JPH0236296B2 - - Google Patents

Info

Publication number
JPH0236296B2
JPH0236296B2 JP58055150A JP5515083A JPH0236296B2 JP H0236296 B2 JPH0236296 B2 JP H0236296B2 JP 58055150 A JP58055150 A JP 58055150A JP 5515083 A JP5515083 A JP 5515083A JP H0236296 B2 JPH0236296 B2 JP H0236296B2
Authority
JP
Japan
Prior art keywords
catalyst
whiskers
reaction
acid
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58055150A
Other languages
Japanese (ja)
Other versions
JPS59183832A (en
Inventor
Tadahiro Yoneda
Rikuo Uejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58055150A priority Critical patent/JPS59183832A/en
Priority to GB08407331A priority patent/GB2138694B/en
Priority to US06/591,835 priority patent/US4564607A/en
Priority to IT20220/84A priority patent/IT1173477B/en
Priority to DE19843410799 priority patent/DE3410799A1/en
Priority to FR8404638A priority patent/FR2543020B1/en
Publication of JPS59183832A publication Critical patent/JPS59183832A/en
Publication of JPH0236296B2 publication Critical patent/JPH0236296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はウイスカを含有するヘテロポリ酸系成
型触媒組成物に関する。詳しく述べると本発明は
モリブドリン酸またはモリブドバナドリン酸をベ
ースとするヘテロポリ酸系触媒活性成分をウイス
カ共存下に成型せしめ、工業的使用に対してすぐ
れた機械的強度(圧壊強度、耐磨耗性、落下強度
など)を有しかつメタクロレイン、イソブチルア
ルデヒドあるいはイソ酪酸を気相で酸化あるいは
酸化脱水素せしめてメタクリル酸を製造する際に
すぐれた触媒性能を呈する成型触媒組成物を提供
することを目的とする。 従来、無機繊維とかウイスカ自体を触媒担体と
して用いることは公知である(特公昭53−38264
号、特開昭58−3642号、特開昭58−3643号、特開
昭53−50051号などの公報明細書参照)。しかしこ
れらに開示されている触媒の目的はいずれもガラ
ス繊維、石綿またはウイスカを高度に触媒活性物
質を分散させる手段、すなわち担体として用いる
ものであり、本発明の意図するようなウイスカを
触媒活性物質中に少量添加して成型する、すなわ
ち成型助材として用いるものではない。 又、無機繊維および有機繊維を触媒物質に添加
して強度の高い成型触媒とする方法も公知である
(特公昭51−7475号、特公昭51−20357号公報明細
書など)。 しかし、今までかつてウイスカを具体的にヘテ
ロポリ酸化合物のベースの触媒の成型助材として
使用した例、およびましてや本発明に開示する如
き特定範囲の形状を有するウイスカを成型助材と
して使用した例は知られていない。 一方、メタクロレイン、イソブチルアルデヒド
またはイソ酪酸などを接触気相反応せしめてメタ
クリル酸を製造する際の触媒として一般にリン−
モリブデンあるいはリン−モリブデン−バナジウ
ムをベースとした触媒が優れており、これら触媒
については従来より数多く報告されている。 なおこれらリン−モリブデンあるいはリン−モ
リブデン−バナジウムなどの組成物は化学的には
それぞれモリブドリン酸あるいはモリブドバナド
リン酸なるヘテロポリ酸構造をとつておりこれら
ヘテロポリ酸をベースとした触媒組成物はそれ自
体成型性がひじように悪いという欠点があり、実
用触媒ならしめるため触媒の形態、機械的強度な
どについて種々検討がなされている。 触媒の形態については、適当な担体上に触媒成
分を付着せしめた担持触媒、打錠成型法あるいは
押出し成型法による加圧成型触媒および転動造粒
法による造粒触媒などが一般的であり、いずれの
形態にするかは触媒物質の性質、触媒性能および
機械的強度を総合的に判断し決定するものである
が、いずれの場合においても工業的な使用に十分
耐えうる機械的強度をもつた触媒にすることがひ
じように難しくその改良について種々の報告が出
されてきた。 たとえば特開昭56−37050号公報明細書にはリ
ン−モリブデン−バナジウムにアルカリ金属元素
を加えた触媒組成物を耐熱性無機物質に担持させ
機械的強度を改良した触媒が開示されている。一
般に担持触媒を接触気相反応に用いた場合触媒層
での発熱をおさえ目的生成物の逐次反応をおさえ
るという長所はあるものの十分な触媒活性を維持
させるため反応温度を高めなければならず、その
結果触媒寿命に悪影響が出やすいという欠点があ
る。 また触媒物質を打錠成型あるいは押出し成型法
などで加圧成型する場合に於ては触媒の表面積お
よび細孔容積などが変化しその結果触媒性能が低
下するという好ましくない現象が生じたりする。
しかもヘテロポリ酸化合物をベースとする物質は
先にも述べたようにそれ自体成型しずらいという
欠点からも触媒物質そのもののみを成型助剤およ
び結合剤などを用いず成型した場合十分な機械的
強度をもつたものとはならない。しかも成型触媒
は強度を持たせる成型法をとつた場合触媒性能が
逆に低下するというのが一般的である。 成型触媒のこのような問題を解決する例として
たとえば特開昭56−24048号公報明細書にはリン
−モリブデンに他の金属元素を加えた触媒組成物
に揮発性物質あるいは微粉末担体などを加え成型
し触媒の表面積、細孔容積を好ましい範囲に規定
し触媒性能を低下させることなくかつ強度を持た
せる方法が開示されている。 また特公昭51−20357号公報明細書には触媒組
成物にグラスフアイバー、セラミツクフアイバー
などの耐熱性繊維を混ぜて押出し成型し機械的強
度の強い成型触媒をえる方法が開示されている。
しかし、本発明者らが上記方法について種々検討
をおこなつたところ、ヘテロポリ酸化合物ベース
の触媒に応用しても機械的強度は十分なものとは
ならないことが知見された。 かくして、これらいずれの方法においても触媒
を工業的使用の見地から見れば機械的強度、性能
とも両者を満足させうるには不十分であることが
判明した。しかも接触気相反応を工業的に行なう
場合反応装置からくる制約が種々あり、たとえば
固定床式反応装置においては触媒を反応管に充填
する際および反応中での触媒破壊や粉化が反応器
内の圧損増加あるいはブロアー負荷の増大を招き
さらに反応圧損上昇による反応原料物質や生成物
の自動化や逐次反応増進など製造時における重大
な問題を惹起することにも通じる。 一方、特開昭57−12830号、特開昭57−171443
〜4号、特開昭57−177347〜8号公報明細書にお
いてはヘテロポリ酸化合物ベースの触媒を含窒素
ヘテロ環有機化合物(たとえばピリジン、ピペリ
ジン、ピペラジンなど)の存在下に調製して、機
械的強度の高く、かつ触媒性能としても工業的使
用に適する触媒をえたことが報告されている。し
かしこの技術においてはその調製法が煩瑣となる
こともあり、工業的実施の面では不満が残る。 本発明者らは、これらの公知技術を改良し、実
用触媒として工業的に製造しかつ使用しうる触媒
を探求し、本発明を開発したものである。 本発明はウイスカを含有するモリブドリン酸ま
たはモリブドバナドリン酸系の触媒組成物に関す
るものであり、ウイスカが平均直径5ミクロン以
下、その平均長さが1000ミクロン以下のものを用
いてなる上記ヘテロポリ酸化合物をベースとする
触媒組成物を提供するものである。 本発明者らの知見によれば、ヘテロポリ酸化合
物ベースの触媒組成物とウイスカを合体し、たと
えば押出し成型法で成型した本発明触媒は、圧壊
強度、耐摩耗性および落下強度ともヘテロポリ酸
系触媒では想像もつかない程ひじようにすぐれた
ものとなり、しかもこの触媒をメタクロレイン、
イソブチルアルデヒドまたはイソ酪酸の接触気相
反応に用いたところ活性ならびにメタクリル酸選
択性の低下はまつたく認められずむしろ活性が向
上することが明らかとなつた。しかも従来から押
出成型により円筒形状(リング)に成型したもの
は機械的強度が一般に弱いとされているにもかか
わらず、本発明方法に従つてリング成型しても機
械的強度に何ら問題はなく、しかもメタクリル酸
選択性がさらに向上するという特徴が生じ、ここ
に接触気相反応によるメタクリル酸製造用触媒と
して工業的にも非常に有利な触媒を完成するに至
つた。 本発明においては触媒成型法として押出し成型
法が好適に採用される。触媒製造時における容易
さ、歩留り、再現性および性能とを総合的に考慮
した結果好ましいと判断されるからであるが必ず
しも押出し成型法に限定されるものではなく、一
般に知られている打錠成型法、転動造粒法、マル
メライザー成型法のいずれであつても本発明は適
用されうるものである。 以下さらにくわしく本発明を説明する。 ウイスカとは一般に直径200ミクロン以下で長
さが直径に比し(アスペクト比)10以上の単結晶
繊維とされているが、最近では多結晶のものまで
含めて広義に解釈されている。そして、本発明に
おいては、平均直径5ミクロン以下、平均長さ
1000ミクロン以下のものが好適に使用される。 この発明に用いられるウイスカはその材質とし
ては金属に限らず耐火物であつてよく、具体的に
はタングステン、鉄、ニツケルなどの金属および
シリコンカーバイド、ボロンカーバイド、チタン
カーバイド、窒化ケイ素、シリカアルミナ、酸化
アルミナ、酸化チタン、酸化ベリリウム、チタン
酸カリウム、リン酸カルシウムなどであり公知の
方法で製造されたもので、本発明の目的とする成
型触媒中にウイスカとして残存するものであれば
上記材質からなるウイスカをいずれも好適に使用
できる。 用いるウイスカの形状について種々検討した結
果、直径および長さが触媒の機械的強度に微妙に
影響することもあり、とくにウイスカの形状が平
均繊維径5ミクロン以下、好ましくは1ミクロン
以下で、その長さが1000ミクロン以下、好ましく
は500ミクロン以下の場合機械的強度が飛躍的に
改善されることがわかつた。ウイスカの含有量に
ついては触媒に対し少量でその効果を発揮できる
がウイスカの種類により多少異なり、触媒に対し
1〜50重量%の範囲で含有せしめることができ
る。この規定されたウイスカを用いた際の効果発
現の原因については不明な点も多いが次のように
考えられる。すなわち、ヘテロポリ酸系ベースの
触媒ではその構成粒子の大きさは調製条件にもよ
るが観察結果では1ミクロン以下程度の球状ある
いはブロツク状であり、それ故ウイスカ径が小さ
いほどまた長さもある程度短かいほど分散もよ
く、かつ少量でも触媒粒子と機械的にもよく合致
し物理的強度が画期的に向上したと考えられる。 この発明に適用できる触媒構成元素の組成はモ
リブドリン酸、モリブドバナドリン酸およびそれ
らの金属塩などのヘテロポリ酸化合物を主体とす
るものであれば特に限定されるものではないが、
メタクリル酸を高収率で製造するためには次の一
般式 PaMobVcXdYeOf 〔ここでPはリン、Moはモリブデン、Vはバナ
ジウム、Xはアルカリ金属および/またはアルカ
リ土類金属元素の中からえらばれる一種以上の元
素、Yは銅、銀、ヒ素、アンチモン、テルル、コ
バルト、ビスマス、タングステンおよびジルコニ
ウムの中から選ばれる1種以上の元素、Oは酸素
を示す。また添字a、b、c、d、e、fはそれ
ぞれ各原子比を表わし b=12のとき a=0.1〜3.0 好ましくは0.5〜1.5 c=0〜6.0 好ましくは0.1〜2.5 d=0.05〜5.0 好ましくは0.1〜2.0 e=0.01〜5.0 好ましくは0.05〜2.0 fは各元素の原子価および原子比により定まる
数値である。〕 で表わされる組成のものが好適である。 また触媒原料物としては種々のものが使用でき
る。リン化合物としてはたとえばオルトリン酸、
リン酸水素二ナトリウム、リン酸一アンモニウ
ム、リン酸二アンモニウムなどモリブデン化合物
としてはたとえば三酸化モリブデン、モリブデン
酸、モリブデン酸ナトリウム、パラモリブデン酸
アンモニウム、リンモリブデン酸など、バナジウ
ム化合物としてはたとえば五酸化バナジウム、メ
タバナジン酸アンモニウム、メタバナジン酸ナト
リウム、修酸バナジル、硫酸バナジルなどであ
る。また、X、Y成分としてはそれぞれの元素の
水酸化物、硝酸塩、硫酸塩、炭酸塩、ハロゲン化
物、アンモニウム塩およびオキシ酸などの中から
えらばれる。 触媒の調製はリン−モリブデンあるいはリン−
モリブデン−バナジウムをベースとする公知の触
媒調製法すべてに適用できる。例えば前もつて調
製したモリブドリン酸あるいはモリブドバナドリ
ン酸の水溶液中に必要とする他の元素の化合物の
水溶液を加えスラリー状物質をつくり、ここにウ
イスカの適当量を加え、蒸発乾燥後粉砕してウイ
スカ含有ヘテロポリ酸化合物ベースの粉体をつく
る。あるいはリン、モリブデン、バナジウムおよ
びその他の必要添加金属元素の原料物質を水に加
えスラリー状物質をつくりウイスカの適当量を加
え蒸発乾燥後粉砕してウイスカ含有の粉体をえ
る。かくしてえられた粉体に少量の水を加えよく
混合した後押出し成型機によりたとえば5.5mmφ
×6mmLの円柱形、あるいはこの円柱外形に対し
貫通孔内径2.0mmφの空間をつくつたリングに成
型し乾燥後空気の存在下350〜400℃で焼成して触
媒をえる。 また先に述べた含窒素ヘテロ環有機化合物を使
用する触媒調製方法と本発明とを併用する場合に
は焼成前にこの有機化合物を脱離せしめる工程を
加える。すなわち不活性ガス(たとえば窒素、ヘ
リウム、アルゴン、炭酸ガス)あるいは炭化水素
などの還元性ガス雰囲気中200〜600℃の範囲で熱
処理すればよい。 ウイスカを加える時期は上記の他、触媒構成元
素のそれぞれの原料物質を水の存在下スラリー状
にしこれを蒸発乾燥粉砕してえた粉体に混合する
方法をとつても何らさしつかえない。 かくしてえられた触媒はいずれも成型状態が極
めて良好なものであり、またそれらの触媒の機械
的強度測定の結果からみても極めてすぐれたもの
となる。 このように、本発明になるウイスカ添加触媒は
今まで困難とされていたヘテロポリ酸化合物ベー
スの触媒を希望どおりに成型し、工業的使用に供
することぎ可能ならしめるばかりでなく、触媒の
物性面にも好影響を与え、活性の増大はもとより
触媒層での蓄熱が緩和されることもあつて、好ま
しくない逐次反応の抑制と、反応の選択性の向上
とが達成されるという利点がもたらされることが
判明した。 本発明による触媒を接触気相反応に用いるに際
し原料としてはメタクロレイン、イソブチルアル
デヒドあるいはイソ酪酸を用い、これらのいずれ
かに分子状酸素を混合して反応をおこなう。酸素
源としては工業的には空気が有利であり、その他
希釈剤としては不活性ガスたとえば窒素、炭酸ガ
ス、ヘリウム、アルゴン、一酸化炭素および水蒸
気などを用いることができるが、とくに水蒸気の
使用は副生成物をおさえる目的からも有利であ
る。 反応において対象とされる原料濃度は0.5〜10
容量%の範囲が好ましい。また原料に対する酸素
の容量比は0.5〜10の範囲である。供給ガスの空
間速度は100〜5000hr-1(S.T.P.)の範囲が適当で
ある。 触媒を用いるに際し反応装置は一般に固定床の
形式で用いるが前述したごとく機械的強度がひじ
ようにすぐれた触媒であることからも、流動床、
移動床いずれの形式においても十分使用できうる
ものである。 以下、本発明による触媒の調製法およびテスト
結果を実施例をもつて説明するが、触媒の機械的
強度の測定は次の方法でおこなつた。 圧縮強度;木屋式硬度計を使用し触媒−粒の縦
軸方向あるいは縦軸垂直方向に荷重をかけ
ひび割れを生じた時の荷重を測定した。 (ペレツトについては縦軸方向のみを測定
した。) 摩耗度;内径100mmφ、巾100mmの12メツシユス
テンレス製金網からできた円筒の中に触媒
50gを入れ、この円筒を毎分100回転の速
度で30分間連続してまわした後、円筒内に
のこつた触媒の重量を計り、次の式により
摩耗率を計算した。 摩耗率(%)=触媒重量(50g)−回転後金網内
に残つた触媒重量(g)/触媒重量(50g)×100 落下強度;垂直に立てた内径25mmφで長さが
5000mmLの鉄パイプの上部から触媒30gを
落下させ4メツシユの篩で受けとめ、篩上
に残つた触媒の重量を計り次の式により落
下強度率を測定した。 落下強度率(%)=篩上に残つた触媒の重量(g
)/触媒重量(30g)×100 なお、実施例および比較例の転化率、選択率、
単流収率については次の定義に従がうものとす
る。 転化率(%)=消費したアルデヒドまたは酸のモル数
/供給したアルデヒドまたは酸のモル数×100 選択率(%)=生成したメタクリル酸あるいはメタク
ロレインのモル数/消費したアルデヒドまたは酸のモル
数×100 単流収率(%)=生成したメタクリル酸のモル数/供
給したアルデヒドまたは酸のモル数×100 また触媒の形状としての記述においてはペレツ
トは5.5mmφ×6mmLの円柱形、リングは5.5mmφ
×6mmLの円柱形のものに内孔径2mmφの貫通孔
を空けたものを意味する。 実施例 1 加熱した水1000mlにパラモリブデン酸アンモニ
ウム441.4gとメタバナジン酸アンモニウム24.4
gを溶解し撹拌した。この溶液に水100mlにリン
酸(84重量%)31.2gを溶かした溶液を加え撹拌
しリン−モリブデン−バナジウム化合物ベースの
スラリーをえた。このスラリーに硝酸セシウム
40.6gを水200mlに溶解した液とシリコンカーバ
イドウイスカ(繊維直径0.1〜0.5μm、長さ10〜
100μm)9.5gを加え蒸発乾燥しえられた固体を
粉砕し成型原料の粉体をえた。この粉体を少量の
水を加えよく混合したのち押出し成型機によりペ
レツトに成型し250℃で乾燥後400℃で4時間空気
流通下焼成して酸素を除く原子比でP1.3
Mo12V1Cs1なる組成の触媒酸化物(ウイスカ2
重量%含有)をえた。この触媒の機械的強度測定
の結果は表−1に示した。 反応方法 触媒50mlを内径25mmφのステンレス製U字管に
充填し280℃の溶融塩浴中に浸漬し該管内に容量
比でメタクロレイン:酸素:窒素:水=1:5:
34:10の原料混合ガスを空間速度1000hr-1で通じ
反応をおこなつた。反応結果を表−1に示した。 比較例 1 実施例1においてシリコンカーバイドウイスカ
の量を零とした以外は同様に調製した触媒の強度
測定結果を表−2に示したが、実施例1の触媒に
くらべ成型状態もひじように悪く実用的な面から
とうてい満足しうるものではなかつた。 この触媒を用い実施例1と同様の反応をおこな
つた結果は表−2に示すとおりであつた。 実施例 2 実施例1において用いるウイスカの量を23.8g
とした以外は同様に調製し触媒をえた。強度測定
結果ならびに実施例1と同じ条件で反応したとき
の結果を表−1に示した。 実施例 3 実施例2において押出し成型時触媒の形状をリ
ング状に成型した以外は同様に調製した。触媒強
度測定結果ならびに実施例1と同条件で反応した
ときの結果を表−1に示した。 比較例 2〜4 実施例1において用いるウイスカを表−2に示
す他の繊維あるいは微粉抹にかえ、またその使用
量、触媒を表−2に示すものにした以外は実施例
1と同様の操作により触媒を得、表−2に示す結
果をえた。これら比較例の触媒はいずれも工業的
な使用を考えた結果機械的強度は満足できるもの
ではなく、かつリング状に成型することはできな
かつた。 実施例 4 水500mlに12−モリブドリン酸492.8gを溶かし
室温で撹拌した。この溶液に硝酸セシウム48.7
g、硝酸銅5.0gを水200mlに溶かした溶液および
窒化ケイ素ウイスカ(0.2〜0.5μmφ×50〜300μ
ml)23.8gを加え、蒸発乾固し粉砕して成型原料
の粉体をえた。この粉体を少量の水とよく混合し
押出し成型機によりリングに成型し乾燥後370℃
で4時間空気気流中焼成して酸素を除く原子比で
P1Mo12Cs1.2Cu0.1なる組成の触媒酸化物(ウイス
カ5重量%含有)をえた。この触媒の機械的強度
の測定結果を表−3に示した。またこの触媒を用
い実施例1の反応例において反応温度を320℃と
した以外は同様に反応をおこない表−3の結果を
えた。 比較例 5 実施例4において用いた窒化ケイ素の量を零と
した以外は同様にして触媒を調製し、また実施例
4と同条件で反応をおこない表−4に示す結果を
えた。 実施例 5 加熱した水1000mlにパラモリブデン酸アンモニ
ウム441.4gとメタバナジン酸アンモニウム18.3
gを溶解し撹拌した。この溶液にピリジン100g
とリン酸(85重量%)31.2gを加えつづいて硝酸
(比重1.38)200mlと水酸化ルビジウム21.4gおよ
び硝酸銀3.5gを水200mlに溶かした溶液を加え撹
拌しながらつぎにチタン酸カリウムウイスカ
(0.2〜0.5μmφ×10〜100μml)47.5gを加え加熱濃
縮した。えられた粘土状物質を乾燥後粉砕し少量
の水を加えよく混合したのち押出し成型機により
リング状に成型し250℃で乾操後窒素気流中450℃
で4時間つづいて空気気流中400℃で2時間焼成
し酸素を除く原子比でP1.3Mo12V0.75Rb1.0Ag0.1
る組成の触媒酸化物(ウイスカ10重量%含有)を
えた。この触媒の機械的強度測定結果ならびに実
施例1でおこなつた反応条件下(但し反応温度の
み290℃に変更)で反応した結果は表−3に示す
とおりであつた。 実施例 6 実施例5において次の変更、すなわち、メタバ
ナジン酸アンモニウムの量を24.4gに、水酸化ル
ビジウム21.4gを硝酸セシウム48.7gに、またチ
タン酸カリウムウイスカ47.5gを実施例1で用い
たと同じシリコンカーバイドウイスカ33.3gに、
さらに触媒形状をペレツトにかえた以外は実施例
5と同様に調製し酸素を除く原子比でP1.3
Mo12V1Cs1.2Ag0.1なる組成の触媒酸化物(ウイス
カ7重量%含有)をえた。この触媒の機械的強度
の測定ならびに実施例1と同様の反応条件下で反
応したそれぞれの結果は表−3のとおりであつ
た。 実施例 7 実施例6において触媒の形状をリングにかえた
以外はすべて同様に調製し触媒をえた。強度測定
結果ならびに実施例1の反応例と同条件で反応し
た結果を表−3に示した。 比較例 6 実施例7の触媒をシリコンカーバイドウイスカ
なしで調製した。この触媒の各種測定結果を表−
4に示した。 比較例 7 実施例7の触媒においてシリコンカーバイドウ
イスカを同量のヒユームドシリカ(アエロジル10
〜40μm)にかえて触媒を調製した。この触媒の
各種測定結果を表−4に示した。 実施例 8 実施例6においてメタバナジン酸アンモニウム
の量を36.6g、硝酸銀の量を7.1g、さらにシリ
コンカーバイドウイスカの量を71.4gとした以外
はすべて同様に調製し酸素を除く原子比でP1.3
Mo12V1.5Cs1.2Ag0.2なる組成のリング状触媒酸化
物(ウイスカ15重量%含有)をえた。この触媒の
機械的測定結果を表−5に示した。またこの触媒
を用い実施例1の反応例においてメタクロレイン
をイソブチルアルデヒドにかえ、それ以外は同様
にして反応した結果は表−5に示すとおりであつ
た。 比較例 8 実施例8の調製においてシリコンカーバイドウ
イスカの量を零とした以外同様にして触媒をえ
た。この触媒の機械的強度の測定結果ならびに実
施例8と同様の反応をおこなつたときの結果を表
−5に示した。 実施例 9 加熱した水1000mlにパラモリブデン酸アンモニ
ウム441.4gとメタバナジン酸アンモニウム30.5
gを溶解し撹拌した。この溶液にピリジン100g
とリン酸(85重量%)36.0gを加えつづいて硝酸
(比重1.38)200mlと硝酸セシウム40.6g、硝酸ス
トロンチウム8.8g、硝酸銅10.1gを水200mlに溶
かした溶液ならびに三酸化アンチモン15.2gを加
え撹拌しながら加熱濃縮した。えられた粘土状物
質を乾燥後粉砕してえた粉体に実施例4で用いた
と同じチツ化ケイ素ウイスカ71.4gと少量の水を
加え十分に混合したのち押出し成型機によりリン
グ状に成型した。これを250℃で乾燥後窒素気流
中450℃で4時間つづいて空気気流中400℃で2時
間焼成し酸素を除く原子比でP1.5Mo12V1.25Cs1.0
Sr0.2Cu0.2Sb0.5なる組成の触媒酸化物(ウイスカ
15重量%含有)をえた。 この触媒の機械的強度の測定結果を表−5に示
した。この触媒50mlを内径25mmφのステンレス製
U字管に充填し、270℃の溶融塩浴中に浸漬し該
管内に容量比でイソ酪酸:酸素:窒素:水=2:
3:90:5の原量混合ガスを空間速度2000hr-1
通じ反応をおこなつた。反応結果は表−5に示し
た。 比較例 9 実施例9において用いたチツ化ケイ素ウイスカ
の量を零とした以外はすべて同様に調製し触媒を
えた。この触媒の機械的強度の測定結果、ならび
に実施例9と同条件下イソ酪酸の酸化反応をした
ときの結果を表−5に示した。
The present invention relates to a heteropolyacid-based shaped catalyst composition containing whiskers. To be more specific, the present invention molds a heteropolyacid catalytic active component based on molybdophosphoric acid or molybdovanadophosphoric acid in the coexistence of whiskers, thereby achieving excellent mechanical strength (crushing strength, abrasion resistance) for industrial use. To provide a shaped catalyst composition which exhibits excellent catalytic performance when producing methacrylic acid by oxidizing or oxidatively dehydrogenating methacrolein, isobutyraldehyde or isobutyric acid in the gas phase. With the goal. It has been known to use inorganic fibers or whiskers themselves as catalyst carriers (Japanese Patent Publication No. 53-38264).
(See the specifications of publications such as JP-A-58-3642, JP-A-58-3643, and JP-A-53-50051). However, the purpose of the catalysts disclosed in these publications is to use glass fibers, asbestos, or whiskers as a means for highly dispersing a catalytically active substance, that is, as a carrier, and the purpose of the present invention is to use whiskers as a catalytically active substance. It is not used as a molding aid, that is, it is not used as a molding aid. Furthermore, a method of adding inorganic fibers and organic fibers to a catalyst material to obtain a shaped catalyst with high strength is also known (Japanese Patent Publication No. 51-7475, Japanese Patent Publication No. 51-20357, etc.). However, until now, there have been no examples in which whiskers have been specifically used as shaping aids for catalysts based on heteropolyacid compounds, and even more so, there have been no examples in which whiskers having a specific range of shapes as disclosed in the present invention have been used as shaping aids. unknown. On the other hand, phosphorus is generally used as a catalyst for producing methacrylic acid through a catalytic gas phase reaction of methacrolein, isobutyraldehyde, isobutyric acid, etc.
Catalysts based on molybdenum or phosphorus-molybdenum-vanadium are excellent, and many reports have been made on these catalysts. Chemically, these compositions such as phosphorus-molybdenum or phosphorus-molybdenum-vanadium have a heteropolyacid structure, molybdophosphoric acid or molybdovanadophosphoric acid, and catalyst compositions based on these heteropolyacids themselves It has the disadvantage of extremely poor moldability, and various studies have been conducted on the form of the catalyst, mechanical strength, etc. in order to make it a practical catalyst. Regarding the form of the catalyst, commonly used are supported catalysts in which catalyst components are adhered to a suitable carrier, pressure-molded catalysts by tablet molding or extrusion molding, and granulated catalysts by tumbling granulation. Which form to use is determined by comprehensively considering the properties of the catalytic material, catalytic performance, and mechanical strength. It is extremely difficult to make it into a catalyst, and various reports have been published on its improvement. For example, JP-A-56-37050 discloses a catalyst composition in which an alkali metal element is added to phosphorus-molybdenum-vanadium and is supported on a heat-resistant inorganic substance to improve mechanical strength. Generally, when a supported catalyst is used in a catalytic gas phase reaction, it has the advantage of suppressing heat generation in the catalyst layer and suppressing sequential reactions of the target products, but the reaction temperature must be raised to maintain sufficient catalytic activity. As a result, there is a drawback that the life of the catalyst is likely to be adversely affected. Furthermore, when the catalyst material is pressure-molded by tablet molding or extrusion molding, the surface area and pore volume of the catalyst change, resulting in an undesirable phenomenon in which the catalyst performance deteriorates.
Moreover, as mentioned earlier, substances based on heteropolyacid compounds have the disadvantage that they are difficult to mold, so if only the catalyst material itself is molded without using molding aids or binders, sufficient mechanical strength can be achieved. It will not be something with. Moreover, when a molded catalyst is molded to give it strength, the catalyst performance generally deteriorates. As an example of solving such problems with shaped catalysts, for example, Japanese Patent Application Laid-Open No. 56-24048 describes a catalyst composition in which phosphorus-molybdenum and other metal elements are added to a catalyst composition in which a volatile substance or a fine powder carrier is added. A method is disclosed in which the surface area and pore volume of a catalyst are defined within a preferable range by molding, thereby providing strength without deteriorating catalyst performance. Further, Japanese Patent Publication No. 51-20357 discloses a method of mixing a catalyst composition with heat-resistant fibers such as glass fibers and ceramic fibers and extrusion molding the mixture to obtain a molded catalyst with high mechanical strength.
However, when the present inventors conducted various studies on the above method, it was found that mechanical strength would not be sufficient even when applied to a catalyst based on a heteropolyacid compound. Thus, it has been found that in any of these methods, the catalyst is insufficient in both mechanical strength and performance from the viewpoint of industrial use. Moreover, when performing a catalytic gas phase reaction industrially, there are various restrictions imposed by the reactor. For example, in a fixed bed reactor, catalyst destruction and powdering occur inside the reactor when filling the reaction tube with the catalyst and during the reaction. This may lead to an increase in the pressure drop or an increase in the blower load, and also lead to serious problems during production, such as automation of reaction raw materials and products and sequential reaction enhancement due to the increase in reaction pressure drop. On the other hand, JP-A-57-12830, JP-A-57-171443
-4 and JP-A-57-177347-8, a catalyst based on a heteropolyacid compound is prepared in the presence of a nitrogen-containing heterocyclic organic compound (for example, pyridine, piperidine, piperazine, etc.), and mechanically It has been reported that a catalyst with high strength and catalytic performance suitable for industrial use was obtained. However, in this technique, the preparation method is sometimes complicated, and there remains dissatisfaction in terms of industrial implementation. The present inventors improved these known techniques, searched for a catalyst that could be industrially manufactured and used as a practical catalyst, and developed the present invention. The present invention relates to a catalyst composition based on molybdophosphoric acid or molybdovanadophosphoric acid containing whiskers, and the above-mentioned heteropolyacid in which the whiskers have an average diameter of 5 microns or less and an average length of 1000 microns or less. A catalyst composition based on the compound is provided. According to the findings of the present inventors, the catalyst of the present invention obtained by combining a catalyst composition based on a heteropolyacid compound and a whisker and molded by extrusion molding, for example, has excellent crush strength, abrasion resistance, and drop strength as compared with the heteropolyacid compound. However, this catalyst is so excellent that it is hard to imagine.
When it was used in the catalytic gas phase reaction of isobutyraldehyde or isobutyric acid, no decrease in activity or selectivity for methacrylic acid was observed, and on the contrary, it became clear that the activity was improved. Moreover, although it has been conventionally said that products formed into cylindrical shapes (rings) by extrusion molding are generally weak in mechanical strength, there is no problem in mechanical strength even if rings are molded according to the method of the present invention. Moreover, the selectivity for methacrylic acid was further improved, and a catalyst which was industrially very advantageous as a catalyst for producing methacrylic acid by catalytic gas phase reaction was completed. In the present invention, extrusion molding is preferably employed as the catalyst molding method. This is because it is judged to be preferable after comprehensively considering ease, yield, reproducibility, and performance during catalyst production, but the method is not necessarily limited to extrusion molding, and generally known tablet molding can be used. The present invention can be applied to any of the following methods: method, rolling granulation method, and marmerizer molding method. The present invention will be explained in more detail below. A whisker is generally considered to be a single crystal fiber with a diameter of 200 microns or less and a length to diameter (aspect ratio) of 10 or more, but recently it has been interpreted broadly to include polycrystalline fibers. In the present invention, the average diameter is 5 microns or less, and the average length is 5 microns or less.
Those with a diameter of 1000 microns or less are preferably used. The material of the whiskers used in this invention is not limited to metals, but may also be refractories; specifically, metals such as tungsten, iron, and nickel, silicon carbide, boron carbide, titanium carbide, silicon nitride, silica alumina, Whiskers made of alumina oxide, titanium oxide, beryllium oxide, potassium titanate, calcium phosphate, etc., produced by known methods and remaining as whiskers in the shaped catalyst targeted by the present invention, are those made of the above materials. Any of these can be suitably used. As a result of various studies on the shape of the whiskers used, we found that the diameter and length may have a subtle effect on the mechanical strength of the catalyst. It has been found that mechanical strength is dramatically improved when the diameter is 1000 microns or less, preferably 500 microns or less. The whisker content can be effective with a small amount relative to the catalyst, but it varies somewhat depending on the type of whisker, and can be contained in a range of 1 to 50% by weight relative to the catalyst. Although there are many unknown points regarding the cause of the effect when using this specified whisker, it is thought to be as follows. In other words, in a heteropolyacid-based catalyst, the size of the constituent particles depends on the preparation conditions, but observation results show that they are spherical or block-shaped, about 1 micron or less, and therefore, the smaller the whisker diameter and the shorter the length to some extent. It is thought that the dispersion is better as the amount increases, and even in a small amount, it mechanically matches well with the catalyst particles, resulting in a revolutionary improvement in physical strength. The composition of the catalyst constituent elements that can be applied to this invention is not particularly limited as long as it is mainly composed of heteropolyacid compounds such as molybdophosphoric acid, molybdovanadophosphoric acid, and metal salts thereof.
In order to produce methacrylic acid in high yield, the following general formula P a Mo b V c X d Y e Of [where P is phosphorus, Mo is molybdenum, V is vanadium, and X is an alkali metal and/or One or more elements selected from alkaline earth metal elements; Y is one or more elements selected from copper, silver, arsenic, antimony, tellurium, cobalt, bismuth, tungsten, and zirconium; O represents oxygen; . The subscripts a, b, c, d, e, and f represent each atomic ratio. When b = 12, a = 0.1 to 3.0, preferably 0.5 to 1.5, c = 0 to 6.0, preferably 0.1 to 2.5, and d = 0.05 to 5.0. Preferably 0.1-2.0 e=0.01-5.0 Preferably 0.05-2.0 f is a numerical value determined by the valence and atomic ratio of each element. ] A composition represented by the following is preferable. Furthermore, various catalyst raw materials can be used. Examples of phosphorus compounds include orthophosphoric acid,
Examples of molybdenum compounds such as disodium hydrogen phosphate, monoammonium phosphate, and diammonium phosphate include molybdenum trioxide, molybdic acid, sodium molybdate, ammonium paramolybdate, and phosphomolybdate; examples of vanadium compounds include vanadium pentoxide. , ammonium metavanadate, sodium metavanadate, vanadyl oxalate, vanadyl sulfate, etc. In addition, the X and Y components are selected from hydroxides, nitrates, sulfates, carbonates, halides, ammonium salts, oxyacids, etc. of the respective elements. The catalyst is prepared using phosphorus-molybdenum or phosphorus-molybdenum.
It is applicable to all known catalyst preparation methods based on molybdenum-vanadium. For example, to a previously prepared aqueous solution of molybdophosphoric acid or molybdovanadophosphoric acid, an aqueous solution of the compound of the other element required is added to create a slurry-like material, an appropriate amount of whiskers is added thereto, and the mixture is evaporated to dryness and then ground. to produce a whisker-containing heteropolyacid compound-based powder. Alternatively, the raw materials of phosphorus, molybdenum, vanadium and other necessary additional metal elements are added to water to form a slurry-like material, an appropriate amount of whiskers is added thereto, evaporated and dried, and then ground to obtain whisker-containing powder. After adding a small amount of water to the powder obtained in this way and mixing it thoroughly, an extrusion molding machine is used to mold the powder into, for example, 5.5 mmφ.
It is molded into a cylindrical shape of x6 mmL or a ring with a space of through hole inner diameter 2.0 mmφ in the outer shape of the cylinder, and after drying, it is calcined at 350 to 400°C in the presence of air to obtain a catalyst. Further, when the present invention is used in combination with the catalyst preparation method using the nitrogen-containing heterocyclic organic compound described above, a step of eliminating the organic compound is added before calcination. That is, heat treatment may be performed in an atmosphere of an inert gas (for example, nitrogen, helium, argon, carbon dioxide) or a reducing gas such as a hydrocarbon at a temperature in the range of 200 to 600°C. In addition to the timing mentioned above, whiskers may be added by any method in which the starting materials of the catalyst constituent elements are made into a slurry in the presence of water, and the slurry is mixed into the powder obtained by evaporation, drying, and pulverization. All of the catalysts obtained in this manner are in an extremely good molded state, and the results of mechanical strength measurements of these catalysts also show that they are extremely excellent. As described above, the whisker-added catalyst of the present invention not only makes it possible to mold heteropolyacid compound-based catalysts as desired and use them industrially, which has been considered difficult until now, but also improves the physical properties of the catalyst. This not only increases activity but also alleviates heat accumulation in the catalyst layer, resulting in the advantages of suppressing undesirable sequential reactions and improving reaction selectivity. It has been found. When the catalyst of the present invention is used in a catalytic gas phase reaction, methacrolein, isobutyraldehyde or isobutyric acid is used as a raw material, and molecular oxygen is mixed with any of these to carry out the reaction. Air is industrially advantageous as an oxygen source, and inert gases such as nitrogen, carbon dioxide, helium, argon, carbon monoxide, and water vapor can be used as diluents, but the use of water vapor is particularly This is also advantageous for the purpose of suppressing by-products. The raw material concentration targeted in the reaction is 0.5 to 10
A range of % by volume is preferred. The volume ratio of oxygen to raw material is in the range of 0.5 to 10. The space velocity of the supplied gas is suitably in the range of 100 to 5000 hr -1 (STP). When using a catalyst, the reactor is generally in a fixed bed format, but as mentioned above, the catalyst has excellent mechanical strength, so a fluidized bed,
Any type of moving bed can be used satisfactorily. The preparation method and test results of the catalyst according to the present invention will be explained below with reference to examples, and the mechanical strength of the catalyst was measured by the following method. Compressive strength: Using a Kiya type hardness tester, a load was applied in the vertical axis direction of the catalyst particles or in a direction perpendicular to the vertical axis, and the load at which cracks occurred was measured. (The pellets were measured only in the vertical axis direction.) Abrasion degree: The catalyst was placed in a cylinder made of 12-mesh stainless steel wire mesh with an inner diameter of 100 mmφ and a width of 100 mm.
After putting 50 g of catalyst into the cylinder and rotating the cylinder continuously for 30 minutes at a speed of 100 revolutions per minute, the weight of the catalyst remaining inside the cylinder was measured, and the wear rate was calculated using the following formula. Wear rate (%) = Catalyst weight (50 g) - Catalyst weight (g) remaining in the wire mesh after rotation / Catalyst weight (50 g) x 100 Drop strength: When the inner diameter is 25 mmφ and the length is
30g of catalyst was dropped from the top of a 5000mmL iron pipe and received by a 4-mesh sieve, the weight of the catalyst remaining on the sieve was measured, and the falling strength rate was measured using the following formula. Falling strength rate (%) = Weight of catalyst remaining on the sieve (g
)/catalyst weight (30g) x 100 In addition, the conversion rate, selectivity,
Single-stream yield shall comply with the following definition. Conversion rate (%) = Number of moles of aldehyde or acid consumed/Number of moles of aldehyde or acid supplied x 100 Selectivity (%) = Number of moles of methacrylic acid or methacrolein produced/Number of moles of aldehyde or acid consumed ×100 Single flow yield (%) = Number of moles of methacrylic acid produced/Number of moles of aldehyde or acid supplied ×100 Also, in the description of the shape of the catalyst, the pellet is a cylinder of 5.5 mmφ x 6 mmL, and the ring is 5.5 mm. mmφ
It means a cylindrical piece measuring 6mmL with a through hole of 2mmφ in inner diameter. Example 1 441.4 g of ammonium paramolybdate and 24.4 g of ammonium metavanadate in 1000 ml of heated water
g was dissolved and stirred. A solution of 31.2 g of phosphoric acid (84% by weight) dissolved in 100 ml of water was added to this solution and stirred to obtain a slurry based on a phosphorus-molybdenum-vanadium compound. Add cesium nitrate to this slurry.
40.6g dissolved in 200ml water and silicon carbide whiskers (fiber diameter 0.1~0.5μm, length 10~
100 μm) was added, evaporated and dried, and the resulting solid was pulverized to obtain powder as a molding raw material. After adding a small amount of water and mixing well, this powder was formed into pellets using an extrusion molding machine, dried at 250°C, and then calcined at 400°C for 4 hours under air circulation to obtain an atomic ratio of P 1.3 excluding oxygen.
Catalytic oxide with composition Mo 12 V 1 Cs 1 (whiskers 2
(wt% content) was obtained. The results of measuring the mechanical strength of this catalyst are shown in Table 1. Reaction method: Fill a stainless steel U-shaped tube with an inner diameter of 25 mmφ with 50 ml of catalyst, immerse it in a molten salt bath at 280°C, and add methacrolein: oxygen: nitrogen: water = 1:5 by volume into the tube.
The reaction was carried out by passing a 34:10 raw material gas mixture at a space velocity of 1000 hr -1 . The reaction results are shown in Table-1. Comparative Example 1 Table 2 shows the strength measurement results of a catalyst prepared in the same manner as in Example 1 except that the amount of silicon carbide whiskers was zero, but the molding condition was also much worse than that of the catalyst of Example 1. From a practical standpoint, this was not entirely satisfactory. The same reaction as in Example 1 was carried out using this catalyst, and the results were as shown in Table 2. Example 2 The amount of whiskers used in Example 1 was 23.8g.
A catalyst was prepared in the same manner except for the following. Table 1 shows the strength measurement results and the results obtained when reacting under the same conditions as in Example 1. Example 3 A catalyst was prepared in the same manner as in Example 2 except that the catalyst was molded into a ring shape during extrusion molding. Table 1 shows the catalyst strength measurement results and the results obtained when the reaction was carried out under the same conditions as in Example 1. Comparative Examples 2 to 4 The same operation as in Example 1 except that the whiskers used in Example 1 were replaced with other fibers or fine powder shown in Table 2, and the amount used and catalyst were changed to those shown in Table 2. A catalyst was obtained, and the results shown in Table 2 were obtained. As a result of considering industrial use, the catalysts of these comparative examples all had unsatisfactory mechanical strength and could not be molded into a ring shape. Example 4 492.8 g of 12-molybdophosphoric acid was dissolved in 500 ml of water and stirred at room temperature. Add 48.7 cesium nitrate to this solution.
g, a solution of 5.0 g of copper nitrate dissolved in 200 ml of water and silicon nitride whiskers (0.2 to 0.5 μmφ x 50 to 300 μm
ml) was added, evaporated to dryness, and pulverized to obtain a powder as a molding raw material. This powder is thoroughly mixed with a small amount of water, molded into a ring using an extruder, and dried at 370°C.
By firing in an air stream for 4 hours to remove oxygen, the atomic ratio
A catalyst oxide having a composition of P 1 Mo 12 Cs 1.2 Cu 0.1 (containing 5% by weight of whiskers) was obtained. Table 3 shows the results of measuring the mechanical strength of this catalyst. Using this catalyst, a reaction was carried out in the same manner as in the reaction example of Example 1, except that the reaction temperature was changed to 320°C, and the results shown in Table 3 were obtained. Comparative Example 5 A catalyst was prepared in the same manner as in Example 4 except that the amount of silicon nitride used was zero, and the reaction was carried out under the same conditions as in Example 4 to obtain the results shown in Table 4. Example 5 441.4 g of ammonium paramolybdate and 18.3 g of ammonium metavanadate in 1000 ml of heated water
g was dissolved and stirred. 100g of pyridine in this solution
and 31.2 g of phosphoric acid (85% by weight) were added, followed by a solution of 200 ml of nitric acid (specific gravity 1.38), 21.4 g of rubidium hydroxide and 3.5 g of silver nitrate dissolved in 200 ml of water, and while stirring, potassium titanate whiskers (0.2 47.5 g of ~0.5 μmφ×10-100 μml) was added and concentrated by heating. After drying, the resulting clay-like material was crushed, mixed well with a small amount of water, and formed into a ring shape using an extruder. After drying at 250℃, it was heated at 450℃ in a nitrogen stream.
The mixture was calcined for 4 hours at 400°C in an air stream for 2 hours to obtain a catalyst oxide (containing 10% by weight of whiskers) having an atomic ratio of P 1.3 Mo 12 V 0.75 Rb 1.0 Ag 0.1 excluding oxygen. The results of measuring the mechanical strength of this catalyst and the results of the reaction under the same reaction conditions as in Example 1 (however, only the reaction temperature was changed to 290°C) were as shown in Table 3. Example 6 The following changes were made in Example 5: the amount of ammonium metavanadate was changed to 24.4 g, the amount of rubidium hydroxide was changed to 48.7 g of cesium nitrate, and the amount of potassium titanate whisker was changed to 47.5 g as in Example 1. 33.3g of silicon carbide whiskers,
Furthermore, it was prepared in the same manner as in Example 5 except that the catalyst shape was changed to pellets, and the atomic ratio excluding oxygen was P 1.3.
A catalyst oxide having a composition of Mo 12 V 1 Cs 1.2 Ag 0.1 (containing 7% by weight of whiskers) was obtained. Table 3 shows the results of measuring the mechanical strength of this catalyst and performing the reaction under the same reaction conditions as in Example 1. Example 7 A catalyst was prepared in the same manner as in Example 6 except that the shape of the catalyst was changed to a ring. Table 3 shows the strength measurement results and the results of the reaction under the same conditions as the reaction example of Example 1. Comparative Example 6 The catalyst of Example 7 was prepared without silicon carbide whiskers. The table below shows various measurement results for this catalyst.
4. Comparative Example 7 In the catalyst of Example 7, silicon carbide whiskers were replaced with the same amount of fumed silica (Aerosil 10).
~40 μm). Various measurement results of this catalyst are shown in Table 4. Example 8 Everything was prepared in the same manner as in Example 6 except that the amount of ammonium metavanadate was 36.6 g, the amount of silver nitrate was 7.1 g, and the amount of silicon carbide whisker was 71.4 g, and the atomic ratio excluding oxygen was P 1.3.
A ring-shaped catalyst oxide (containing 15% by weight of whiskers) with the composition Mo 12 V 1.5 Cs 1.2 Ag 0.2 was obtained. The mechanical measurement results of this catalyst are shown in Table 5. Further, using this catalyst, the reaction was carried out in the same manner as in the reaction example of Example 1 except that methacrolein was replaced with isobutyraldehyde, and the results were as shown in Table 5. Comparative Example 8 A catalyst was obtained in the same manner as in Example 8 except that the amount of silicon carbide whiskers was reduced to zero. Table 5 shows the results of measuring the mechanical strength of this catalyst and the results obtained when the same reaction as in Example 8 was carried out. Example 9 441.4 g of ammonium paramolybdate and 30.5 g of ammonium metavanadate in 1000 ml of heated water
g was dissolved and stirred. 100g of pyridine in this solution
and 36.0 g of phosphoric acid (85% by weight) were added, followed by 200 ml of nitric acid (specific gravity 1.38), a solution of 40.6 g of cesium nitrate, 8.8 g of strontium nitrate, 10.1 g of copper nitrate dissolved in 200 ml of water, and 15.2 g of antimony trioxide. The mixture was heated and concentrated while stirring. The obtained clay-like substance was dried and pulverized to obtain a powder. 71.4 g of the same silicon dioxide whisker used in Example 4 and a small amount of water were added and mixed thoroughly, and then molded into a ring shape using an extrusion molding machine. This was dried at 250°C, then fired at 450°C in a nitrogen stream for 4 hours, and then fired at 400°C in an air stream for 2 hours to give an atomic ratio of P 1.5 Mo 12 V 1.25 Cs 1.0 excluding oxygen.
Catalytic oxide (whisker) with composition Sr 0.2 Cu 0.2 Sb 0.5
(containing 15% by weight). Table 5 shows the results of measuring the mechanical strength of this catalyst. Fill a stainless steel U-shaped tube with an inner diameter of 25 mmφ with 50 ml of this catalyst, immerse it in a molten salt bath at 270°C, and fill the tube with a volume ratio of isobutyric acid: oxygen: nitrogen: water = 2:
The reaction was carried out by passing a mixed gas of 3:90:5 at a space velocity of 2000 hr -1 . The reaction results are shown in Table-5. Comparative Example 9 A catalyst was prepared in the same manner as in Example 9 except that the amount of silicon dioxide whiskers used was zero. Table 5 shows the results of measuring the mechanical strength of this catalyst and the results of the oxidation reaction of isobutyric acid under the same conditions as in Example 9.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ヘテロポリ酸ベースの化合物にウイスカを含
有してなる機械的強度のすぐれた成型触媒組成
物。 2 ヘテロポリ酸がモリブドリン酸またはモリブ
ドバナドリン酸である特許請求範囲1記載の触媒
組成物。 3 ウイスカが平均直径5ミクロン以下、平均長
さが1000ミクロン以下である特許請求範囲1記載
の触媒組成物。
[Claims] 1. A shaped catalyst composition with excellent mechanical strength, comprising a heteropolyacid-based compound containing whiskers. 2. The catalyst composition according to claim 1, wherein the heteropolyacid is molybdophosphoric acid or molybdovanadophosphoric acid. 3. The catalyst composition according to claim 1, wherein the whiskers have an average diameter of 5 microns or less and an average length of 1000 microns or less.
JP58055150A 1983-03-24 1983-04-01 Heteropolyacid base molded catalyst composition containing whisker Granted JPS59183832A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58055150A JPS59183832A (en) 1983-04-01 1983-04-01 Heteropolyacid base molded catalyst composition containing whisker
GB08407331A GB2138694B (en) 1983-03-24 1984-03-21 Heteropolyacid-type catalyst composition containing whiskers
US06/591,835 US4564607A (en) 1983-03-24 1984-03-21 Heteropolyacid-type catalyst composition containing whiskers
IT20220/84A IT1173477B (en) 1983-03-24 1984-03-23 COMPOSITION OF HETEROPOLIACID TYPE CATALYST CONTAINING BAFFI "WHISKERS"
DE19843410799 DE3410799A1 (en) 1983-03-24 1984-03-23 CATALYST DIMENSION
FR8404638A FR2543020B1 (en) 1983-03-24 1984-03-26 OXIDATION CATALYST COMPRISING A HETEROPOLYACID WITH TRICHITES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055150A JPS59183832A (en) 1983-04-01 1983-04-01 Heteropolyacid base molded catalyst composition containing whisker

Publications (2)

Publication Number Publication Date
JPS59183832A JPS59183832A (en) 1984-10-19
JPH0236296B2 true JPH0236296B2 (en) 1990-08-16

Family

ID=12990724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055150A Granted JPS59183832A (en) 1983-03-24 1983-04-01 Heteropolyacid base molded catalyst composition containing whisker

Country Status (1)

Country Link
JP (1) JPS59183832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137602A1 (en) 2009-05-26 2010-12-02 日本化薬株式会社 Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
WO2011065529A1 (en) 2009-11-30 2011-06-03 日本化薬株式会社 Process for production of catalyst for use in production of methacrylic acid, and process for production of methacrylic acid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649226A (en) * 1986-03-27 1987-03-10 Union Carbide Corporation Hydrogenation of alkyl oxalates
JP3892244B2 (en) 2001-03-21 2007-03-14 株式会社日本触媒 Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2009090200A (en) * 2007-10-05 2009-04-30 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5462300B2 (en) * 2012-02-23 2014-04-02 三菱レイヨン株式会社 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137602A1 (en) 2009-05-26 2010-12-02 日本化薬株式会社 Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
US8586785B2 (en) 2009-05-26 2013-11-19 Nipponkayaku Kabushikikaisha Process for producing catalyst for methacrylic acid production and process for producing methacrylic acid
WO2011065529A1 (en) 2009-11-30 2011-06-03 日本化薬株式会社 Process for production of catalyst for use in production of methacrylic acid, and process for production of methacrylic acid

Also Published As

Publication number Publication date
JPS59183832A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
KR100626132B1 (en) A process for producing unsaturated aldehydes and unsaturated carboxylic acids
JPS6236740B2 (en)
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
KR20160032037A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPH0233419B2 (en)
US4564607A (en) Heteropolyacid-type catalyst composition containing whiskers
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP6912153B2 (en) Manufacturing method of unsaturated aldehyde
KR20180029031A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPH0236296B2 (en)
JP2020073581A (en) Method of producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and catalyst for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid
JP2742413B2 (en) Catalyst for synthesizing methacrolein and its production method with excellent reproducibility
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0679666B2 (en) Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JPS60150834A (en) Preparation for synthesizing catalyst of methacrylic acid
JP5451271B2 (en) Method for producing unsaturated aldehyde or unsaturated carboxylic acid
JP7383202B2 (en) Catalyst and method for producing compounds using the same