり、不完全であつた金属繊維への被覆
を完全且つ強力なものとしうるため、これに最外
層繊維を被覆したものの被覆性も優良であり、然
してこの複合糸が製繊、製編等の加工工程を経て
得られた製品の品質の高さは顕著なものであつ
て、工業用のみならず、強度と共に外観の美しさ
をも要求されるものへ用途拡大し、更にその効果
を発揮するものである。
[Table] As is clear from the results shown in the above two specific examples, the three-layer composite yarn of the present invention was obtained by the unique manufacturing method of the present invention. The abrasion strength of the outermost layer fiber is 20 or more, and the abrasion strength of the middle layer fiber is 40 or more, but on the other hand, conventional composite yarns, that is, they are made of the same material and have the same three-layer structure. However, if the above-mentioned value is not met, the composite yarn is completely unsuitable as a composite yarn, and problems such as easy peeling of the coating due to friction with the reed during fiber-making often occur. In other words,
As a composite yarn, there is no bare part at all, and there is no unevenness on the surface even when spinning or knitting, and the ultra-high strength yarn is free from the problem of browning and can be easily and beautifully dyed using a one-bath dyeing method. The three-layer composite yarn obtained by the present invention, that is, the outermost layer fiber has an abrasion strength of 20 or more, preferably 25 or more, more preferably 30 or more, and the middle layer fiber has an abrasion strength of 40 or more. , preferably 45 or more, more preferably 50 or more. When the three-layer composite yarn of the present invention produced in Example 2 was produced, it had the appearance of a cotton fabric with no unevenness on the surface, and was beautifully dyed with cotton dyeing. Furthermore, when gloves were manufactured using the composite yarn of Example 1 and a usage test was conducted, they showed remarkable resistance to the load applied by a knife from above,
Even when I swung the meat cleaver down from a cm above, the blade did not damage anything inside the glove. (Effects of the Invention) As described above, the three-layer composite yarn of the present invention has high strength, high cutting strength, and heat resistance by coating metal fibers such as stainless steel fibers with aromatic polyamide fibers. In addition to making more effective use of the characteristics of metal fibers, we also improved the processability, which is slightly inferior to metal fibers, and also solved the problem of browning by covering them with natural fibers and/or synthetic fibers. It is an ultra-high strength composite yarn with a unique appearance. In addition, in the manufacturing method of the present invention, it is possible to completely and strongly coat metal fibers, which was extremely difficult and incomplete in the past, so even if the outermost layer fibers are coated, the coating properties are also excellent. However, the high quality of the products obtained from this composite yarn through processing processes such as spinning and knitting is remarkable, and it is used not only for industrial purposes but also for demands for strength and beauty in appearance. This will expand the range of applications and further demonstrate its effectiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の三層構造の複合糸の一実施例
を示す説明図、第2図及び第3図はその製造装置
の説明図、第4図及び第5図は同装置の要部を示
す拡大図、第6図は試験方法の説明図である。 1……芯繊維、2……中間層繊維、3……最外
層繊維、4……粗糸用延伸機構、5……粗糸ガイ
ド、5a……糸道、6……フロントローラー、7
……合流用ガイド、8……芯繊維供給路、9……
芯繊維ガイド、9a……糸道、10……吸引ドラ
ム、11……ロール延伸機構、12……出力ロー
ル対、13……案内通路、14……糸引出しロー
ル、15……機台、16……ボルト、17……ナ
ツト、18……試験機、19……駆動電動機、
C1,C2……ケンス、Y……複合糸。
Fig. 1 is an explanatory diagram showing one embodiment of the three-layer composite yarn of the present invention, Figs. 2 and 3 are explanatory diagrams of its manufacturing equipment, and Figs. 4 and 5 are main parts of the same equipment. FIG. 6 is an explanatory diagram of the test method. DESCRIPTION OF SYMBOLS 1... Core fiber, 2... Middle layer fiber, 3... Outermost layer fiber, 4... roving stretching mechanism, 5... roving guide, 5a... yarn path, 6... front roller, 7
... Merging guide, 8 ... Core fiber supply path, 9 ...
Core fiber guide, 9a... Yarn path, 10... Suction drum, 11... Roll stretching mechanism, 12... Output roll pair, 13... Guide path, 14... Yarn drawing roll, 15... Machine stand, 16 ...Bolt, 17...Nut, 18...Testing machine, 19...Drive motor,
C 1 , C 2 ... Kensu, Y ... Composite yarn.

Claims (1)

【特許請求の範囲】 1 オープン・エンド紡績法の吸着加撚方式によ
つて得られる三層構造の複合糸であつて、芯繊維
をステンレス鋼繊維等の金属繊維の単線ワイヤ
ー、フイラメント糸、又は紡績糸とし、該芯繊維
を芳香族ポリアミド繊維のステープルにより被覆
して中間層を形成し、更にこれを天然繊維及び/
又は化合繊繊維のステープルにより被覆して最外
層を形成してなり、且つ該最外層の摩耗強さを
JIS L1095 7.10.1A法において20以上とし、前記
中間層の摩耗強さを同法において40以上としたこ
とを特徴とする三層構造の複合糸。 2 芯繊維をステンレス鋼繊維等の金属繊維の単
線ワイヤー、フイラメント糸又は紡績糸とし、中
間層を芳香族ポリアミド繊維のステープル、最外
層を天然繊維及び/又は化合繊繊維のステープル
により夫々被覆形成した三層構造の複合糸を製造
するに際し、中間層繊維を粗糸用延伸機構から、
芯繊維を芯繊維供給路から、前記粗糸用延伸機構
のフロントローラーの直前に配設された合流用ガ
イドへ、該合流用ガイドにおける前記両繊維の重
なり状態を制御する調整手段に経由せしめた上で
夫々連続供給し、しかる後これを互いに密接状態
で同方向に回転する2つの平行な吸引ドラム間並
びに糸引出しロールに通過せしめると同時に、該
吸引ドラム上方のロール延伸機構から案内通路を
経由せしめた最外層繊維を前記吸引ドラム間へ供
給し、該最外層の摩耗強さがJIS L1095 7.10.1A
法において20以上であり、前記中間層の摩耗強さ
が同法において40以上である複合糸を製造するこ
とを特徴とする三層構造の複合糸の製造方法。 3 合流用ガイドにおける芯繊維と中間層繊維と
の重なり状態を制御する調整手段が、粗糸用延伸
機構に配設された粗糸ガイドと前記合流用ガイド
直前に配設された芯繊維ガイドとの相互位置を調
整するものであつて、これら両ガイドのうち少な
くともいずれか一方が糸条走行方向に対して直角
方向に位置調節可能である特許請求の範囲第2項
記載の三層構造の複合糸の製造方法。
[Claims] 1. A three-layer composite yarn obtained by the adsorption twisting method of the open-end spinning method, in which the core fiber is a single wire of metal fiber such as stainless steel fiber, filament yarn, or The core fibers are covered with staples of aromatic polyamide fibers to form an intermediate layer, and this is further coated with natural fibers and/or fibers.
or coated with synthetic fiber staples to form the outermost layer, and the abrasion strength of the outermost layer is
A composite yarn having a three-layer structure, characterized in that the abrasion strength of the intermediate layer is 40 or more according to the JIS L1095 7.10.1A method, and the abrasion strength of the intermediate layer is 40 or more according to the same method. 2. The core fiber is a single wire, filament yarn or spun yarn of metal fiber such as stainless steel fiber, the middle layer is covered with aromatic polyamide fiber staples, and the outermost layer is covered with natural fiber and/or synthetic fiber staples. When manufacturing a three-layer composite yarn, the intermediate layer fibers are drawn from the roving drawing mechanism.
The core fibers are passed from the core fiber supply path to a merging guide disposed immediately before the front roller of the roving stretching mechanism, and through an adjusting means for controlling the overlapping state of both fibers in the merging guide. Afterwards, the yarn is passed between two parallel suction drums that rotate in the same direction in close contact with each other and to a yarn drawing roll, and at the same time, the yarn is passed from a roll stretching mechanism above the suction drum to a guide passage. The stretched outermost layer fiber is supplied between the suction drums, and the abrasion strength of the outermost layer is JIS L1095 7.10.1A.
A method for producing a three-layer composite yarn, characterized in that the intermediate layer has an abrasion strength of 40 or more according to the same method. 3. The adjustment means for controlling the overlapping state of the core fibers and intermediate layer fibers in the merging guide is configured to control the overlapping state of the core fibers and intermediate layer fibers in the roving guide provided in the roving stretching mechanism and the core fiber guide provided immediately before the merging guide. The three-layer structure composite according to claim 2, wherein the mutual position of the guides is adjusted, and the position of at least one of these guides is adjustable in a direction perpendicular to the yarn running direction. How to make yarn.
JP18636587A 1987-07-24 1987-07-24 SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO Expired - Lifetime JPH0248657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18636587A JPH0248657B2 (en) 1987-07-24 1987-07-24 SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18636587A JPH0248657B2 (en) 1987-07-24 1987-07-24 SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6433228A JPS6433228A (en) 1989-02-03
JPH0248657B2 true JPH0248657B2 (en) 1990-10-25

Family

ID=16187103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18636587A Expired - Lifetime JPH0248657B2 (en) 1987-07-24 1987-07-24 SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0248657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163490A (en) * 1982-03-23 1983-09-28 Mitsubishi Rayon Co Ltd Method and apparatus for purification of water
JPS58128184A (en) * 1982-01-25 1983-07-30 Mitsubishi Rayon Co Ltd Removing method for traces of organic material in water
US5617713A (en) * 1988-06-13 1997-04-08 Nsp Sicherheits-Produkte Gmbh Yarn having metallic fibers and an electromagnetic shield fabric made therefrom
JP2757438B2 (en) * 1989-03-17 1998-05-25 松下電工株式会社 Optically coupled relay circuit

Also Published As

Publication number Publication date
JPS6433228A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US6381940B1 (en) Multi-component yarn and method of making the same
US5568719A (en) Composite yarn including a staple fiber covering a filament yarn component and confining the filament yarn component to a second thickness that is less than a first thickness of the filament in a relaxed state and a process for producing the same
JP3176926B2 (en) Core / Coated yarn
US7178323B2 (en) Multi-component yarn, method of making and method of using the same
JP4613174B2 (en) Size-covered composite yarn and method for producing the same
JPS6119733B2 (en)
US3686845A (en) Apparatus for producing a non-irregular twist yarn
US6532724B2 (en) Cut-resistant yarn and method of manufacture
US7905081B2 (en) Sewing thread
JPH0248657B2 (en) SANSOKOZONOFUKUGOSHIOYOBISONOSEIZOHOHO
JPH06257027A (en) Compound yarn and its production
JP3098757B2 (en) Confounding elastic yarn and elastic knitted fabric
JP2597852B2 (en) Telescopic chenille yarn
JPH0754229A (en) Composite yarn
Ishtiaque et al. Friction spinning
TW473569B (en) Process and device and application of the device to produce a blended-yarn or combined yarn
JPH0329900B2 (en)
JP2687513B2 (en) Manufacturing method of bulky fluff
JPS63303138A (en) Composite spun yarn having core-sheath structure and its production
JPS58109648A (en) Composite yarn and method and apparatus for producing same
JP2813525B2 (en) False twist composite yarn and method for producing the same
JPS63227820A (en) Production of fire-and heat-resistant conjugate spun yarn
WO2001071073A1 (en) Composite yarn
JP3606334B2 (en) Rope for longline
JPS6119732B2 (en)