JPH02270267A - Fuel cell power generating system - Google Patents
Fuel cell power generating systemInfo
- Publication number
- JPH02270267A JPH02270267A JP1092503A JP9250389A JPH02270267A JP H02270267 A JPH02270267 A JP H02270267A JP 1092503 A JP1092503 A JP 1092503A JP 9250389 A JP9250389 A JP 9250389A JP H02270267 A JPH02270267 A JP H02270267A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- fuel cell
- voltage
- battery
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 32
- 238000010248 power generation Methods 0.000 claims description 14
- 238000007599 discharging Methods 0.000 claims description 4
- 230000002411 adverse Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、燃料電池発電システムに関し、特にその停
止方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation system, and particularly to a method for stopping the same.
[従来の技術]
第4図は例えば特開昭63−181268号広報に示さ
れた従来の燃料電池発電システムを示す図であり、図に
おいて、(1)は燃料電池、(2a) 、 (2b)
。[Prior Art] Fig. 4 is a diagram showing a conventional fuel cell power generation system disclosed in, for example, Japanese Patent Laid-Open Publication No. 181268/1983. In the figure, (1) is a fuel cell, (2a), (2b) )
.
(2C)は燃料電池(1)と並列に接続された抵抗器、
(3a) 、 (3b) 、 (3c)は燃料電池(+
)と抵抗器(2a) 。(2C) is a resistor connected in parallel with the fuel cell (1),
(3a), (3b), (3c) are fuel cells (+
) and resistor (2a).
(2b) 、 (2c)とを接続する開閉器、(4)は
燃料電池(1)で発生した直流電力を交流電力に変換す
る直交変換装置、(5)は系統と連系するための電圧変
換を行う変圧器、(6a) 、 (6b)及び(6c)
、 (6d)は抵抗器上流側及び下流側の直流しゃ断
器、(7)は系統連系のための交流しゃ断器、(8)
、 (9)は電池発電に必要な空気と燃料ダ供給する空
気供給路及び燃料供給路、(lO)は空気流量を計測す
る空気流量検出器、(11)は燃料電池(1)の平均電
圧を計測する電圧検出器、(I2)は空気流量及び電池
電圧を監視しながら開閉器(3a) 、 (3b) 、
(3c)を0N10FF制御するための制御装置であ
る。(2b) and (2c) are connected, (4) is an orthogonal converter that converts the DC power generated by the fuel cell (1) into AC power, and (5) is the voltage for interconnecting with the grid. Transformers that perform the conversion, (6a), (6b) and (6c)
, (6d) is a DC breaker on the upstream and downstream sides of the resistor, (7) is an AC breaker for grid connection, (8)
, (9) is the air supply path and fuel supply path that supply the air and fuel necessary for battery power generation, (lO) is the air flow rate detector that measures the air flow rate, and (11) is the average voltage of the fuel cell (1). The voltage detector (I2) measures the air flow rate and battery voltage while monitoring the switches (3a), (3b),
(3c) is a control device for 0N10FF control.
次に動作について説明する。いま燃料電池発電システム
に停止指令が入ったとする。そこで速やかに負荷出力を
最低負荷出力にまで低下した後、交流しゃ断器(7)を
開き系統から切り離す。それと同時に、開閉器(3a)
、 (3b) 、 (3c)を投入し、抵抗器(2a
) 、 (2b) 、 (2c)に燃料電池出力を与え
る。また燃料電池(1)の運転を停止するために、まず
空気供給路(8)より供給される空気流量を徐々に絞る
。空気流量検出器(10)より検出される空気流量が徐
々に減少しある設定値Qnに達した時点で、制御装置(
12)からの信号により開閉器(3C)を開き、抵抗器
(2C)を切り離す。以下同様に空気流量の減少に比例
し、順番に抵抗器(2b)まで切り離す。次に空気流量
検出器(10)より検出される空気流量が零となり、か
つ電圧検出器(11)より検出される電池電圧が設定下
限値v2以下になった時点で、制御装置(12)からの
信号により開閉器(3a)を開き、抵抗器(2a)を切
り離す。このままでは、電極に付着した酸素分子により
、残留電圧が立ち、電池電圧が上昇する。そこで電池電
圧上限値Vt(例えば0.8V)以上で抵抗器(2a)
をONL、電池電圧下限値v2までONを続ける。そし
て電池電圧下限値v2以下で抵抗器(2a)をOFFと
する制御を制御装置(12)により行い、残留電圧が電
池電圧上限値V、に致らなくなることを確認して、停止
の次のステップへ移行する。Next, the operation will be explained. Suppose that a stop command is now given to the fuel cell power generation system. Therefore, after quickly reducing the load output to the minimum load output, the AC breaker (7) is opened and disconnected from the system. At the same time, switch (3a)
, (3b), (3c), and resistor (2a
), (2b), and (2c) give the fuel cell output. Furthermore, in order to stop the operation of the fuel cell (1), first the flow rate of air supplied from the air supply path (8) is gradually reduced. When the air flow rate detected by the air flow rate detector (10) gradually decreases and reaches a certain set value Qn, the control device (
12) opens the switch (3C) and disconnects the resistor (2C). Similarly, the resistor (2b) is disconnected in order in proportion to the decrease in air flow rate. Next, when the air flow rate detected by the air flow rate detector (10) becomes zero and the battery voltage detected by the voltage detector (11) becomes lower than the set lower limit value v2, the control device (12) The switch (3a) is opened by the signal, and the resistor (2a) is disconnected. If this continues, residual voltage will build up due to oxygen molecules adhering to the electrodes, and the battery voltage will rise. Therefore, when the battery voltage upper limit value Vt (for example, 0.8V) is exceeded, the resistor (2a)
ONL, and continues to be ON until the battery voltage lower limit value v2. Then, the control device (12) controls to turn off the resistor (2a) when the battery voltage lower limit value V2 is below, and after confirming that the residual voltage does not reach the battery voltage upper limit value V, Move to step.
[発明が解決しようとする課題]
従来の燃料電池発電システムの停止方法は以上の様に行
われるので、残留電圧抑制の為に頻雑な制御回路が必要
となり、希薄な残存燃料状態で、低抵抗を入切するが為
に消費電流は大きく部分的には燃料の改質ガスがガス欠
状態となり却って電池劣化を促進させる等の問題点があ
った。また、万−停電等の事故時には制御装置異常とな
り、上記のような残留電圧抑制回路は実行されない為、
残留電圧が残ってしまう問題もあった。[Problems to be Solved by the Invention] Since the conventional stopping method of the fuel cell power generation system is performed as described above, a frequent control circuit is required to suppress the residual voltage, and it is difficult to stop the fuel cell power generation system in a lean state with the remaining fuel. Since the resistor is turned on and off, the current consumption is large, and there are problems in that the reformed gas of the fuel is partially depleted, which actually accelerates battery deterioration. In addition, in the event of an accident such as a power outage, the control device will become abnormal and the residual voltage suppression circuit as described above will not be activated.
There was also the problem that residual voltage remained.
この発明は上記のような課題を解決するためになされた
もので、残留電圧抑制が実行でき、電池に悪影響を及ぼ
すことなく停止できる燃料電池発電システムを得ること
を目的とする。This invention was made to solve the above-mentioned problems, and aims to provide a fuel cell power generation system that can suppress residual voltage and can be stopped without adversely affecting the battery.
[課題を解決するための手段]
この発明に係る燃料電池発電システムは燃料電池と並列
に設けられた停止用の低抵抗器と開閉器及び停電時には
必ず投入状態となる残留電圧放電用の高抵抗器と開閉器
を所定の開放投入手順に従い操作することにより残留電
圧抑制を行い、電池に悪影響を及ぼすことなく速やかに
停止できるようにしたものである。[Means for Solving the Problems] The fuel cell power generation system according to the present invention includes a low resistance resistor and a switch for stopping that are provided in parallel with the fuel cell, and a high resistor for discharging residual voltage that is always turned on in the event of a power outage. By operating the device and the switch according to a predetermined opening/closing procedure, the residual voltage is suppressed and the battery can be stopped quickly without adversely affecting the battery.
[作用]
この発明における燃料電池発電システムは、残留電圧放
電用の高抵抗器を投入するだけで、残留電圧を穏やかに
抑制低下させる。[Function] The fuel cell power generation system according to the present invention gently suppresses and lowers the residual voltage by simply inserting a high resistor for discharging the residual voltage.
[発明の実施例コ
以下、この発明の一実施例を図について説明する。第1
図において(1)〜(12)は従来装置の構成と同様で
あるが、(2a) 、 (2b) 、 (2c)は投入
燃料量及び投入空気量に対応した直流電力の消費用の低
抵抗器であり抵抗値は電池の電圧−電流特性より決るも
のである。(13)は電池の停止時に燃料、空気を遮断
後、電池内部の残留ガスによる残留電圧の発生を抑制し
、放電させる為の高抵抗器、(14)は高抵抗器(13
)の開閉器であり通電量、無通電閉タイプのものである
。[Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. 1st
In the figure, (1) to (12) are the same as the configuration of the conventional device, but (2a), (2b), and (2c) are low resistances for consuming DC power corresponding to the amount of fuel input and the amount of air input. The resistance value is determined by the voltage-current characteristics of the battery. (13) is a high resistor that suppresses the generation of residual voltage due to residual gas inside the battery and discharges it after cutting off fuel and air when the battery is stopped; (14) is a high resistor (
), it is a type of switch that is energized and closes without energization.
次にこの発明の動作について説明する。停止指令が入っ
た後、開閉器(3a)を開き、抵抗器(2a)を切り離
すところまでは、上述した従来技術と同様の手順である
が、抵抗器(2a)の開放と同時に、開閉器(14)を
投入し、残留電圧放電用の高抵抗器(13)を投入する
。この残留電圧放電用の高抵抗器(13)は低抵抗器(
2a) 、 (2b) 、 (2c)に比べ高抵抗であ
るので、消費電流は少なく電池内部に残留した希少な残
留酸素及び残留水素を徐々に消費し、残留電圧も穏やか
に放電されてゆき、電池に対するショックを少なく残留
電圧を抑制することができる。Next, the operation of this invention will be explained. After receiving a stop command, the procedure is the same as in the prior art described above, until the switch (3a) is opened and the resistor (2a) is disconnected. (14) and the high resistor (13) for residual voltage discharge. This high resistor (13) for residual voltage discharge is replaced by a low resistor (
Since it has a higher resistance than 2a), (2b), and (2c), the current consumption is low and the rare residual oxygen and hydrogen remaining inside the battery are gradually consumed, and the residual voltage is also gently discharged. It is possible to reduce the shock to the battery and suppress the residual voltage.
従来技術では低抵抗器(2a)の大切により残留電圧の
放電を行う為、消費電流は大きく燃料の改質ガスが希薄
なセルではガス欠が生じ、電池劣化に結びつく。また、
開閉器(14)を無通電閉型とした為、停電時にも放電
用の高抵抗器(13)が投入され、残留電圧が確実に放
電され、電池保護の働きをなす、しかし、従来技術では
停電時には制御装置が働かない為、低抵抗器(2a)の
大切制御が働かず、残留電圧が残り、電池腐食につなが
る危険性があった。In the conventional technology, the residual voltage is discharged by the use of a low resistor (2a), so the current consumption is large, and in a cell where the reformed fuel gas is diluted, a gas shortage occurs, leading to battery deterioration. Also,
Since the switch (14) is a non-energized closed type, the high-discharge resistor (13) is turned on even in the event of a power outage, and the residual voltage is reliably discharged to protect the battery.However, with conventional technology, Since the control device does not work during a power outage, the important control of the low resistance resistor (2a) does not work, and residual voltage remains, posing the risk of battery corrosion.
上述したこの発明に係る電池電圧、抵抗器、空気流量の
挙動を第2図に、操作手順のフローチャートを第3図に
示す。第2図に示す様に、空気流量の低下とともに順次
抵抗を開放してゆくに従い、電池電圧はノコギリ波状に
推移しながら低下してゆき、空気流量が零になった時点
で、しきい電圧v2を下回る。この段階で最終段の抵抗
器R,を開放するとともに、残留電圧放電用抵抗R0を
投入すると、電池電圧はv2を下回りゆるやかに放電し
てゆく。また、第3図のフローチャートに示す様に、シ
ーケンス動作の進行条件は空気流量を基準値と比較判定
することにより、次の抵抗器開放動作に進行する様に設
定し、最終段の抵抗器R1の開放と放電抵抗ROの投入
の条件には、空気流量が零であることと、電池電圧が設
定電圧以下になったことを判定条件としている。The behavior of the battery voltage, resistor, and air flow rate according to the invention described above is shown in FIG. 2, and the flowchart of the operating procedure is shown in FIG. 3. As shown in Figure 2, as the air flow rate decreases and the resistances are sequentially opened, the battery voltage decreases in a sawtooth waveform, and when the air flow rate reaches zero, the threshold voltage v2 below. At this stage, when the final stage resistor R is opened and the residual voltage discharging resistor R0 is turned on, the battery voltage drops below v2 and slowly discharges. In addition, as shown in the flowchart in Fig. 3, the conditions for proceeding with the sequence operation are set so that the air flow rate is compared with the reference value to proceed to the next resistor opening operation, and the final stage resistor R1 The conditions for opening and closing the discharge resistor RO are that the air flow rate is zero and that the battery voltage is below the set voltage.
[発明の効果]
以上のように、この発明によれば、残留電圧放電用の抵
抗を高抵抗とし、無電圧閉型の開閉器と組み合わせて、
投入することとしたので、停電時にも確実に電池が保護
できるとともに、穏やかな残留電圧抑制特性を得ること
かでき、電池に与えるショックを少なくし、電池寿命を
延ばす効果がある。[Effects of the Invention] As described above, according to the present invention, the resistor for residual voltage discharge is made high in resistance, and in combination with a voltage-free closing type switch,
Since it was decided to insert the battery into the battery, it is possible to reliably protect the battery even in the event of a power outage, and also to obtain mild residual voltage suppression characteristics, which has the effect of reducing the shock given to the battery and extending the battery life.
第1図はこの発明の一実施例による燃料電池発電システ
ムを示す回路構成図、第2図はこの発明の一実施例によ
る停止時の空気流量と抵抗器及び電池電圧の特性図、第
3図はこの発明の一実施例による制御動作のフローチャ
ート、第4図は従来の燃料電池発電システムを示す回路
構成図である。
図において、(1)は燃料電池、(13)は残留電圧放
電用高抵抗器、(14)は開閉器である。
なお図中、同一符号は同一、又は相当部分を示す。
代理人 大 岩 増 雄
(9) 叡
第2図
的間−Fig. 1 is a circuit configuration diagram showing a fuel cell power generation system according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of air flow rate, resistor, and battery voltage at the time of stoppage according to an embodiment of the present invention, and Fig. 3 4 is a flowchart of a control operation according to an embodiment of the present invention, and FIG. 4 is a circuit configuration diagram showing a conventional fuel cell power generation system. In the figure, (1) is a fuel cell, (13) is a high resistor for residual voltage discharge, and (14) is a switch. In the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa (9)
Claims (1)
テムにおいて、上記燃料電池と並列に接続される大抵抗
値をもつ燃料電池停止時残留電圧放電用の高抵抗器及び
上記抵抗器を入切する無通電閉型の開閉器を備え、燃料
及び空気停止後に上記開閉器を投入することを特徴とす
る燃料電池発電システム。In a fuel cell power generation system that supplies the power generation output of the fuel cell to a load, a high resistor with a large resistance value connected in parallel with the fuel cell for discharging residual voltage when the fuel cell is stopped and the resistor are turned on and off. 1. A fuel cell power generation system comprising a non-energized closed type switch, the switch being turned on after fuel and air are stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1092503A JPH02270267A (en) | 1989-04-11 | 1989-04-11 | Fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1092503A JPH02270267A (en) | 1989-04-11 | 1989-04-11 | Fuel cell power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02270267A true JPH02270267A (en) | 1990-11-05 |
Family
ID=14056114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1092503A Pending JPH02270267A (en) | 1989-04-11 | 1989-04-11 | Fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02270267A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6582840B2 (en) * | 2001-01-08 | 2003-06-24 | General Motors Corporation | Fuel cell stack coolant conductivity sensor using differential voltage measurements |
JP2005158555A (en) * | 2003-11-27 | 2005-06-16 | Nissan Motor Co Ltd | Fuel cell system |
WO2006054548A1 (en) * | 2004-11-17 | 2006-05-26 | Toshiba Fuel Cell Power Systems Corporation | Fuel cell power generation system, its stopping/safekeeping method and program |
JP2008010273A (en) * | 2006-06-28 | 2008-01-17 | Nitto Denko Corp | Charging device |
JP2009104986A (en) * | 2007-10-25 | 2009-05-14 | Honda Motor Co Ltd | Fuel cell system and scavenging method therefor |
JP2010044932A (en) * | 2008-08-12 | 2010-02-25 | Toyota Motor Corp | Fuel battery system and its control method |
JP2012509552A (en) * | 2008-09-17 | 2012-04-19 | ベレノス・クリーン・パワー・ホールディング・アーゲー | How to start and stop a fuel cell |
-
1989
- 1989-04-11 JP JP1092503A patent/JPH02270267A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6582840B2 (en) * | 2001-01-08 | 2003-06-24 | General Motors Corporation | Fuel cell stack coolant conductivity sensor using differential voltage measurements |
JP2005158555A (en) * | 2003-11-27 | 2005-06-16 | Nissan Motor Co Ltd | Fuel cell system |
JP4639584B2 (en) * | 2003-11-27 | 2011-02-23 | 日産自動車株式会社 | Fuel cell system |
WO2006054548A1 (en) * | 2004-11-17 | 2006-05-26 | Toshiba Fuel Cell Power Systems Corporation | Fuel cell power generation system, its stopping/safekeeping method and program |
KR100856016B1 (en) * | 2004-11-17 | 2008-09-03 | 도시바 넨료 덴치 시스템 가부시키가이샤 | A method for retaining a power generation-suspended state of a fuel cell power generation system, a computer-readable medium recorded with a program for retaining a power generation-suspended state of a fuel cell power generation system, and a fuel cell power generation system |
US8173314B2 (en) | 2004-11-17 | 2012-05-08 | Toshiba Fuel Cell Power Systems Corporation | Fuel cell power generation system, its stopping/safekeeping method and program |
JP2008010273A (en) * | 2006-06-28 | 2008-01-17 | Nitto Denko Corp | Charging device |
JP2009104986A (en) * | 2007-10-25 | 2009-05-14 | Honda Motor Co Ltd | Fuel cell system and scavenging method therefor |
US8691459B2 (en) | 2007-10-25 | 2014-04-08 | Honda Motor Co., Ltd. | Fuel cell system and scavenging method therefor |
JP2010044932A (en) * | 2008-08-12 | 2010-02-25 | Toyota Motor Corp | Fuel battery system and its control method |
JP2012509552A (en) * | 2008-09-17 | 2012-04-19 | ベレノス・クリーン・パワー・ホールディング・アーゲー | How to start and stop a fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6025083A (en) | Fuel cell generator energy dissipator | |
EP0468769A2 (en) | Power supply apparatus | |
JP2022547614A (en) | Fuel cell stack protection method, device, and fuel cell power system | |
KR102134825B1 (en) | Apparatus and method for controlling a power relay assembly | |
JPH0240864A (en) | Discharge circuit of fuel cell | |
JPH02270267A (en) | Fuel cell power generating system | |
JPH0793147B2 (en) | Fuel cell power generation system | |
JP2005197030A (en) | Fuel cell system equipped with current sensor correcting function | |
US7521824B2 (en) | Contactor control apparatus and contactor control method for use in electric vehicle | |
JPH01128362A (en) | Operating method for fuel cell | |
JPH05280654A (en) | Driving system of stepping motor for operating shutoff valve and safety gas meter | |
JPS6398710A (en) | Voltage control circuit for fuel cell | |
JP7013910B2 (en) | Uninterruptible power supply system and its control method | |
CN111900439A (en) | Fuel cell system and starting control method thereof | |
JPS63181269A (en) | Fuel cell power generation system | |
CN111555386A (en) | Power supply product and power supply's battery charging protection circuit | |
JP3719456B2 (en) | DC circuit breaker | |
JP2013031253A (en) | Charge control device and charge control method for storage battery | |
JPH10284098A (en) | Fuel cell power generating device | |
JPH04101362A (en) | Electric power generating apparatus of phosphate-type fuel cell | |
JPH01298649A (en) | Discharge control circuit for fuel cell | |
JPH0487157A (en) | Fuel cell power generation system | |
JPH03107332A (en) | Dc power supply device for servo | |
JPS61233974A (en) | Main terminal voltage control device of fuel cell | |
JP2023119789A (en) | Power supply device for vehicle |