JPH0232843A - Intermediate body of molded product and molded product - Google Patents

Intermediate body of molded product and molded product

Info

Publication number
JPH0232843A
JPH0232843A JP18307988A JP18307988A JPH0232843A JP H0232843 A JPH0232843 A JP H0232843A JP 18307988 A JP18307988 A JP 18307988A JP 18307988 A JP18307988 A JP 18307988A JP H0232843 A JPH0232843 A JP H0232843A
Authority
JP
Japan
Prior art keywords
fiber
prepreg
molded product
resin
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18307988A
Other languages
Japanese (ja)
Other versions
JPH0575575B2 (en
Inventor
Yasuhisa Nagata
康久 永田
Masafumi Hoyano
穂谷野 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP18307988A priority Critical patent/JPH0232843A/en
Publication of JPH0232843A publication Critical patent/JPH0232843A/en
Publication of JPH0575575B2 publication Critical patent/JPH0575575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a molded product which has superior heat resistance, tenacity and shock resistance and which can suppress the spread of cracks at the shock, by forming said product by a fiber having a modulus of tensile elasticity within a specific range and attaching said product onto the surface of a thermosetting prepreg having reinforcing fibers specified in the range of weight as a base material or sandwiching said product between fiber reinforced resin laminations. CONSTITUTION:Such fiber is employed for the cloth that has the modulus of tensile elasticity not larger than 10,000kgf/mm<2>, preferably 5,000kgf/mm<2>. When the modulus of tensile elasticity exceeds 10,000kgf/mm<2>, the spread of cracks can be suppressed less effectively. Although the kind of the fiber is not restricted, particularly glass fiber or aromatic aramid fiber is suitable. The weight of the cloth is 21-25g/m<2>, preferably 5-10g/m<2>. If the weight is 25g/m<2> or more, the basic characteristic of the molded product is deteriorated. The reinforcing fiber is preferably a carbon fiber, glass fiber, aromatic polyamide fiber etc. having the ductility not smaller than 1.3%. Further, when it is applied to a composite that has the ductility not smaller than 4.0% after the composite employed for the prepreg is hardened, the composite becomes high in the level of shock resistance.

Description

【発明の詳細な説明】 (技術分野) 本発明は、耐衝撃性に優れ衝撃時のクラック伝播を抑制
する能力のある成形物を製造するための中間体、及び、
該成形物に関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides an intermediate for producing a molded product having excellent impact resistance and the ability to suppress crack propagation upon impact, and
The present invention relates to the molded product.

本発明の中間体は、特に高強度炭素繊維等を強化材とし
た場合に、マトリックス樹脂の優れた機械的特性及び熱
的特性を損ねることなく、靭性(タフネス)を成形物に
与えることができ、また、この中間体から得られた本発
明の成形物は、航空機構造材料等として好適に使用され
る。
The intermediate of the present invention can impart toughness to molded products without impairing the excellent mechanical and thermal properties of the matrix resin, especially when high-strength carbon fiber or the like is used as a reinforcing material. Furthermore, the molded product of the present invention obtained from this intermediate is suitably used as an aircraft structural material.

(従来技術及び問題点) 近年、炭′M繊維、芳香族ポリアミド繊維等を強化材と
した複合材料は、その高い比強麿、比剛性を利用して、
航空機等の構造材として多く用いられてきている。
(Prior art and problems) In recent years, composite materials using carbon fibers, aromatic polyamide fibers, etc. as reinforcement materials have been developed by utilizing their high specific strength and specific stiffness.
It has been widely used as a structural material for aircraft etc.

これらの複合材料は、強化繊維にマトリックス樹脂が含
浸された中間製品であるプリプレグから、加熱・加圧と
いった成形・加工工程を経て実際に用いられる場合が多
い。
These composite materials are often actually used after forming a prepreg, which is an intermediate product in which reinforcing fibers are impregnated with a matrix resin, through forming and processing steps such as heating and pressing.

プリプレグにおけるマトリックス樹脂としては、熱硬化
性樹脂としてエポキシ樹脂、ビスマレイミド樹脂、不飽
和ポリエステル樹脂、ポリイミド樹脂等が用いられ、ま
た、最近ではポリエーテルエーテルケドンといった熱可
塑性樹脂も用いられるようになってきており、いずれの
樹脂を用いた場合も、複合材料は、その優れた耐熱性、
機械的特性、寸法安定性、耐薬品性、耐候性が特徴とさ
れてきた。
As the matrix resin in prepreg, thermosetting resins such as epoxy resin, bismaleimide resin, unsaturated polyester resin, and polyimide resin are used, and recently, thermoplastic resins such as polyether ether kedone have also been used. Regardless of which resin is used, the composite material has excellent heat resistance,
It has been characterized by its mechanical properties, dimensional stability, chemical resistance, and weather resistance.

熱可塑樹脂をマトリックス樹脂とした場合、良好な耐熱
性、機械的特性に加え複合材料の衝撃特性も侵れている
ことが期待されるが、プリプレグとしての取扱い性、例
えばプリプレグのドレープ性に乏しいために、現状の成
形加工技術では取扱いにくい材料であり、複雑形状物へ
の適用が難しい状況にある。
When a thermoplastic resin is used as a matrix resin, it is expected to have good heat resistance and mechanical properties as well as impact properties of the composite material, but it has poor handling properties as a prepreg, such as poor drapability of the prepreg. Therefore, it is a material that is difficult to handle with current molding technology, making it difficult to apply it to complex-shaped objects.

一方、エポキシ樹脂系プリプレグのように熱硬化性樹脂
をマトリックス樹脂に用いた場合、耐熱性、機械的特性
に良好な性能を示すことが認められてい1=が、反面、
マトリックスm脂の伸度が低(、脆いために複合材料の
靭性、耐衝撃性に劣ることが指摘され、その改善が求め
られてきた。
On the other hand, when a thermosetting resin such as an epoxy resin prepreg is used as a matrix resin, it is recognized that it shows good performance in terms of heat resistance and mechanical properties.
It has been pointed out that the toughness and impact resistance of composite materials are poor due to the low elongation and brittleness of the matrix resin, and improvements have been sought.

特に、これらのプリプレグから作られた複合材料は、こ
れを航空機−泡構造材用に使用する場合、離る陸時の小
石の跳上げ、整漏時の工具の落下等による外部からの衝
撃に耐える性能を有する必要があるが、耐熱性を落さず
に耐衝撃性を改善することは、これまで困難視されてい
た。
In particular, when composite materials made from these prepregs are used for aircraft-foam structural materials, they are resistant to external impacts such as pebbles being thrown up when leaving land and falling tools during leakage adjustment. Although it is necessary to have the ability to endure, it has been considered difficult to improve impact resistance without reducing heat resistance.

耐衝撃性のあるプリプレグに改善しようとする場合、■
炭素mH等の強化材自身の伸度を向」二さける、■プリ
プレグに用いられるマトリックス樹脂の靭性を上げる、
■強化繊維/マトリックス樹脂の界面を最適化すること
が重要なポイントであると指摘され研究が進められてき
たが、この他に成形物であるff4層材の高次構造を制
御することも衝撃特性の向、[やクラック伝播の抑制に
重要であると考えられる。
When trying to improve prepreg with impact resistance, ■
- Increasing the elongation of reinforcing materials such as carbon mH, ■ Increasing the toughness of the matrix resin used in prepreg,
■It has been pointed out that optimizing the reinforcing fiber/matrix resin interface is an important point and research has been progressing, but it is also important to control the higher-order structure of the FF4 layer material that is the molded product. It is thought to be important for improving properties and suppressing crack propagation.

プリプレグ用マトリックス樹脂をn靭性化し、複合材料
の耐衝撃性を向上させる技術としては、特開昭58−1
20639@、同62−250021号、回62−36
421号、同62−57417号の公報等で知られるよ
うに、マトリックス樹脂に特定のエラストマー成分、へ
分子母ゴム成分、熱可塑性樹脂を配合し、複合材料の靭
性やWJ撃時特性高めたプリプレグ組成物も開発されて
いるが、複合材料の耐衝撃性に関しては、今−歩満足ゆ
くものではなかった。
A technique for improving the impact resistance of composite materials by increasing the toughness of the matrix resin for prepregs is disclosed in Japanese Patent Application Laid-Open No. 58-1.
20639@, No. 62-250021, No. 62-36
As is known from publications such as No. 421 and No. 62-57417, prepregs are made by blending a matrix resin with a specific elastomer component, a polymeric rubber component, and a thermoplastic resin to improve the toughness and WJ impact properties of the composite material. Compositions have also been developed, but the impact resistance of composite materials has not yet been satisfactory.

強化131!11/マトリツクス樹脂の界面を最適化す
ることに関しては、繊維の表面処理条件、集束剤の秤類
を選択する等の研究が行われているが、まだ研究段階に
あり所望の効果が得られていないのが現状である。
Regarding optimizing the interface of reinforced 131!11/matrix resin, research is being conducted on the surface treatment conditions of fibers and the selection of scales for sizing agents, but it is still at the research stage and it is difficult to achieve the desired effect. The current situation is that it has not been obtained.

複合材料の高次構造を制御し、複合材料の耐衝撃性を改
良する技術としては、強化繊維の素材形態をコントロー
ルする方法、積層間に異種材料を挿入する方法等が考え
られる。等力的な材料にするため、強化素材に三次元織
物を使用する等の試みもなされているが、今のところ、
織物の製造が難しい、樹脂含浸性が悪い、繊維体積含有
率のコントロールが難しい等の問題点が多く、実用面で
は顕著な効果を発揮さヒるまでには至っていない。
Possible techniques for controlling the higher-order structure of a composite material and improving its impact resistance include a method of controlling the material form of reinforcing fibers, and a method of inserting different materials between laminated layers. Attempts have been made to use three-dimensional fabrics as reinforcing materials in order to create uniform materials, but so far,
There are many problems such as difficulty in fabrication, poor resin impregnation, and difficulty in controlling the fiber volume content, and so it has not been able to demonstrate any significant effects in practical use.

複合材料のfeR唐間に異種材料を挿入する技術に関し
ては、特開昭51−33162号、同61−13571
2号の公報に示されるように、プリプレグの表面にスク
リム・クロスを張り合わせた材料が知られているが、こ
の場合のスクリム・り1コスは、むしろプリプレグの横
割れ防止や繊維乱れを防止するといった、プリプレグ自
身の補強的な目的のため使用されている。
Regarding the technology of inserting different materials between the feR spaces of composite materials, Japanese Patent Application Laid-open Nos. 51-33162 and 61-13571
As shown in Publication No. 2, a material in which a scrim cloth is laminated on the surface of a prepreg is known, but the scrim cloth in this case actually prevents horizontal cracking of the prepreg and fiber disorder. It is used for reinforcing purposes of prepreg itself.

複合材料の積層間に異種材料を挿入して、複合材料の%
I撃時特性向上させる技術として、特開昭60−632
29号、同60−231738号の公報に示されるよう
なインターリーフ技術がある。
% of the composite material by inserting dissimilar materials between the composite material stacks.
JP-A-60-632 as a technology to improve I attack characteristics.
There is an interleaf technique as shown in the publications No. 29 and No. 60-231738.

インターリーフ材料としては、厚さ0.03〜0.06
mmの可撓性に優れたエポキシ樹脂層を用いるのが一般
的であるが、厚さ0.01〜0.05a+蹟の、例えば
、ポリエーテルイミド、ポリエーテルサルホン、ポリエ
ーテルエーテルケトンのフィルムといった熱可塑性樹脂
フィルムを使用することも可能である。
As an interleaf material, the thickness is 0.03 to 0.06
It is common to use a highly flexible epoxy resin layer with a thickness of 0.01 to 0.05 mm, for example, a film of polyetherimide, polyether sulfone, or polyether ether ketone. It is also possible to use thermoplastic resin films such as.

インターリーフ材料として可撓性に優れたエポキシ樹脂
、例えばエラストマー成分の多い工ボキシ樹脂層を用い
た場合、衝撃特性の向上を図るためにはエラストマー成
分を多分配合することが必要であるが、そうすると、エ
ラストマー成分の種類やaにより複合材料としての耐熱
性や機械的特性の低下をIn <ことがあり、その種類
や吊に制限が加えられるため、充分な効果を発揮できな
いことが多い。
When using an epoxy resin with excellent flexibility as an interleaf material, for example, an engineered boxy resin layer with a high elastomer component, it is necessary to incorporate a large amount of elastomer component in order to improve the impact properties. Depending on the type and type of elastomer component, the heat resistance and mechanical properties of the composite material may be lowered.Since restrictions are placed on the type and length of the elastomer component, sufficient effects are often not achieved.

複合材料の積層間に熱可塑性樹脂フィルムを挿入した場
合、複合材料の耐衝撃性を向上させる効果は認められる
が、隣接した層と層との間が樹脂フィルムにより完全に
a所されるため、マトリックス樹脂と熱可塑性樹脂フィ
ルムとの接着性に問題があったり、WAmAm面方向脂
フローが遮断されるため、不均一な樹脂フローが起こり
、成形物の変形を招いたり、また、熱可塑性樹脂フィル
ムが比較的厚いため、マトリックス樹脂に対する熱可塑
性樹脂フィルムの体積割合が高くなり、それに伴なう複
合材料性能の低下を引き起こす場合もあった。
When a thermoplastic resin film is inserted between the laminated layers of a composite material, the effect of improving the impact resistance of the composite material is recognized, but since the space between adjacent layers is completely covered by the resin film, There may be problems with the adhesion between the matrix resin and the thermoplastic resin film, or the WAmAm in-plane direction fat flow may be blocked, resulting in uneven resin flow, leading to deformation of the molded product, or the thermoplastic resin film may be damaged. Since the film is relatively thick, the volume ratio of the thermoplastic resin film to the matrix resin becomes high, which sometimes causes a corresponding deterioration in the performance of the composite material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の如き問題点を克服し・優れた耐
熱性に加え、靭性や衝撃特性(Iii撃強さ)に優れ、
t!ii!時のクラック伝播を抑制する能力を有する成
形物を複合材料に与える中間体(プリプレグ)、及び、
該成形物を提供することにある。敷えんすると、熱硬化
性のマトリックス樹脂を用いたプリプレグにおいて、プ
リプレグの表面にマトリックス樹脂とは異質の材質から
なる薄い層を設け、成形侵の複合材料の積層間に異種材
料を挿入することで、衝撃強さに優れ、’tis時のク
ラック伝播を抑制する能力のあるホットメルトタイプ繊
維強化複合材料用成形中間体、及び、これから得られる
成形物を提供することにある。
The purpose of the present invention is to overcome the above-mentioned problems and provide excellent toughness and impact properties (III impact strength) in addition to excellent heat resistance.
T! ii! an intermediate (prepreg) that provides the composite material with a molding that has the ability to suppress crack propagation during
The object of the present invention is to provide the molded product. In prepreg using thermosetting matrix resin, a thin layer made of a material different from the matrix resin is provided on the surface of the prepreg, and the different material is inserted between the laminated layers of the composite material during molding. An object of the present invention is to provide a molded intermediate for a hot-melt type fiber-reinforced composite material that has excellent impact strength and the ability to suppress crack propagation during 'tis, and a molded product obtained therefrom.

(発明の構成) 本発明は、下記の請求項(1)及びIr1(2>に記載
されたとおりのものである。
(Structure of the Invention) The present invention is as described in the following claims (1) and Ir1 (2>).

〈1)強化IJAIIを基材とした熱硬化性樹脂系プリ
プレグの表面に、引張り弾性率10,000k(lf 
/12以下の繊維から作られたII帷目付1〜25g/
112の織物を貼着してなる繊維強化樹脂積層成形物中
間体。
(1) A tensile modulus of 10,000 k (lf
/II cloth weight 1-25g made from fibers of 12 or less/
An intermediate body of a fiber-reinforced resin laminate molded product formed by pasting the fabric of No. 112.

(2)引張り弾性率10,000kOf / ms’以
下の繊維から作られた繊維日付1〜25g /I’の織
物が、積層間に介在してなる繊維強化樹脂′v4層成形
物。
(2) A 4-layer fiber-reinforced resin molded product in which a woven fabric with a fiber date of 1 to 25 g/I' made from fibers with a tensile modulus of 10,000 kOf/ms' or less is interposed between the laminated layers.

本発明の好適な実fMB様は、下記のとおりである。Preferred real fMBs of the present invention are as follows.

(,1)強化m帷として、1.3%以上の伸度を有する
炭*m#11を用いる前記請求項(1)記載の繊維強化
樹脂積層成形物中間体。
(,1) The fiber-reinforced resin laminate molded intermediate according to claim (1), wherein charcoal *m#11 having an elongation of 1.3% or more is used as the reinforcing m-thread.

(b)熱硬化性樹脂系プリプレグ表面に貼着される織物
を形成している繊維の融点が、200℃以上であるもの
を用いる前記請求項(1)記載の繊維強化樹脂W4層成
形物中間体。
(b) The intermediate of the fiber-reinforced resin W 4-layer molded product according to claim (1), wherein the fibers forming the woven fabric adhered to the surface of the thermosetting resin prepreg have a melting point of 200°C or higher. body.

(C)熱硬化性樹脂系プリプレグに用いられているマト
リックス樹脂硬化物の伸度が、4.0%以上のものを用
いる前記請求項(1)記載の繊維強化樹脂積層成形物中
間体。
(C) The fiber-reinforced resin laminate molded intermediate according to claim 1, wherein the cured matrix resin used in the thermosetting resin prepreg has an elongation of 4.0% or more.

本発明の成形物は、Vfi撃強さに優れ、しかも発生し
たクラックを伝播させにくい特性を有するものである。
The molded product of the present invention has excellent Vfi impact strength and also has the property of making it difficult for cracks that occur to propagate.

本発明において織物を構成するII帷としては、繊維の
引張り弾性率が10,000kgf / lIm’以下
、好ましくは5,000kof/gui’以下の繊維が
用いられる。繊維の引張り弾性率が10,000kgf
 / ■’を超える場合は、クラック伝播を抑え、衝撃
特性を改善するような効果が小さい。使用される繊維の
種類には制限がなく、無機m紺、有機繊維いずれでもよ
く、また、天然高分子繊維、合成高分子繊維いずれでも
よい。特に、ガラス繊維、芳香族アラミド1iuaが好
適に使用される。
In the present invention, fibers having a tensile modulus of elasticity of fibers of 10,000 kgf/lIm' or less, preferably 5,000 kof/gui' or less are used as the II cloth constituting the woven fabric. Tensile modulus of fiber is 10,000kgf
/■', the effect of suppressing crack propagation and improving impact properties is small. The type of fiber used is not limited, and may be either inorganic navy blue or organic fiber, and may be either natural polymer fiber or synthetic polymer fiber. In particular, glass fiber and aromatic aramid 1iua are preferably used.

これらの繊維は、単用又は併用される。These fibers may be used alone or in combination.

繊紛の形態は、特に限定はなく、フィラメント状、紡績
糸、混紡糸等が用いられる。糸のヨリに関しても、特に
限定はなく、通常市販され雑の太さは、通常20〜50
0μ糟のものが用いられ、上記の繊維を単糸又はヨリ等
による白糸の形態で織機にかけ、lt物に加工される。
The form of the powder is not particularly limited, and filamentary, spun yarn, blended yarn, etc. are used. There is no particular limit to the twist of the thread, and the thickness of commercially available yarn is usually 20 to 50 mm.
The fibers with a diameter of 0μ are used, and the above-mentioned fibers are run on a loom in the form of single threads or twisted white threads, and processed into lt products.

繊維の熱的特性としては、マトリックス樹脂である熱硬
化性樹脂組成物の硬化温磨が100〜200℃であるた
め、繊維を構成する物質の融点が、200℃以上である
ことが望まれる。また、取扱い性又はマトリックス樹脂
である熱硬化性樹脂組成物どの馴染みを良くするため、
各m1ii維に一般的に使用されている繊維の物理的処
理、化学的処理、油剤処理等を行ってもかまわない。
Regarding the thermal properties of the fibers, since the thermosetting resin composition which is the matrix resin has a curing temperature of 100 to 200°C, it is desirable that the melting point of the substance constituting the fibers is 200°C or higher. In addition, in order to improve handleability or the compatibility of the thermosetting resin composition that is the matrix resin,
Physical treatment, chemical treatment, oil treatment, etc., which are generally used for each m1ii fiber, may be performed.

織物IIの種類としては、平織、綾織、朱子織、からめ
織等を挙げることができる。また、異なる種類の繊維を
用いて製織される、所謂、混用織物ら使用することが可
能である。
Examples of the type of fabric II include plain weave, twill weave, satin weave, and Karame weave. It is also possible to use a so-called mixed fabric, which is woven using different types of fibers.

織物の繊維目付(111位面積当たりの重さ)は、これ
らの#!吻が結果的には積層板(コンポジット)の積層
間に挿入される形になるため、成形物の機械的性質を損
ねない重さであることの必要性からして、1〜25Q 
/11 ’ 、好ましくは5〜10g /−2である。
The fiber basis weight (weight per 111th area) of the fabric is #! Since the snout will be inserted between the laminated sheets (composite), it is necessary to have a weight that does not impair the mechanical properties of the molded product.
/11', preferably 5 to 10 g/-2.

繊維目付が19/m3未満の場合は、衝撃特性を改善さ
せるような充分な効果が発揮できず、一方、25g /
+e ’超の場合は、成形物そ力ものに要求される引張
り強さ、11縮強さ等の塁本特性を低下させるようにな
る。
If the fiber basis weight is less than 19/m3, sufficient effect of improving impact properties cannot be exhibited;
If it exceeds +e', the basic properties such as tensile strength and compressive strength required for the molded product itself will be reduced.

本発明で用いられる織物に使用される繊維の具体的な種
類としては、綿、絹、レーヨン、有機合成高分子繊維(
ポリアクリロニトリル、ポリアミド、ポリエステル、ポ
リエーテルイミド、ポリエーテルエーテルケトン、アラ
ミド、ポリベンズイミダゾール、ポリイミド等の繊維)
、ガラス繊維、アルミ繊維等があり、ひとつの成形物に
数種のAI紺からなる織物を併用してもかまわない。
Specific types of fibers used in the fabrics used in the present invention include cotton, silk, rayon, organic synthetic polymer fibers (
Fibers such as polyacrylonitrile, polyamide, polyester, polyetherimide, polyetheretherketone, aramid, polybenzimidazole, polyimide, etc.)
, glass fiber, aluminum fiber, etc., and several types of fabrics made of AI navy blue may be used together in one molded product.

本発明に用いられる強化繊維は、1.3%以上の伸度を
有する炭素繊維、ガラス繊維、芳香族ポリアミド繊維等
が好ましい。通常、ガラス繊維、芳香族ポリアミド4I
I11は、2.5%以上の伸度を有している。炭素uI
IIに伸度1.3%未満のものを使用した場合、複合材
料の衝撃特性がやや不充分となるきらいがある。
The reinforcing fibers used in the present invention are preferably carbon fibers, glass fibers, aromatic polyamide fibers, etc. having an elongation of 1.3% or more. Usually glass fiber, aromatic polyamide 4I
I11 has an elongation of 2.5% or more. carbon uI
If II is used with an elongation of less than 1.3%, the impact properties of the composite material tend to be somewhat inadequate.

特に本発明においては、炭素繊維、とりわけ高弾性炭素
繊維を強化材とし1=場合に効果が大きい。
In particular, in the present invention, the effect is great when carbon fiber, especially high modulus carbon fiber, is used as the reinforcing material.

炭素mMとしては、アクリル系炭素繊維、ピッチ系炭素
繊維等特に制限はなく、引張り強さ350kgf/ m
m’ 、弾性率24T/+am’のものが好適に用いら
れる。複合材料の機械的特性を向上させるノこめ、引張
り強さ400kgf/ am’以上、弾性率30T/v
w’レベルの、いわゆる中弾性高強皮炭素繊維を用いる
こともできる。
Carbon mm is not particularly limited, such as acrylic carbon fiber, pitch carbon fiber, etc., and has a tensile strength of 350 kgf/m.
m' and an elastic modulus of 24T/+am' are preferably used. A material that improves the mechanical properties of composite materials, has a tensile strength of 400 kgf/am' or more, and a modulus of elasticity of 30 T/v.
It is also possible to use a so-called medium elasticity high hardness carbon fiber having a w' level.

これら強化II雑を基材とした中間体(プリプレグ)は
、強化繊維の一方面シート、織物、短IIA維マット等
の基材の繊維間に未硬化の熱硬化性樹脂組成物を含浸さ
Lj /Cものである。
Intermediates (prepregs) based on these reinforced II miscellaneous materials are impregnated with an uncured thermosetting resin composition between the fibers of a base material such as a one-sided sheet of reinforcing fibers, a woven fabric, or a short IIA fiber mat. /C thing.

マトリックス樹脂としての熱硬化性樹脂組成物は、エポ
キシ樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹
脂、ポリイミド樹脂等であり、樹脂組成物の含有率は3
0〜50体積%が適当である。樹脂の変性等により、マ
トリックス樹脂の伸度が向上した場合にも、本発明は効
果的である。高い衝撃特性を有する樹脂組成物のプリプ
レグに、本発明で用いられる織物を適用すれば、より一
層コンポジットの耐衝撃性が改善され、しかも発生した
クラックを伝播さけにくい特性を有するようになる。特
に、プリプレグに用いられている熱硬化性樹脂組成物の
硬化摸の伸+aが4.0%以上であるコンポジット槓層
間に、本発明の織物が使用された場合、耐函撃レベルの
高いコンポジットとなり、航空機−次構造材用途への適
用範囲も広がるものである。
The thermosetting resin composition as the matrix resin is an epoxy resin, a bismaleimide resin, an unsaturated polyester resin, a polyimide resin, etc., and the content of the resin composition is 3
0 to 50% by volume is suitable. The present invention is also effective when the elongation of the matrix resin is improved due to resin modification or the like. If the fabric used in the present invention is applied to a prepreg made of a resin composition with high impact properties, the impact resistance of the composite will be further improved, and it will have the property of making it difficult to avoid the propagation of cracks that occur. In particular, when the woven fabric of the present invention is used between composite layers in which the cured elongation +a of the thermosetting resin composition used in the prepreg is 4.0% or more, the composite has a high level of box impact resistance. As a result, the scope of application to aircraft-substructure materials will be expanded.

基本となる熱硬化性樹脂組成物のプリプレグは、従来知
られた方法にて製造することができる。
The basic prepreg of the thermosetting resin composition can be manufactured by a conventionally known method.

本発明を図面によって説明する。The present invention will be explained with reference to the drawings.

図面にJ3いて第1図は、本発明の成形物中間体の斜視
図を示したものである。
FIG. 1 at J3 in the drawings shows a perspective view of the intermediate molded product of the present invention.

第2図は、本発明成形物中間体に貼着される織物の組織
の例(a )  (b )  (c )を示したもので
ある。
FIG. 2 shows examples (a), (b), and (c) of the texture of the fabric attached to the molded intermediate of the present invention.

第3図は、本発明の成形物中間体の断面図を模式的に示
したものである。
FIG. 3 schematically shows a cross-sectional view of the molded product intermediate of the present invention.

第1図における1はプリプレグ、2は織物である。プリ
プレグ1は繊維一方向シート、織物、ランダムマット等
の繊維シートに繊II間に未硬化の熱硬化性樹脂を含浸
、保持させた物であり、熱硬化性樹脂としては、前記の
エポキシ樹脂、ビスマレイミド樹脂、不飽和ポリエステ
ル樹脂、ポリイミド樹脂等である。
In FIG. 1, 1 is a prepreg, and 2 is a woven fabric. The prepreg 1 is made by impregnating and retaining an uncured thermosetting resin between the fibers in a fiber sheet such as a unidirectional fiber sheet, a woven fabric, or a random mat.As the thermosetting resin, the above-mentioned epoxy resin, These include bismaleimide resin, unsaturated polyester resin, polyimide resin, etc.

織物2は通孔を有するため、プリプレグのマトリッマス
樹脂1−2は織物2の通孔2−1を通し織物のに面に回
り込み連続層を形成している。
Since the fabric 2 has through holes, the matrix resin 1-2 of the prepreg passes through the through holes 2-1 of the fabric 2 and wraps around the surface of the fabric to form a continuous layer.

織物2はプリプレグ1の両面に貼着して−もよいが、通
常は片面にのみ貼着される。
Although the fabric 2 may be attached to both sides of the prepreg 1, it is usually attached only to one side.

本発明の成形物中間体は、積層に際し全層を本発明成形
中間体にて構成する必要はむく、織物の貼着のない通常
のプリプレグと組合ぜて積層することもできる。このよ
うな成形物は、耐衝撃性に優れ、しかも積層間の剥離を
起こしにくい成形物である。
When laminating the molded product intermediate of the present invention, it is not necessary that all the layers are composed of the molded intermediate of the present invention, but it can also be laminated in combination with a normal prepreg to which no woven fabric is attached. Such a molded product has excellent impact resistance and is less likely to cause peeling between laminated layers.

本発明の成形物中固体は、例えば以下の方法により製造
することができる。
The solid in molded article of the present invention can be produced, for example, by the following method.

先ず、ホットメルト法又は溶剤法による通常の方法によ
ってプリプレグを調[−16゜次いで織物を該プリプレ
グと合せ、プレート、O−ラ一等にて加圧し一体化させ
る。この際、加熱することもできるが、加熱温度は、6
0〜120℃とするのがよい。
First, a prepreg is prepared by a conventional method such as a hot melt method or a solvent method, and then a fabric is combined with the prepreg and integrated by pressing with a plate, an O-ra, etc. At this time, heating can be performed, but the heating temperature is 6.
The temperature is preferably 0 to 120°C.

(発明の効果) 本発明により(qられた成形物中間体及び成形物は、優
れた機械的特性及び熱的特性と靭性が兼備されたもので
あり、しかも発生したクラックを伝播させにくい特性を
有するため、航空機構T1材料、宇宙構造物材料等へ好
適に使用される。
(Effects of the Invention) According to the present invention, the molded product intermediate and molded product (q) have excellent mechanical properties, thermal properties, and toughness, and also have characteristics that prevent cracks that occur from propagating. Therefore, it is suitably used for aircraft mechanism T1 materials, space structure materials, etc.

(実施例及び比較例〕 実施例1 後掲第1表に示ず樹脂組成物からなる炭素繊維一方向プ
リプレグを、ホットメルト法にて作った。用いた炭素繊
維(CF)は、ベスファイト[M −500(東邦レー
ヨン社製、引張り強さ500kgf/+es2、弾性率
30T/mIm” )である。プリプレグのCF目付は
150g/* ’ 、樹脂含有率32重石%であった。
(Examples and Comparative Examples) Example 1 A carbon fiber unidirectional prepreg made of a resin composition not shown in Table 1 below was produced by a hot melt method.The carbon fiber (CF) used was Besphite [ M-500 (manufactured by Toho Rayon Co., Ltd., tensile strength 500 kgf/+es2, elastic modulus 30 T/mIm"). The CF basis weight of the prepreg was 150 g/*', and the resin content was 32%.

一方、見掛の太さ約80μ霧の合糸されたポリエーテル
エーテルケトン繊維(略称PEEK繊維、引張り弾性率
約600kgf /as’ 、融点334℃)より作ら
れた繊維目付10g/l112の平織の織物を準備した
On the other hand, a plain weave with a fiber basis weight of 10 g/l 112 made from doubled polyether ether ketone fibers (abbreviated as PEEK fibers, tensile modulus of elasticity of about 600 kgf/as', melting point of 334°C) with an apparent thickness of about 80 μm. Prepared the fabric.

上記プリプレグとフィルムとを重ね、80℃のホットロ
ーラー間に通し両者を結栓させ成形物中間体を得た。
The prepreg and film were stacked and passed between hot rollers at 80° C. to seal them together to obtain a molded intermediate.

この成形物中間体より、所定の1法及び枚数の小片をカ
ット、積層し、オートクレーブ成形により昇温速度2℃
/分、180℃で2時間の硬化条件で硬化させ、成形板
を作成した。これより試験片を切りだし、0°層間せん
断強さ、0°圧縮強さ、1500in−lb / 1n
lj @後の圧縮強さを測定したところ、第1表に示す
結果を得た。
From this molded intermediate, a predetermined method and number of small pieces are cut, laminated, and molded in an autoclave at a heating rate of 2°C.
The resin was cured at 180°C for 2 hours to produce a molded plate. A test piece was cut out from this, 0° interlaminar shear strength, 0° compressive strength, 1500 in-lb/1n.
When the compressive strength after lj @ was measured, the results shown in Table 1 were obtained.

比較例1 実施例1と同様にして第1表に示す樹脂組成物からなる
炭素繊維一方向プリプレグを作った。
Comparative Example 1 A carbon fiber unidirectional prepreg made of the resin composition shown in Table 1 was produced in the same manner as in Example 1.

ポリエーテルエーテルケトン繊維がら4Tる織物を貼着
させないこのプリプレグから、同様な条件で成形板を作
成し、成形板について試験を行った。
A molded plate was prepared under similar conditions from this prepreg to which no 4T fabric made of polyetheretherketone fibers was attached, and the molded plate was tested.

(結果の対比) 第1表に示ず物性から実施例1の成形板は、比較例1に
比べ、0°WJ間せん断強さ、0°圧縮強さに強度差は
認められないものの、1 !i00 i n−1b /
 in!撃後の圧縮強さが高く、耐衝撃性に優れること
が明らかとなった。
(Comparison of results) Although not shown in Table 1 and based on the physical properties, the molded plate of Example 1 has no strength difference in 0° WJ shear strength and 0° compressive strength compared to Comparative Example 1. ! i00 i n-1b /
In! It was revealed that the compressive strength after impact was high and the impact resistance was excellent.

実施例2 1’11表に示す樹In組成物からなる炭素繊維−方向
ブリプレグを、実施例1と同様にして作り、プリプレグ
に貼着させる織物として、見掛の太さ約200μmの合
糸されたポリエーテルイミド繊維(略称PEI、引張り
弾性率約700kgf /1111’ 、ガラス転1i
ta1216℃)より作られた繊維目(41Sg /+
e ’の平織の織物を準備し、プリプレグ表面に並べ、
80℃のホットローラー間に通し両者を貼着させ、成形
物中間体を得た。
Example 2 A carbon fiber-oriented prepreg made of the wood composition shown in Table 1'11 was made in the same manner as in Example 1, and a spun yarn with an apparent thickness of about 200 μm was used as a fabric to be attached to the prepreg. polyetherimide fiber (abbreviated as PEI, tensile modulus approximately 700 kgf/1111', glass rolling 1i
Fiber mesh (41Sg /+
Prepare the plain weave fabric of e', arrange it on the prepreg surface,
Both were pasted together by passing between hot rollers at 80°C to obtain a molded intermediate.

この成形物中間体より、実施例1と同様にして成形板を
作成し、0°層間せん断強さ、0゛圧縮強さ、1500
in−1b / in衝撃模の圧縮強さを測定したとこ
ろ、第1表に示す結果を1tPた。
A molded plate was prepared from this molded intermediate in the same manner as in Example 1, and had a 0° interlaminar shear strength, 0° compressive strength, 1500
When the compressive strength of the in-1b/in impact model was measured, the results shown in Table 1 were 1 tP.

比較例2 実施例2と同様にしてプリプレグを作った。Comparative example 2 A prepreg was made in the same manner as in Example 2.

織物の貼着をしないで、このプリプレグのみを用い、同
様にして成形を行い、成形板について試験を行った。
Molding was performed in the same manner using only this prepreg without attaching the fabric, and tests were conducted on the molded plates.

(結果の対比) 第1表に示すように、実施例2の成形板は、比較例2に
比し、0゛層間せん断強さ、0°圧縮強さに強度差は認
められないものの、150Gin−Ib /1nllj
l後の圧縮強さが高く、耐VM撃性に侵れることが明ら
かとなった。
(Comparison of results) As shown in Table 1, the molded plate of Example 2 has no difference in 0° interlaminar shear strength and 0° compressive strength compared to Comparative Example 2, but -Ib /1nllj
It became clear that the compressive strength after 12 hours was high, and the VM impact resistance was affected.

実施例3 第1表に示す樹脂組成物からなる炭素繊維1方向プリプ
レグを、実施例1と同様にして作り、プリプレグに貼着
させる織物として、見掛の太さ約100μmの合糸され
たポリエステル繊維(テトロン、引張り弾性率的120
0klJf /ms”融点260℃)より作られた繊維
目付20(1/I ’の平織の織物を準備し、プリプレ
グ表面に並べ、80℃の11−ブトローラー間に通し両
省を貼着させ、成形物中間体を1gだ。
Example 3 A carbon fiber unidirectional prepreg made of the resin composition shown in Table 1 was made in the same manner as in Example 1, and a doubled polyester yarn with an apparent thickness of about 100 μm was used as a fabric to be attached to the prepreg. Fiber (Tetron, tensile modulus 120
Prepare a plain weave fabric with a fiber basis weight of 20 (1/I') made from 0klJf/ms" (melting point 260°C), arrange it on the prepreg surface, pass it between 11-butler rollers at 80°C and stick both sides together to form a molded product. 1g of intermediate.

この成形物中間体より、¥絶倒1と同様に成形準備を行
った後、オートクレーブ成形によりRI!速麿2℃り分
、130℃で1.5時間の硬化条件で硬化させ、成形板
を作成した。成形板について0°WI間せん断強さ、0
°圧縮強さ、1500in−1b /in衝撃後の圧縮
強さを測定したところ、第1表に示寸結果を1!7だ。
This molded intermediate was prepared for molding in the same manner as in ¥Zettai 1, and then RI! It was cured at 130° C. for 1.5 hours at a temperature of 2° C. to produce a molded plate. Shear strength between 0°WI for molded plate, 0
Compressive strength: 1500 in-1 b/in The compressive strength after impact was measured and the results are shown in Table 1 as 1!7.

比較例3 実施例3と同様にしてプリプレグを作った。Comparative example 3 A prepreg was made in the same manner as in Example 3.

織物の貼着をしないで、このプリプレグのみを用い、同
様にして成形を行い、成形板について試験を行った。
Molding was performed in the same manner using only this prepreg without attaching the fabric, and tests were conducted on the molded plates.

(結果の対比) 第1表に示すように、実施例3の成形板は、比較例3に
比し、0°層間せん断強さ、0°圧縮強さに強度差は認
められないものの、1500 i n−1b/in衝撃
後の圧縮強さが高く、耐衝撃性に優れることが明らかと
なった。
(Comparison of Results) As shown in Table 1, the molded plate of Example 3 has no difference in 0° interlaminar shear strength and 0° compressive strength compared to Comparative Example 3, but It was revealed that the compressive strength after impact was high and the impact resistance was excellent.

実施例4 第1表に示す樹脂組成物からなる炭素繊維−方向プリプ
レグを、実施例1と同様にして作り、プリプレグに貼着
させる織物として、見掛の太さ約60μ−の合糸された
ポリエーテルイミド繊N(略称PEI、引張り弾性率的
700kof /+ua2、ガラス転移温度216℃)
より作られたmis目付250 /l ’の綾織の織物
を準備し、この織物をプリプレグ表面に並べ、80℃の
ホットローラ間に通し両者を貼むさせ、成形物中間体を
得た。 この成形物中間体より、実施例1と同様にして
成形板を作成し、0°m間せん断強さ、0°圧縮強さ、
1500in−lb / 1nlj撃後の圧縮強さを措
定したところ、第1表に示す結果をIfjtζ。
Example 4 A carbon fiber-oriented prepreg made of the resin composition shown in Table 1 was made in the same manner as in Example 1, and a woven fabric with an apparent thickness of about 60 μm was prepared to be attached to the prepreg. Polyetherimide fiber N (abbreviation PEI, tensile modulus 700kof/+ua2, glass transition temperature 216°C)
A twill fabric with a mis area weight of 250/l' was prepared, and this fabric was arranged on the surface of the prepreg and passed between hot rollers at 80° C. to stick them together to obtain a molded intermediate. From this molded product intermediate, a molded plate was prepared in the same manner as in Example 1, and the shear strength at 0°, the compressive strength at 0°,
When the compressive strength after 1500in-lb/1nlj impact was assumed, the results shown in Table 1 were Ifjtζ.

比較例4 実施例4と同様にしてプリプレグを作った。Comparative example 4 A prepreg was made in the same manner as in Example 4.

織物の貼着をしないで、このプリプレグのみを用い、同
様にして成形を行い、成形板について試験を行った。
Molding was performed in the same manner using only this prepreg without attaching the fabric, and tests were conducted on the molded plates.

(結果の対比) 第1表に示づように、実施例4の成形板は、比較例3に
比し、0°層摺1せん断強さ、0°圧縮強さに強度差は
認められないものの、1500in−Ib / in衝
撃後の圧縮強さが高(、耐衝撃性に優れることが明らか
となった。
(Comparison of results) As shown in Table 1, the molded plate of Example 4 has no strength difference in 0° layer sliding 1 shear strength and 0° compressive strength compared to Comparative Example 3. However, it was revealed that the compressive strength after 1500 in-Ib/in impact was high (and the impact resistance was excellent).

実施例5〜8及び比較例5〜8 第2表に示す樹脂組成物で実施例1と同様にして炭素繊
維1方向プリプレグを作り、第2表に示す織物(引張り
弾性率はPE II帷約700kgf /s+m’ 、
ガラス繊維的7000kof /ln+’ 、アラミド
IMII約7000kaf /1m2、アルミニウム繊
維的7000kgf /as’ )のそれぞれをプリプ
レグ表面に並べ、80℃のホットローラ間に通し両者を
貼着させ、成形中間体を得た。
Examples 5 to 8 and Comparative Examples 5 to 8 Carbon fiber unidirectional prepregs were made in the same manner as in Example 1 using the resin compositions shown in Table 2, and fabrics shown in Table 2 (tensile modulus of 700kgf/s+m',
7000 kof/ln+' of glass fiber, about 7000 kaf/1 m2 of aramid IMII, and 7000 kgf/as' of aluminum fiber were arranged on the prepreg surface, and passed between hot rollers at 80°C to stick them together to obtain a molded intermediate. Ta.

この成形物中間体より、第2表に示ず成形条件で成形板
を作成し、成形板について0°層間t! A/断強さ、
0′″圧縮強さ、1500in−1b / in衝撃侵
の圧縮強さを測定したところ、第2表に示す結果を得た
From this molded product intermediate, a molded plate was prepared under molding conditions not shown in Table 2, and the molded plate had a 0° interlayer t! A/Strength,
The compressive strength of 0'' compressive strength and 1500 in-1b/in impact erosion were measured, and the results shown in Table 2 were obtained.

また、比較例5〜8では、実施例5〜8と同様にしてプ
リプレグを作った。織物の貼着をしないで、プリプレグ
のみを用い、同様にして成形を行い、成形板について試
験を行った。
Moreover, in Comparative Examples 5 to 8, prepregs were made in the same manner as in Examples 5 to 8. Molding was performed in the same manner using only the prepreg without attaching the fabric, and tests were conducted on the molded plates.

(結果の対比) 第2表に示すように、実施例5〜8の成形板は、比較例
5〜8に比し、0°層間せん断強さ、O″圧縮強さに強
度差は認められないものの、1500in−1b / 
1nW77J撃後の圧縮強さがnく、耐衝撃性に優れる
ことが明らかとなった。
(Comparison of results) As shown in Table 2, the molded plates of Examples 5 to 8 showed no strength differences in 0° interlaminar shear strength and O'' compressive strength compared to Comparative Examples 5 to 8. Although not, 1500in-1b /
It was found that the compressive strength after being hit by 1nW77J was n low, indicating that it had excellent impact resistance.

第1表の注 (注1) * 1 : 1500in−lb / inm撃後0特
性(32ブライ擬等方性積層板を使用) く注 2) アラルダイトMY720.テトラグリシジルアミン型エ
ポキシ樹脂(チバガイギー社製)E LMioo: ト
リグリシジルアミン型エポキシ樹脂(住友化学社製) EPN −1138:フェノール・ノボラック型エポキ
シ樹脂(チバガイギー社 製) エピコート828:ビスフェノールA型エポキシ樹脂(
油化シェル社製) エピコート1001 :ビスフェノールA型エポキシ樹
脂(油化シェル社製) EPU−6:ウレタン変性エポキシ樹脂(旭電化社製) DEN485:フェノール・ノボラック型エポキシ樹脂
(ダウケミカル社製) CTBNハイカー1300x13 :ブタジェン。
Notes to Table 1 (Note 1) * 1: Zero characteristics after 1500 in-lb/inm impact (using 32 Bly pseudo-isotropic laminate) Note 2) Araldite MY720. Tetraglycidylamine type epoxy resin (manufactured by Ciba Geigy) E LMioo: Triglycidylamine type epoxy resin (manufactured by Sumitomo Chemical) EPN-1138: Phenol/novolak type epoxy resin (manufactured by Ciba Geigy) Epicote 828: Bisphenol A type epoxy resin (manufactured by Ciba Geigy)
Epicoat 1001: Bisphenol A epoxy resin (manufactured by Yuka Shell) EPU-6: Urethane-modified epoxy resin (manufactured by Asahi Denka) DEN485: Phenol novolak epoxy resin (manufactured by Dow Chemical) CTBN Hiker 1300x13: Butadiene.

クリロニトリルゴム(宇部興産社製) (注3) PEI:ポリエーテルイミド PE[EK :ボリエーテルエーテルケトンア 第2表の注 (注1) * 1 : 1500in−lb / in%[撃11
217) 4i Wイ擬等方性積層板を使用) (32プラ (注2) BT −2160:ビスマレイミド−トリアジン樹脂(
三隻瓦斯化学社製) Matrimid 5292:ビスマレイミド樹脂(チ
バガイギー社製) Compimidel−1−800:ビスマレイミド樹
脂(シェルケミカル社製) PMR15:ポリイミド樹脂(NASA、TRW社製) エピコート828:ビスフェノールA型エポキシ樹脂(
油化シェル社製) ELM−100:トリグシジルアミン型エポキシ樹脂(
住友化学社製) (注3) PEI:ポリエーテルイミド (注4) 成形物の繊維体積含有率:58〜60体積%
Crylonitrile rubber (manufactured by Ube Industries, Ltd.) (Note 3) PEI: Polyetherimide PE [EK: Polyether ether ketone Note to Table 2 (Note 1) * 1: 1500 in-lb / in% [Strength 11
217) 4i Wi pseudo-isotropic laminate used) (32 plastic (Note 2) BT-2160: Bismaleimide-triazine resin (
Matrimid 5292: Bismaleimide resin (manufactured by Ciba Geigy) Compimidel-1-800: Bismaleimide resin (manufactured by Shell Chemical) PMR15: Polyimide resin (manufactured by NASA, TRW) Epicoat 828: Bisphenol A type Epoxy resin(
manufactured by Yuka Shell Co., Ltd.) ELM-100: Trigcidylamine type epoxy resin (
(manufactured by Sumitomo Chemical Co., Ltd.) (Note 3) PEI: Polyetherimide (Note 4) Fiber volume content of molded product: 58-60% by volume

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の成形物中間体の斜視図を示したもの
である。 1’12図は、本発明成形物中間体に貼着される織物組
織の例(a)(b)(c)を示したものである。 第3図は、本発明の成形物中間体の断面図を模式的に示
したものである。 図面における符号の説明 1ニブリプレグ、1−1:繊維、1−2:lil脂、2
:織物、2−に通孔 特許出願人  l!邦し−ヨシ樟式会社代理人弁理士 
 土 居 三 部 第2図 第1図 (C)5枚ヨコ未子織
FIG. 1 shows a perspective view of an intermediate molded product of the present invention. Figures 1' and 12 show examples (a), (b), and (c) of the textile structure to be adhered to the molded intermediate of the present invention. FIG. 3 schematically shows a cross-sectional view of the molded product intermediate of the present invention. Explanation of symbols in the drawings 1 Nibbly preg, 1-1: fiber, 1-2: lil fat, 2
: Textile, 2- through hole patent applicant l! Kunishi - Yoshi Shushiki Company Representative Patent Attorney
Doi Part 3 Figure 2 Figure 1 (C) 5 pieces of horizontal Mikoori

Claims (2)

【特許請求の範囲】[Claims] (1)強化繊維を基材とした熱硬化性樹脂系プリプレグ
の表面に、引張り弾性率10,000kgf/mm^2
以下の繊維から作られた繊維目付1〜25g/m^2の
織物を貼着してなる繊維強化樹脂積層成形物中間体。
(1) A tensile modulus of elasticity of 10,000 kgf/mm^2 is applied to the surface of a thermosetting resin prepreg based on reinforcing fibers.
A fiber-reinforced resin laminate molded intermediate product made by pasting a fabric with a fiber basis weight of 1 to 25 g/m^2 made from the following fibers.
(2)引張り弾性率10,000kgf/mm^2以下
の繊維から作られた繊維目付1〜25g/m^2の織物
が、積層間に介在してなる繊維強化樹脂積層成形物。
(2) A fiber-reinforced resin laminate molded product in which a woven fabric with a fiber basis weight of 1 to 25 g/m^2 made from fibers with a tensile modulus of elasticity of 10,000 kgf/mm^2 or less is interposed between the laminated layers.
JP18307988A 1988-07-22 1988-07-22 Intermediate body of molded product and molded product Granted JPH0232843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18307988A JPH0232843A (en) 1988-07-22 1988-07-22 Intermediate body of molded product and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18307988A JPH0232843A (en) 1988-07-22 1988-07-22 Intermediate body of molded product and molded product

Publications (2)

Publication Number Publication Date
JPH0232843A true JPH0232843A (en) 1990-02-02
JPH0575575B2 JPH0575575B2 (en) 1993-10-20

Family

ID=16129392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18307988A Granted JPH0232843A (en) 1988-07-22 1988-07-22 Intermediate body of molded product and molded product

Country Status (1)

Country Link
JP (1) JPH0232843A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507322A2 (en) * 1991-04-03 1992-10-07 Ykk Corporation Molding sheet material and toe puff for safety shoe
JPH06207035A (en) * 1993-01-11 1994-07-26 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber reinforced polyfunctional maleimide resin composite material
EP0657492A1 (en) * 1993-12-02 1995-06-14 Toray Industries, Inc. Prepregs, and processes for their production
WO2008018421A1 (en) 2006-08-07 2008-02-14 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
WO2013084669A1 (en) 2011-12-05 2013-06-13 東レ株式会社 Carbon fiber molding material, molding material, and carbon fiber-strengthening composite material
WO2014017339A1 (en) 2012-07-25 2014-01-30 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
JP2014502569A (en) * 2010-12-28 2014-02-03 サイテク・テクノロジー・コーポレーシヨン Multi-layer composition gradient structures with improved damping properties
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
WO2018181254A1 (en) 2017-03-29 2018-10-04 東レ株式会社 Prepreg and fiber reinforced composite material
WO2019150193A1 (en) 2018-01-31 2019-08-08 Toray Industries, Inc. Prepreg sheets and prepreg stacks useful for preparing low void content fiber-reinforced compostite materials
WO2020059599A1 (en) 2018-09-18 2020-03-26 東レ株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
US10808091B2 (en) 2014-09-19 2020-10-20 Toray Industries, Inc. Notched pre-preg and notched pre-preg sheet
US11565497B2 (en) 2018-03-30 2023-01-31 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX354718B (en) 2013-01-11 2018-03-16 Nippon Steel & Sumitomo Metal Corp Plug for hot pipe manufacturing.

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507322A2 (en) * 1991-04-03 1992-10-07 Ykk Corporation Molding sheet material and toe puff for safety shoe
JPH06207035A (en) * 1993-01-11 1994-07-26 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber reinforced polyfunctional maleimide resin composite material
EP0657492A1 (en) * 1993-12-02 1995-06-14 Toray Industries, Inc. Prepregs, and processes for their production
WO2008018421A1 (en) 2006-08-07 2008-02-14 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
EP2452967A1 (en) 2006-08-07 2012-05-16 Toray Industries, Inc. Prepreg and carbon fibre-reinforced composite material
EP2455419A1 (en) 2006-08-07 2012-05-23 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
EP2455418A1 (en) 2006-08-07 2012-05-23 Toray Industries, Inc. Prepreg and Carbon Fiber-Reinforced Composite Material
EP2460846A1 (en) 2006-08-07 2012-06-06 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
EP2666807A2 (en) 2006-08-07 2013-11-27 Toray Industries, Inc. A Prepreg And Carbon Fiber Reinforced Composite Materials
JP2014502569A (en) * 2010-12-28 2014-02-03 サイテク・テクノロジー・コーポレーシヨン Multi-layer composition gradient structures with improved damping properties
WO2013084669A1 (en) 2011-12-05 2013-06-13 東レ株式会社 Carbon fiber molding material, molding material, and carbon fiber-strengthening composite material
WO2014017339A1 (en) 2012-07-25 2014-01-30 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
EP3401357A1 (en) 2012-07-25 2018-11-14 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
US10808091B2 (en) 2014-09-19 2020-10-20 Toray Industries, Inc. Notched pre-preg and notched pre-preg sheet
WO2018099910A1 (en) 2016-11-29 2018-06-07 Advanced Materials Design & Manufacturing Limited Process for making hybrid (fiber-nanofiber) textiles through efficient fiber-to-nanofiber bonds comprising novel effective load-transfer mechanisms
WO2018181254A1 (en) 2017-03-29 2018-10-04 東レ株式会社 Prepreg and fiber reinforced composite material
WO2019150193A1 (en) 2018-01-31 2019-08-08 Toray Industries, Inc. Prepreg sheets and prepreg stacks useful for preparing low void content fiber-reinforced compostite materials
US11565497B2 (en) 2018-03-30 2023-01-31 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material
WO2020059599A1 (en) 2018-09-18 2020-03-26 東レ株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
US11760053B2 (en) 2018-09-18 2023-09-19 Toray Industries, Inc. Prepreg, prepreg laminate, and fiber-reinforced composite material

Also Published As

Publication number Publication date
JPH0575575B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
Jang et al. Impact resistance and energy absorption mechanisms in hybrid composites
US4539253A (en) High impact strength fiber resin matrix composites
JP3648743B2 (en) &#34;Resin composition for fiber reinforced composite material and its manufacturing method, prepreg, fiber reinforced composite material, honeycomb structure&#34;
Harris et al. Fatigue behaviour of carbon fibre reinforced plastics
US5344689A (en) Carbon fiber prepreg and carbon fiber reinforced resin composite
JP5117779B2 (en) Composite material
JPH0232843A (en) Intermediate body of molded product and molded product
EP0156148B1 (en) High impact strength fiber resin matrix composites
JPH02173044A (en) Fiber-reinforced plastics and reinforcing material therefor
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
KR20160074296A (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JPH04363215A (en) Carbon fiber prepreg and carbon fiber reinforced resin
EP0327142A2 (en) Resin matrix composites
US5116668A (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
EP1913330B1 (en) Increased ballistic performance of fabrics coated with polymer stripes
JPH01320146A (en) Molding intermediate product and moldings
JP2008174610A (en) Impact-resistant prepreg and method for producing the same
CA2056514A1 (en) Composite tooling
Tanimoto Interleaving methodology for property tailoring of CFRP laminates
JP5239350B2 (en) Prepreg and fiber reinforced composite materials
JPH08121996A (en) Light weight impact resistant material
JP7581739B2 (en) Fiber Reinforced Resin
JP5280982B2 (en) Fiber reinforced composite material
KR930009294B1 (en) Interply-hybridized laminated material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 15