JPH02276630A - Transparent conductive laminate and manufacture thereof - Google Patents

Transparent conductive laminate and manufacture thereof

Info

Publication number
JPH02276630A
JPH02276630A JP1338287A JP33828789A JPH02276630A JP H02276630 A JPH02276630 A JP H02276630A JP 1338287 A JP1338287 A JP 1338287A JP 33828789 A JP33828789 A JP 33828789A JP H02276630 A JPH02276630 A JP H02276630A
Authority
JP
Japan
Prior art keywords
transparent conductive
layer
film
organic polymer
indium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1338287A
Other languages
Japanese (ja)
Inventor
Hitoshi Mikoshiba
均 御子柴
Shinji Arai
進二 新井
Masao Suzuki
鈴木 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPH02276630A publication Critical patent/JPH02276630A/en
Priority to US07/635,448 priority Critical patent/US5225273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain the conductive laminate excellent in durability and reliability by a method in which a transparent conductive layer is a film wherein crystalline part and amorphous part are mixed, and its crystallinity is specified. CONSTITUTION:In a film, crystalline part and amorphous part are mixed and its crystallinity is 1-80%. First, the layer containing mainly indium oxide and having the absorbancy index of 1.0X10<-5>-3.9X10<-5>[Angstrom <-1>] for the wave length of 550nm and the specific resistance of 4.0X10<-4>-1.4X10<-3>OMEGA.cm is formed on an organic polymer formed object, and next, this layer is heat-treated, whereby said film may be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性積層体およびその製造方法に関し、さ
らに詳しくは有機高分子成形物上に主としてインジウム
酸化物からなる透明導電層を形成してなる導電性積層体
およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive laminate and a method for manufacturing the same, and more specifically, to a method for forming a transparent conductive layer mainly made of indium oxide on an organic polymer molded product. The present invention relates to a conductive laminate and a method for manufacturing the same.

〔従来の技術] 高度情報化社会の到来とともに、光とエレクトロニクス
の両方の特徴を利用した部品、機器の進歩は著しい。ま
た、マイクロコンピュータの飛躍的普及にともない、コ
ンピュータ周辺機器の革新はめざましい。これらのコン
ピュータ入力装置としての透明タッチパネルや、さらに
出力装置としての液晶デイスプレィ、エレクトロルミネ
ッセンスデイスプレィなどには、透明電極が用いられる
が、該目的には、透明電極の耐久性および信頼性が要求
される。
[Prior Art] With the advent of a highly information-oriented society, there has been remarkable progress in parts and equipment that utilize the characteristics of both optics and electronics. Furthermore, with the rapid spread of microcomputers, innovations in computer peripherals have been remarkable. Transparent electrodes are used in transparent touch panels as computer input devices, as well as liquid crystal displays and electroluminescent displays as output devices, but the durability and reliability of transparent electrodes are required for these purposes. Ru.

透明導電層としては、金属薄膜(Au、Pdなど)タイ
プ、金属酸化物薄膜タイプ(ITO1CTOlSnot
、Ti0zなど)、多層薄膜タイプ(T i Ox /
 A g / T i Oxなど)などがあるが、透明
性、導電性、機械的特性などの基本特性は、金属酸化物
薄膜タイプが優れている。
As the transparent conductive layer, metal thin film (Au, Pd, etc.) type, metal oxide thin film type (ITO1CTO1Snot
, Ti0z, etc.), multilayer thin film type (T i Ox /
(Ag/TiOx, etc.), but the metal oxide thin film type is superior in basic properties such as transparency, conductivity, and mechanical properties.

金属酸化物薄膜タイプの中でもI T O(Indiu
mTin 0xide )膜は、透明性、導電性が特に
優れており、さらに電極のパターン化が容易(エツチン
グ特性が優れている)などの特徴を有し、近年注目を1
谷びてきた。
Among the metal oxide thin film types, ITO (Indiu
mTin Oxide) film has particularly excellent transparency and conductivity, and also has characteristics such as easy electrode patterning (excellent etching properties), and has attracted attention in recent years.
The valley has fallen.

一方、最近の薄膜形成技術の進歩はめざましく、耐熱性
のあまりない有機高分子成形物上に透明導電層を形成で
きるようになった。中でもスパッタリング法は、長時間
にわたって製膜が可能、長時間膜形成を行っても組成ず
れがない、広幅化が容易などの特徴を有し、最も利用さ
れている技術の一つである。そして、上述のITO膜を
スパッタリング法で形成することも知られている。
On the other hand, recent advances in thin film forming technology have been remarkable, and it has become possible to form transparent conductive layers on organic polymer moldings that do not have much heat resistance. Among them, the sputtering method is one of the most used techniques because it has the characteristics of being able to form a film over a long period of time, having no compositional deviation even after long-term film formation, and being easy to widen the film width. It is also known to form the above-mentioned ITO film by a sputtering method.

そこで、本発明者らも、スパッタリング法で有機高分子
成形物上にITO膜を形成しその実用性を評価した。
Therefore, the present inventors also formed an ITO film on an organic polymer molded article using a sputtering method and evaluated its practicality.

しかし、スパッタリング法によりTTO膜を形成してな
る導電性積層体は、エレクトロルミネッセンスデイスプ
レィに用いた場合、導電性積層体と発光層の貼り合わせ
工程でしばしば透明導電層に断線が発生するという実用
上大きな問題があることが明らかになった。
However, when a conductive laminate formed by forming a TTO film using a sputtering method is used in an electroluminescent display, disconnections often occur in the transparent conductive layer during the process of bonding the conductive laminate and the light emitting layer. It became clear that there was a big problem.

そこで、本発明者らは、先ず有機高分子成形物上に主と
してインジウム酸化物を含む波長550nmの光吸収率
が2〜30%で比抵抗が1.5×10−3Ω・cm以上
の層を形成し、次いで核層を酸素雰囲気下の加熱処理に
より主として結晶質のインジウム酸化物からなる透明導
電層に転化せしめる方法を提案した(特開昭61−79
647号公報)。該方法でも同様に、断線が発生する問
題があった。
Therefore, the present inventors first formed a layer containing mainly indium oxide and having a light absorption rate of 2 to 30% at a wavelength of 550 nm and a specific resistance of 1.5 x 10-3 Ωcm or more on an organic polymer molded product. proposed a method in which the core layer is converted into a transparent conductive layer mainly consisting of crystalline indium oxide by heat treatment in an oxygen atmosphere (Japanese Patent Laid-Open No. 61-79).
Publication No. 647). This method also had the problem of wire breakage.

〔発明が解決しようとする課題] 本発明は、耐久性および信頼性に優れた導電性積層体お
よびその製造方法を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a conductive laminate having excellent durability and reliability, and a method for manufacturing the same.

(課題を解決するための手段) 本発明は、有機高分子成形物上に主としてインジウム酸
化物からなる透明導電層を形成してなる導電性積層体に
おいて、該透明導電層が結晶質および非晶質の混在した
膜であり、かつ結晶化度が1〜80%であることを特徴
とする透明導電性積層体である。
(Means for Solving the Problems) The present invention provides a conductive laminate in which a transparent conductive layer mainly made of indium oxide is formed on an organic polymer molded article, in which the transparent conductive layer is crystalline and amorphous. The present invention is a transparent conductive laminate characterized by being a film with mixed qualities and having a crystallinity of 1 to 80%.

また、本発明は、有機高分子成形物上に主としてインジ
ウム酸化物からなる透明導電層を形成してなる導電性積
層体の製造方法において、先ず有機高分子成形物上に主
としてインジウム酸化物を含む波長550nmの吸光係
数が1.0×10−4〜3.9X10−’(人相]で、
比抵抗が4.0×10−’ 〜1.4X10−’Ω・C
1nの層を形成し、次いで核層を加熱処理することを特
徴とする透明導電性積層体の製造方法である。
The present invention also provides a method for producing a conductive laminate in which a transparent conductive layer mainly composed of indium oxide is formed on an organic polymer molded product, in which first the organic polymer molded product mainly contains indium oxide. The extinction coefficient at a wavelength of 550 nm is 1.0 x 10-4 to 3.9 x 10-' (physiology),
Specific resistance is 4.0×10-' ~ 1.4X10-'Ω・C
This is a method for producing a transparent conductive laminate, characterized by forming a 1n layer and then heat-treating the core layer.

本発明者らは、透明導電層の膜構造を透過型電子顕微鏡
で詳細に解析した結果、膜の結晶化度と耐屈曲性が重大
な関係があることを見出した。
As a result of detailed analysis of the film structure of the transparent conductive layer using a transmission electron microscope, the present inventors found that there is a significant relationship between the crystallinity of the film and the bending resistance.

ここで結晶化度とは、透過型電子顕微鏡写真における結
晶質部の面積の割合を表し、次式で定義される。
Here, the crystallinity represents the ratio of the area of the crystalline part in a transmission electron micrograph, and is defined by the following formula.

結晶化度(%)=〔結晶質部面積/(結晶質部面積+非
晶質部面積))X100 すなわち、結晶化度が100%の膜は耐屈曲性が極めて
悪いが、驚くべきことに結晶化度が80%以下になると
耐屈曲性が急激に向上することが分かった。恐らく、非
晶質部分が結晶粒界の歪みを緩衝しているものと思われ
る。非晶部分が20%程度で緩衝効果が現れるのは驚く
べきことである。
Crystallinity (%) = [Crystalline area / (Crystalline area + Amorphous area)) x 100 In other words, a film with a crystallinity of 100% has extremely poor bending resistance, but surprisingly It was found that when the degree of crystallinity was 80% or less, the bending resistance was rapidly improved. Presumably, the amorphous portion buffers the strain at the grain boundaries. It is surprising that a buffering effect appears when the amorphous portion is about 20%.

一方、結晶質部が1%未満の膜もまた、耐屈曲性が悪い
ことが分かった。このような膜は、熱処理が不充分な膜
でありスパッタリング直後の歪みが残留しているものと
思われる。
On the other hand, it was found that films with less than 1% crystalline portion also had poor bending resistance. It is thought that such a film is a film that has been insufficiently heat-treated and has residual distortion immediately after sputtering.

以上述べたように、本発明の膜は、結晶質部分と非晶質
部分が混在し、かつ結晶化度が1〜80%の膜である。
As described above, the film of the present invention is a film in which crystalline portions and amorphous portions coexist, and the degree of crystallinity is 1 to 80%.

本発明における打機高分子成形物を構成する有機高分子
化合物としては、耐熱性を有する透明な有機高分子化合
物であれば特に限定しないが、通常耐熱性としては、1
00°C以上、好ましくは130°C以上のものであっ
て、例えばポリイミド、ポリエーテルスルホン、ポリス
ルホン、ポリパラバン酸、ポリヒダントイン、ボリアリ
レートを始めとし、ポリエチレンテレフタレート、ポリ
エチレン−2,6−ナフタレンジカルボキシレート、ポ
リジアリルフタレート、ポリカーボネートなどのポリエ
ステル系樹脂および芳香族ポリアミド、セルローストリ
アセテートなどが挙げられる。
The organic polymer compound constituting the beaten polymer molded product in the present invention is not particularly limited as long as it is a transparent organic polymer compound that has heat resistance, but usually has a heat resistance of 1.
00°C or higher, preferably 130°C or higher, such as polyimide, polyethersulfone, polysulfone, polyparabanic acid, polyhydantoin, polyarylate, polyethylene terephthalate, polyethylene-2,6-naphthalenedicarboxy Examples include polyester resins such as polyester, polydiallyl phthalate, and polycarbonate, aromatic polyamides, and cellulose triacetate.

もちろんこれらはホモポリマー、コポリマーとして、ま
た単独またはブレンドとしても使用しうる。
Of course, these can be used as homopolymers, copolymers, alone or in blends.

かかる有機高分子化合物の成形物の形状は特に限定され
るものではないが、通常、シート状、フィルム状のもの
が好ましく、中でもフィルム状のものは巻取り可能であ
り、また連続生産が可能であるため、特に好ましい。さ
らに、フィルム状のものが使用される場合においては、
フィルムの厚さは6〜500μmが好ましく、さらには
12〜200umが好ましい。
The shape of the molded product of the organic polymer compound is not particularly limited, but sheet-like or film-like products are usually preferred, and among them, film-like products can be rolled up and can be continuously produced. Therefore, it is particularly preferable. Furthermore, when a film-like material is used,
The thickness of the film is preferably 6 to 500 μm, more preferably 12 to 200 μm.

これらのフィルムまたはシートは、透明性を損なわない
程度において顔料を添加したり、また表面加工、例えば
サンドマット加工などを施してもよい。
Pigments may be added to these films or sheets to the extent that transparency is not impaired, or surface treatments such as sand matting may be applied.

また、これらのフィルムまたはシートは、単独でもラミ
ネートして用いてもよい。
Further, these films or sheets may be used alone or in a laminated manner.

さらに、透明導電層との密着性などを向上させるため、
透明導電層形成前に有機高分子成形物上に中間層を形成
してもよい。中間層としては、例えば有機ケイ素化合物
、チタンアルキルエステル、ジルコニウムアルキルエス
テルなどの有機金属化合物の加水分解により生成された
層が好ましく用いられる。該中間層は、多層構成として
も良い。
Furthermore, in order to improve the adhesion with the transparent conductive layer,
An intermediate layer may be formed on the organic polymer molded product before forming the transparent conductive layer. As the intermediate layer, a layer produced by hydrolysis of an organometallic compound such as an organosilicon compound, a titanium alkyl ester, or a zirconium alkyl ester is preferably used. The intermediate layer may have a multilayer structure.

該中間層は、有機高分子成形物上に塗布後、乾燥し、加
熱、イオンボンバードあるいは紫外線、β線、γ線など
の放射線により硬化させる。
The intermediate layer is coated onto the organic polymer molding, dried, and cured by heating, ion bombardment, or radiation such as ultraviolet rays, β rays, and γ rays.

また、該中間層の塗布には、透明有機高分子成形物や塗
工液の形状、性質に応じてドクターナイフ、バーコータ
ー、グラビアロールコータ−、カーテンコーター、ナイ
フコーターなどの公知の塗工機械を用いる塗工法、スプ
レー法、浸漬法などが用いられる。
For coating the intermediate layer, a known coating machine such as a doctor knife, bar coater, gravure roll coater, curtain coater, knife coater, etc. may be used depending on the shape and properties of the transparent organic polymer molded product and the coating solution. Coating methods, spray methods, dipping methods, etc. are used.

該中間層の厚さとしては、100〜1.000人が好ま
しく、特に200〜900人が好ましい。
The thickness of the intermediate layer is preferably 100 to 1,000, particularly preferably 200 to 900.

100λ未満の場合には、連続層を形成しないため密着
性などの向上効果がない。
If it is less than 100λ, a continuous layer is not formed, so there is no effect of improving adhesion or the like.

一方、1,000人を超えると、クランクや剥離を生じ
たりして好ましくない。
On the other hand, if the number exceeds 1,000 people, it is not preferable because cranking or peeling may occur.

また、本発明における導電性積層体は、主としてインジ
ウム酸化物を含む透明導電層上に耐スクラッチ性を向上
させる、あるいは他の塗工層との密着性を向上させるな
どの目的のために保護層を積層させても良い。
In addition, the conductive laminate of the present invention mainly includes a protective layer on a transparent conductive layer containing indium oxide for the purpose of improving scratch resistance or improving adhesion with other coating layers. may be stacked.

かかる保護層としては、Ti0z 、Snow、S i
o、 、Zr0z 、ZnOなどの透明酸化物、Si□
N4 、T i Nなどの窒化物あるいはアクリロニト
リル樹脂、スチレン樹脂、アクリレート樹脂、ポリエス
テル樹脂、シアノエチル化プルランなどのシアノエチル
北条tinなどの透明な有機化合物重合体あるいは、有
機ケイ素化合物、チタンアルキルエステル、ジルコニウ
ムアルキルエステルなどの有機金属化合物などを用いる
ことができる。
Such protective layers include Ti0z, Snow, Si
o, , Zr0z, transparent oxides such as ZnO, Si□
Nitrides such as N4, TiN, transparent organic compounds such as acrylonitrile resin, styrene resin, acrylate resin, polyester resin, cyanoethyl Hojo tin such as cyanoethylated pullulan, organosilicon compounds, titanium alkyl esters, zirconium alkyls, etc. Organometallic compounds such as esters can be used.

かかる保護層の厚さは、透明導電層の特性を低下させな
い範囲で任意に設けることが可能である。
The thickness of such a protective layer can be set arbitrarily within a range that does not deteriorate the characteristics of the transparent conductive layer.

また、本発明における導電性積層体は、有機高分子成形
物の両面に必要に応じて中間層を介して透明導電層を積
層した構成にしてもよく、あるいは有機高分子成形物の
片面に必要に応じて中間層を介して透明導電層を積層し
た構成において透明導電層を積層した面と反対面におい
て、透明性を損なわない範囲で接着性、表面硬度、光学
特性などを改善する目的で、例えば前述した中間層や保
護層と同種の層や、酸化物層、窒化物層、硫化物層、炭
化物層や有機物層を設けても良い。
Further, the conductive laminate of the present invention may have a structure in which transparent conductive layers are laminated on both sides of the organic polymer molded material via an intermediate layer as necessary, or a transparent conductive layer may be laminated on one side of the organic polymer molded material as necessary. For the purpose of improving adhesion, surface hardness, optical properties, etc. without impairing transparency on the side opposite to the side on which the transparent conductive layer is laminated in a structure in which transparent conductive layers are laminated via an intermediate layer according to For example, a layer similar to the above-mentioned intermediate layer or protective layer, an oxide layer, a nitride layer, a sulfide layer, a carbide layer, or an organic layer may be provided.

本発明の膜は、先ず有機高分子成形物上に主としてイン
ジウム酸化物を含む波長550nmの吸光係数が1.0
X10−4〜3.9X10−’C人−1〕で、比抵抗が
4,0×10−4〜1.4X10Ω・cmの層を形成し
、次いで核層を加熱処理することにより形成することが
できる。
The film of the present invention has an absorption coefficient of 1.0 at a wavelength of 550 nm that mainly contains indium oxide on an organic polymer molded product.
x10-4 to 3.9 I can do it.

吸光係数が4X10”(人情3以上で比抵抗がり、5)
XIQ−”Ω・cm以上のものは、結晶成長が起こりや
すいため、結晶化度100%の膜になってしまい、耐屈
曲性が悪くなる。
Extinction coefficient is 4X10" (resistivity increases at 3 or higher, 5)
If the thickness is more than XIQ-''Ω·cm, crystal growth tends to occur, resulting in a film with a crystallinity of 100%, resulting in poor bending resistance.

また、吸光係数が1.0×10−’(入り〕未満テ比i
抗カ4.  o x i o−’Ω・cm未溝のものは
、熱処理後の導電性が悪くなる。
In addition, the extinction coefficient is less than 1.0 × 10-' (in)
Anti-force 4. ox i o-'Ω·cm Those without grooves have poor conductivity after heat treatment.

ここで、吸光係数aとは、積分球で測定した波長550
 nmにおける基板も含めた透過率T(%)と反射率R
(%)および基板である有機高分子成形物による吸収率
B(%)とITO膜の膜厚t(人)より次式で定義され
る。
Here, the extinction coefficient a is the wavelength 550 measured with an integrating sphere.
Transmittance T (%) and reflectance R including the substrate at nm
(%), the absorption rate B (%) by the organic polymer molded material that is the substrate, and the film thickness t (person) of the ITO film.

a = (1/l)log  (100−R−B)/T
 [人−1〕なお、本発明者らが以前提案した光吸収率
2〜30%のITO膜の吸光係数は、ITO膜厚が約2
00人の時、5.3X10−’ 〜9.6X10−’〔
人−1〕であった。
a = (1/l)log (100-R-B)/T
[Person-1] The extinction coefficient of the ITO film with a light absorption rate of 2 to 30%, which was previously proposed by the present inventors, is based on the ITO film thickness of approximately 2%.
00 people, 5.3X10-' ~ 9.6X10-' [
Person-1].

本発明の方法は、スパッタリング法に限定されず、他の
公知の薄膜形成方法、例えばイオンブレーティング法な
どにも適用することができる。
The method of the present invention is not limited to the sputtering method, but can also be applied to other known thin film forming methods, such as the ion blating method.

主としてインジウム酸化物を含む層を形成するスパッタ
リング法には、インジウムを主成分とする合金、または
酸化インジウムを主成分とする焼結体をターゲットとし
て用いることができる。
In the sputtering method for forming a layer mainly containing indium oxide, an alloy containing indium as a main component or a sintered body containing indium oxide as a main component can be used as a target.

前者においては、アルゴンなどの不活性ガスおよび酸素
ガスなどの反応性ガスを真空槽内に導入して、反応性ス
パッタリングを行う。後者においては、アルゴンなどの
不活性ガス単独があるいはアルゴンなどの不活性ガスに
微量の酸素ガスなどの反応性ガスを混合したものを用い
てスパッタリングを行う。スパッタリングの方式は、直
流または高周波二極スパッタ、直流または高周波マグネ
トロンスパッタ、イオンビームスパッタなト公知の方式
が適用できる。中でもマグネトロン方式は基板へのプラ
ズマ衝撃が少なく、高速製膜が可能で好ましい。
In the former, an inert gas such as argon and a reactive gas such as oxygen gas are introduced into a vacuum chamber to perform reactive sputtering. In the latter case, sputtering is performed using an inert gas such as argon alone or a mixture of an inert gas such as argon and a trace amount of a reactive gas such as oxygen gas. As the sputtering method, known methods such as direct current or high frequency bipolar sputtering, direct current or high frequency magnetron sputtering, and ion beam sputtering can be applied. Among these, the magnetron method is preferable because it causes less plasma impact on the substrate and allows high-speed film formation.

また、イオンブレーティング法には、インジウムを主成
分とする合金、または酸化インジウムを主成分とする成
形物を用いることができる。
Further, in the ion blating method, an alloy containing indium as a main component or a molded product containing indium oxide as a main component can be used.

前者においては、酸素ガスなどの反応性ガス単独、ある
いは反応性ガスとアルゴンなどの不活性ガスの混合ガス
を真空槽内に導入して反応性イオンブレーティングを行
う。後者においては、アルゴンなどの不活性ガス単独が
あるいは不活性ガスに@量の酸素ガスなどの反応性ガス
を混合したものを用いる。
In the former, reactive ion blating is performed by introducing a reactive gas such as oxygen gas alone or a mixed gas of a reactive gas and an inert gas such as argon into a vacuum chamber. In the latter case, an inert gas such as argon alone or a mixture of an inert gas and a reactive gas such as oxygen gas is used.

ここでイオンブレーティング法とは、蒸発粒子および/
または導入ガスの一部をイオン化しつつ膜形成を行うも
のであり、イオン化の手段としては、直流、交流、高周
波、マイクロ波などを印加する方法がある。また、蒸発
源近くにイオン化電極を設け、導入ガスを必要としない
方法もある。
Here, the ion blating method refers to evaporated particles and/or
Alternatively, film formation is performed while part of the introduced gas is ionized, and methods for ionization include applying direct current, alternating current, high frequency, microwave, etc. There is also a method in which an ionization electrode is provided near the evaporation source and no introduction gas is required.

いずれの場合もスパッタリング法やイオンブレーティン
グ法などにより形成する主としてインジウム酸化物を含
む層の吸光係数および比抵抗が目的の値となるように形
成条件を制御しなければならない。形成条件は、装置に
よって異なる。
In either case, the formation conditions must be controlled so that the absorption coefficient and resistivity of the layer mainly containing indium oxide, which is formed by sputtering, ion blating, etc., reach desired values. Formation conditions vary depending on the device.

形成条件を決める方法としては、例えばスパッタリング
法では一定の酸素分圧下で堆積速度(すなわち、投入電
力)を変えて堆積された膜の特性を調べる方法や投入電
力を一定にしておいて、酸素分圧を変えて堆積された膜
の特性を調べる方法などがある。
For example, in the sputtering method, the deposition rate (i.e., input power) can be varied under a constant oxygen partial pressure to determine the characteristics of the deposited film, or the deposition conditions can be determined by keeping the input power constant and determining the oxygen concentration. There are methods to examine the characteristics of a film deposited by varying the pressure.

要は、使用する装置において、インジウム酸化物を含む
層の吸光係数1.0X10−s〜3.9×10−’(入
相〕で、比抵抗が4,0×10−4〜1.4X10−3
Ω・cmになるような形成条件を実験的に求め、インジ
ウム酸化物を含む層の吸光係数および比抵抗が上記の値
となるように形成条件を制御する。
In short, in the equipment used, the absorption coefficient of the layer containing indium oxide is 1.0x10-s to 3.9x10-' (in phase), and the specific resistance is 4.0x10-4 to 1.4x10. -3
The formation conditions are experimentally determined so that the layer becomes Ω·cm, and the formation conditions are controlled so that the absorption coefficient and specific resistance of the layer containing indium oxide have the above values.

本発明に用いられる透明導電層は、主としてインジウム
酸化物を含む層である。インジウム酸化物層は本来透明
な電気絶縁体であるが、■微量の不純物を含有する場合
、■わずかに酸素不足になっている場合などに半導体に
なる。好ましい半導体金属酸化物としては、例えば不純
物としてスズまたはフッ素を含む酸化インジウムを挙げ
ることができる。特に好ましくは、酸化スズを2〜20
重量%含むインジウム酸化物の層である。
The transparent conductive layer used in the present invention is a layer mainly containing indium oxide. The indium oxide layer is originally a transparent electrical insulator, but it becomes a semiconductor when it contains trace amounts of impurities, or when there is a slight oxygen deficiency. Preferred semiconductor metal oxides include, for example, indium oxide containing tin or fluorine as an impurity. Particularly preferably, tin oxide is 2 to 20
% by weight of indium oxide.

本発明に用いられる主としてインジウム酸化物を含む透
明導電層の膜厚は充分な導電性を得るためには、50Å
以上であることが好ましく、100Å以上であればさら
に好ましい。
The thickness of the transparent conductive layer mainly containing indium oxide used in the present invention is 50 Å in order to obtain sufficient conductivity.
It is preferably at least 100 Å, more preferably at least 100 Å.

また、充分に透明度の高い被膜を得るためには、500
Å以下であることが好ましく、400Å以下がより好ま
しい。
In addition, in order to obtain a film with sufficiently high transparency, 500
The thickness is preferably Å or less, more preferably 400 Å or less.

本発明においてスパッタリング法やイオンブレーティン
グ法などにより主としてインジウム酸化物を含む層を有
機高分子成形物上に必要に応じて中間層を介して形成し
たのち、加熱処理を行う。
In the present invention, a layer containing mainly indium oxide is formed on an organic polymer molded article via an intermediate layer if necessary by a sputtering method, an ion blating method, etc., and then a heat treatment is performed.

加熱処理雰囲気は特に限定しない。必要に応じて酸素雰
囲気、不活性ガス雰囲気、還元性ガス雰囲気を選ぶこと
ができる。
The heat treatment atmosphere is not particularly limited. An oxygen atmosphere, an inert gas atmosphere, or a reducing gas atmosphere can be selected as necessary.

また、加熱温度は、100〜250°Cが好ましく、特
に130〜200°Cが好ましい。100″C未満では
耐屈曲性を改善することができない。
Further, the heating temperature is preferably 100 to 250°C, particularly preferably 130 to 200°C. If the temperature is less than 100''C, the bending resistance cannot be improved.

一方、250°Cを超えると有機高分子成形物に変形や
クラックが発生して好ましくない。
On the other hand, if the temperature exceeds 250°C, deformation or cracks will occur in the organic polymer molded article, which is not preferable.

なお、加熱処理時間は、加熱温度、層組成などに応じ実
験的に定める。
Note that the heat treatment time is determined experimentally depending on the heating temperature, layer composition, and the like.

本発明で得られる導電性積層体は、透明タッチパネルや
エレクトロルミネッセンス用電極止して適しているだけ
でなく、例えば電子写真、帯電防止材料、面発熱体、固
体デイスプレィ、光メモリ、光電変換素子、光通信、光
情報処理、太陽エネルギー利用材料などと広い用途を有
する。
The conductive laminate obtained by the present invention is not only suitable for transparent touch panels and electroluminescent electrodes, but also for electrophotography, antistatic materials, surface heating elements, solid-state displays, optical memories, photoelectric conversion elements, optical It has a wide range of uses, including communications, optical information processing, and solar energy utilization materials.

〔作用〕[Effect]

前述のとおり、従来のスパッタリング法により形成した
JTO膜は、実用上大きな問題を有する。
As mentioned above, the JTO film formed by the conventional sputtering method has a big problem in practical use.

本発明者らは、透明導電層の断線の原因究明のために、
透明導電層の膜構造を透過型電子顕微鏡で解析したとこ
ろ、はっきりした結晶粒界が観察されるものは耐屈曲性
が悪く断線が起きやすいことが分かった。恐らく結晶成
長に伴い透明導電層に新たな歪みが発生し、耐屈曲性を
悪くしているものと推定される。また、熱処理を行わな
いスパッタリング直後の膜も耐屈曲性が悪いことから、
膜の堆積過程における歪みが残っているものと推定され
る。
In order to investigate the cause of disconnection in the transparent conductive layer, the present inventors
When the film structure of the transparent conductive layer was analyzed using a transmission electron microscope, it was found that those with clear grain boundaries had poor bending resistance and were more likely to break. It is presumed that new strain occurs in the transparent conductive layer as the crystal grows, resulting in poor bending resistance. In addition, since the film immediately after sputtering without heat treatment has poor bending resistance,
It is presumed that distortions from the film deposition process remain.

本発明は、スパッタリング直後の膜の吸光係数が1.0
X10−4〜3.9X10−’(人−■)で、比抵抗が
4.0X10−4〜1.4X10−’Ω・1の層を形成
し、次いで核層を加熱処理すれば結晶成長を抑え、結晶
化度を1〜80%にすることができ、耐屈曲性を大幅に
改善できる。
In the present invention, the extinction coefficient of the film immediately after sputtering is 1.0.
If a layer with a specific resistance of 4.0X10-4 to 1.4X10-' Ω・1 is formed with a specific resistance of The degree of crystallinity can be controlled to 1 to 80%, and the bending resistance can be significantly improved.

〔実施例〕〔Example〕

以下、実施例をあげて本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜3および比較例1〜2 75μm厚のポリエチレンテレフタレートフィルムの両
面に有機ケイ素化合物のブタノール、イソプロパツール
混合アルコール系溶液(fi度0. 6重量%)をバー
コーターで塗布し、140℃で1分間乾燥した。乾燥後
の膜厚は300人であった。
Examples 1 to 3 and Comparative Examples 1 to 2 A mixed alcoholic solution of organosilicon compounds such as butanol and isopropanol (fi degree 0.6% by weight) was coated on both sides of a 75 μm thick polyethylene terephthalate film using a bar coater. Dry at ℃ for 1 minute. The film thickness after drying was 300.

該フィルムを直流マグネトロンスパッタ装置内の基板保
持台に固定し、真空度2X10−’Torrまで真空層
を排気した。その後、A r / Ot混合ガス(02
25%)を槽内に導入し、真空度を4×10−’Tor
rに保った後、r n / S n合金(Sn5重量%
)よりなるターゲットを用い、反応性スパッタリング法
により堆積速度を変えて実施例1〜3および比較例1の
吸光係数および比抵抗を有するインジウム・スズ酸化物
膜を形成した。
The film was fixed to a substrate holder in a DC magnetron sputtering device, and the vacuum layer was evacuated to a vacuum level of 2×10-' Torr. After that, Ar/Ot mixed gas (02
25%) into the tank, and the vacuum level was set to 4 x 10-'Tor.
After keeping at r, r n/S n alloy (Sn 5 wt%
), indium tin oxide films having the extinction coefficients and specific resistances of Examples 1 to 3 and Comparative Example 1 were formed by reactive sputtering at varying deposition rates.

これらのサンプルを150 ”Cに保った熱風乾燥器に
より加熱処理を行い、加熱処理後のサンプルの結晶化度
、比抵抗、耐屈曲性および発光層と貼り合わせたのちの
断線の程度を調べた。
These samples were heat-treated in a hot-air dryer maintained at 150"C, and the crystallinity, specific resistance, bending resistance, and degree of wire breakage after bonding with the light-emitting layer were examined after the heat treatment. .

比較例2として加熱処理を行わないサンプルの特性も同
様に調べた。
As Comparative Example 2, the characteristics of a sample that was not subjected to heat treatment were also investigated in the same manner.

なお、耐屈曲性は、透明導電層が外側になる様に直径5
φの丸棒の周囲に沿って10回繰り返し変形させて元に
戻した後の抵抗値Rと、変形させる前の抵抗値R0の比
R/R,と定義する。
In addition, the bending resistance is determined by using a diameter of 5 mm with the transparent conductive layer on the outside.
It is defined as the ratio R/R of the resistance value R after being repeatedly deformed 10 times along the circumference of a round bar of φ and returning to its original state, and the resistance value R0 before deformation.

結果を第1表に示す。The results are shown in Table 1.

本発明の透明導電性積層体は、耐屈曲性に優れ、発光層
と貼り合わせたのちの断線は皆無であった。
The transparent conductive laminate of the present invention had excellent bending resistance, and there was no disconnection after bonding it to the light emitting layer.

第1表 〔発明の効果〕 本発明により、スパッタリング法やイオンブレーティン
グ法などを用いて、極めて優れた耐久性および信頼性を
有し、透明タッチパネルやエレクトロルミネッセンス用
に充分利用できるit性積層体が提供できる。
Table 1 [Effects of the Invention] The present invention has produced an IT-based laminate using sputtering method, ion blating method, etc., which has extremely excellent durability and reliability and can be fully used for transparent touch panels and electroluminescence. can be provided.

特許出願人  帝 人 株式会社 代理人 弁理士 白 井 重 隆Patent applicant Teijin Co., Ltd. Agent: Patent Attorney Takashi Shirai

Claims (3)

【特許請求の範囲】[Claims] (1)有機高分子成形物上に主としてインジウム酸化物
からなる透明導電層を形成してなる導電性積層体におい
て、該透明導電層が結晶質および非晶質の混在した膜で
あり、かつ結晶化度が1〜80%であることを特徴とす
る透明導電性積層体。
(1) In a conductive laminate in which a transparent conductive layer mainly made of indium oxide is formed on an organic polymer molded article, the transparent conductive layer is a mixed crystalline and amorphous film, and A transparent conductive laminate, characterized in that the degree of oxidation is 1 to 80%.
(2)有機高分子成形物上に主としてインジウム酸化物
からなる透明導電層を形成してなる導電性積層体の製造
方法において、先ず有機高分子成形物上に主としてイン
ジウム酸化物を含む波長550nmの吸光係数が1.0
×10^−^5〜3.9×10^−^5〔Å^−^1〕
で、比抵抗が4.0×10^−^4〜1.4×10^−
^3Ω・cmの層を形成し、次いで該層を加熱処理する
ことを特徴とする透明導電性積層体の製造方法。
(2) In the method for manufacturing a conductive laminate in which a transparent conductive layer mainly composed of indium oxide is formed on an organic polymer molded article, first, a transparent conductive layer containing mainly indium oxide with a wavelength of 550 nm is formed on the organic polymer molded article. Extinction coefficient is 1.0
×10^-^5 ~ 3.9 × 10^-^5 [Å^-^1]
So, the specific resistance is 4.0×10^-^4~1.4×10^-
A method for producing a transparent conductive laminate, which comprises forming a layer of ^3Ω·cm and then heat-treating the layer.
(3)加熱処理温度が100〜250℃である請求項2
記載の透明導電性積層体の製造方法。
(3) Claim 2, wherein the heat treatment temperature is 100 to 250°C.
The method for manufacturing the transparent conductive laminate described above.
JP1338287A 1989-01-25 1989-12-28 Transparent conductive laminate and manufacture thereof Pending JPH02276630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/635,448 US5225273A (en) 1989-12-28 1990-12-28 Transparent electroconductive laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1406589 1989-01-25
JP1-14065 1989-01-25

Publications (1)

Publication Number Publication Date
JPH02276630A true JPH02276630A (en) 1990-11-13

Family

ID=11850692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338287A Pending JPH02276630A (en) 1989-01-25 1989-12-28 Transparent conductive laminate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02276630A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781076A2 (en) 1995-12-20 1997-06-25 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate and electroluminescence element
JP2003205567A (en) 2002-01-11 2003-07-22 Nitto Denko Corp Surface protecting film for transparent conductive film, and transparent conductive film
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
WO2008007770A1 (en) * 2006-07-14 2008-01-17 Dai Nippon Printing Co., Ltd. Transparent conducting layer coated film and its use
JP2008041640A (en) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd Transparent conducting layer coated film, substrate for display comprising the film, display, liquid crystal display device and organic el element
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
WO2013172461A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Transparent dielectric film, heat-reflecting structure and manufacturing method therefor, as well as laminated glass using same
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JPWO2016104796A1 (en) * 2014-12-26 2017-09-28 国立研究開発法人産業技術総合研究所 Flexible conductive film and method for producing the same
EP3498452A2 (en) 2017-12-18 2019-06-19 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
EP3711920A1 (en) 2019-03-20 2020-09-23 Ricoh Company, Ltd. Laminated structure, multiple laminated structure, lens, and method for producing laminated structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPS63906A (en) * 1986-06-18 1988-01-05 住友ベークライト株式会社 Transparent conducting film
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPS63906A (en) * 1986-06-18 1988-01-05 住友ベークライト株式会社 Transparent conducting film
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781076A2 (en) 1995-12-20 1997-06-25 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate and electroluminescence element
US6351068B2 (en) 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
JP2003205567A (en) 2002-01-11 2003-07-22 Nitto Denko Corp Surface protecting film for transparent conductive film, and transparent conductive film
WO2008007770A1 (en) * 2006-07-14 2008-01-17 Dai Nippon Printing Co., Ltd. Transparent conducting layer coated film and its use
JP2008041640A (en) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd Transparent conducting layer coated film, substrate for display comprising the film, display, liquid crystal display device and organic el element
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2013256104A (en) * 2012-05-17 2013-12-26 Nissan Motor Co Ltd Transparent dielectric film, heat-reflecting structure, manufacturing method therefor, and laminated glass using the same
WO2013172461A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Transparent dielectric film, heat-reflecting structure and manufacturing method therefor, as well as laminated glass using same
JPWO2016104796A1 (en) * 2014-12-26 2017-09-28 国立研究開発法人産業技術総合研究所 Flexible conductive film and method for producing the same
US10622115B2 (en) 2014-12-26 2020-04-14 National Institute Of Advanced Industrial Science And Technology Flexible conductive film and process for producing the same
EP3498452A2 (en) 2017-12-18 2019-06-19 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
US11833800B2 (en) 2017-12-18 2023-12-05 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
EP3711920A1 (en) 2019-03-20 2020-09-23 Ricoh Company, Ltd. Laminated structure, multiple laminated structure, lens, and method for producing laminated structure
US11681195B2 (en) 2019-03-20 2023-06-20 Ricoh Company, Ltd. Laminated structure, multiple laminated structure, lens, and method for producing laminated structure

Similar Documents

Publication Publication Date Title
JP2525475B2 (en) Transparent conductive laminate
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
US6346174B1 (en) Durable sputtered metal oxide coating
JP5432501B2 (en) Transparent conductive film and method for producing the same
JP2016157021A (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
JPH0864034A (en) Transparent conductive layered product
JPH0315536B2 (en)
JP3257913B2 (en) Transparent electrode
JPH06136159A (en) Transparent conductive film and its production
KR101165770B1 (en) Method for manufacturing ito thin film with high-transmittance and low-resistance
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JP3349194B2 (en) Transparent conductive laminate
JP2019194719A (en) Transparent conductive film for electric field-driven light control element, light control film, and electric field-driven light control element
JPS6143805B2 (en)
JP3501819B2 (en) Transparent conductive film with excellent flatness
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPS6346526B2 (en)
JPS626494B2 (en)
JPH09234816A (en) Transparent conductive laminate
JPH0449724B2 (en)
JPH0666124B2 (en) Conductive laminate
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film