JPH02265170A - Fuel cell power generating system - Google Patents
Fuel cell power generating systemInfo
- Publication number
- JPH02265170A JPH02265170A JP1084661A JP8466189A JPH02265170A JP H02265170 A JPH02265170 A JP H02265170A JP 1084661 A JP1084661 A JP 1084661A JP 8466189 A JP8466189 A JP 8466189A JP H02265170 A JPH02265170 A JP H02265170A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- oxidizing agent
- reducing agent
- fuel cell
- differential pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 37
- 239000007800 oxidant agent Substances 0.000 claims abstract description 29
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 25
- 239000000567 combustion gas Substances 0.000 claims abstract description 5
- 238000010248 power generation Methods 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 16
- 238000010586 diagram Methods 0.000 description 3
- 210000005056 cell body Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は同一軸より構成された2つのコンプレッサによ
り酸化剤及び還元剤を同時に昇圧し、燃料電池の極間差
圧を一定に保持する燃料電池発電装置に関する。[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention raises the pressure of an oxidizing agent and a reducing agent at the same time using two compressors configured with the same shaft, and increases the differential pressure between the poles of a fuel cell. This invention relates to a fuel cell power generation device that is maintained at a constant level.
(従来の技術)
燃料電池はよく知られているようにアノード極の還元剤
とカソード極の酸化剤を薄膜を通して反応させて電力を
発生させる発電素子であり、その両極間の差圧が規定値
を超えるとその薄膜が破壊される可能性がある。しかし
ながら従来、酸化剤と還元剤は各々独立して昇圧を行っ
ており、燃料電池出口後の配管圧損を調整する等の手段
により極間差圧の調整を行っていた。(Prior art) As is well known, a fuel cell is a power generating element that generates electricity by reacting a reducing agent at an anode and an oxidizing agent at a cathode through a thin film, and the differential pressure between the two electrodes is a specified value. If the amount exceeds 100%, the thin film may be destroyed. However, in the past, the pressure of the oxidizing agent and the reducing agent were increased independently, and the differential pressure between the electrodes was adjusted by adjusting the pressure loss in the piping after the fuel cell outlet.
(発明が解決しようとする課題)
しかしながら従来の構成では、酸化剤、還元剤とも独立
して昇圧を行っていたため、極間差圧の制御が難しく、
酸化剤及び還元剤どちらかの昇圧装置が変動を起こした
場合、差圧を一定に保持して運転を継続することは不可
能であった。また、各々独立な昇圧設備を必要すること
からシステムを複雑にしていた。(Problem to be solved by the invention) However, in the conventional configuration, the pressure of the oxidizing agent and the reducing agent were increased independently, making it difficult to control the differential pressure between the electrodes.
If either the oxidizing agent or the reducing agent pressure booster fluctuates, it is impossible to maintain the differential pressure constant and continue operation. Furthermore, each requires independent boosting equipment, making the system complex.
本発明の目的は、簡単なシステムにて電池極間差圧を一
定に保持し得る燃料電池発電装置を提供するものである
。An object of the present invention is to provide a fuel cell power generation device that can maintain a constant differential pressure between battery electrodes with a simple system.
[発明の構成]
(課題を解決するための手段)
上記目的を達成するため本発明において酸化剤として空
気を、還元剤として水素を主成分とする燃料電池発電シ
ステムにおいて、前記酸化剤及び還元剤を同一の運転圧
力にまで昇圧するための同一軸から成るタービンコンプ
レッサと、このタービンコンプレッサの動力源となる燃
焼ガスを生成するための補助燃焼器と、燃料電池入口お
いて前記酸化剤と還元剤の差圧を検出する差圧検出器と
、前記差圧を一定に保持するとともに電池運転圧力をも
一定に保持するように前記酸化剤及び還元剤の一部をそ
れぞれ補助燃焼器に導入するための配管及び流量調節手
段とを具備し、燃料電池の酸化剤及び還元剤の圧力差が
常に一定となるように酸化剤及び還元剤を昇圧すること
を特徴とするものでおる。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a fuel cell power generation system mainly containing air as an oxidizing agent and hydrogen as a reducing agent. a turbine compressor consisting of the same shaft for increasing the pressure of the fuel to the same operating pressure, an auxiliary combustor for generating combustion gas that becomes the power source for the turbine compressor, and the oxidizer and reducing agent at the fuel cell inlet. A differential pressure detector for detecting the differential pressure of The fuel cell is characterized in that it is equipped with piping and a flow rate adjusting means, and increases the pressure of the oxidizing agent and the reducing agent so that the pressure difference between the oxidizing agent and the reducing agent of the fuel cell is always constant.
(作 用)
このように構成された本発明においては、燃料電池人口
における酸化剤及び還元剤の圧力差が一定となるように
昇圧され、その結果電池極間差圧が一定に制御される。(Function) In the present invention configured as described above, the pressure difference between the oxidizing agent and the reducing agent in the fuel cell population is increased so as to be constant, and as a result, the differential pressure between the battery electrodes is controlled to be constant.
(実施例)
以下、本発明の一実施例を図面によって説明する。第1
図は本発明の一実施例に係る燃料電池装置のブロック図
を示したものである。燃料電池本体1は大きく分けて燃
料極2と空気極3とから成る。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows a block diagram of a fuel cell device according to an embodiment of the present invention. The fuel cell body 1 is roughly divided into a fuel electrode 2 and an air electrode 3.
この燃料極2及び空気極3に同じ圧力にまで昇圧された
酸化剤及び還元剤を供給するが、その昇圧には同一軸か
ら成るタービンコンプレッサ4を用いる。このタービン
コンプレッサ4を駆動するため、補助燃焼器5により燃
焼ガスを生成するが、その燃料及び酸化剤としてタービ
ンコンプレッサによって昇圧された後の酸化剤及び還元
剤を補助燃焼器燃料制御弁6及び補助燃焼器空気制御弁
7を介して導入する。An oxidizing agent and a reducing agent pressurized to the same pressure are supplied to the fuel electrode 2 and the air electrode 3, and a turbine compressor 4 having the same shaft is used to increase the pressure. In order to drive this turbine compressor 4, combustion gas is generated by an auxiliary combustor 5, and the oxidizing agent and reducing agent, which have been pressurized by the turbine compressor, are used as fuel and oxidizing agent for the auxiliary combustor fuel control valve 6 and the auxiliary combustor. It is introduced via the combustor air control valve 7.
この制御弁6,7は次のように制御される。ターボコン
プレッサ4の駆動源としては、燃料電池の排燃料、排酸
化剤をリフオーマ8で燃焼させ、その熱を改質反応に供
した後の燃焼ガスを主としで用いるが、負荷変動等によ
りこれだけではタービンの入口に設けられた圧力検出器
9にて計測されるタービンコンプレッサ基準圧力を一定
に運転することはできない。そこで圧力検出器9にて検
出される圧力が一定となるように弁6,7より必要な燃
料酸化剤を供給するが、これと同時に差圧検出器10に
よって検出される燃料電池極間差圧を一定にすることを
優先させて弁6,7を操作する。The control valves 6 and 7 are controlled as follows. As a driving source for the turbo compressor 4, the combustion gas obtained by burning the exhaust fuel and exhaust oxidizer from the fuel cell in the reformer 8 and using the heat for a reforming reaction is mainly used, but due to load fluctuations, etc. In this case, it is not possible to operate the turbine compressor at a constant reference pressure measured by the pressure detector 9 provided at the inlet of the turbine. Therefore, the necessary fuel oxidizer is supplied from the valves 6 and 7 so that the pressure detected by the pressure detector 9 is constant, but at the same time, the differential pressure between the fuel cell electrodes is detected by the differential pressure detector 10. The valves 6 and 7 are operated with priority given to keeping the value constant.
従って、圧力検出器9にて検出される圧力を弁6.7の
みでは正確に設定値に制御することはできないが、あら
かじめどのような運転域においても、補助燃焼器から直
接圧力を大気へ逃がすラインに設置された圧力逃し弁1
1が微開となるように設定しておき、極間差圧の制御を
優先することにより少しの変動が予測されるタービン入
口圧力を圧力逃し弁11によって補正する。Therefore, it is not possible to accurately control the pressure detected by the pressure detector 9 to the set value using only the valve 6.7, but it is necessary to release the pressure directly from the auxiliary combustor to the atmosphere in any operating range. Pressure relief valve installed in the line 1
1 is set to be slightly open, and the turbine inlet pressure, which is expected to fluctuate slightly, is corrected by the pressure relief valve 11 by giving priority to control of the interpole differential pressure.
以上の制御方法について第2図を用いて説明する。検出
器9にて検出されたタービン入口圧力12を一定とする
よう弁6及び7への操作信号13及び14を制御器15
にて演算して出力する。一方、差圧検出器10にて検出
された電池極間差圧16を一定とするよう弁6,7への
操作信号17.18を制御器19にて演算して出力する
。実際の弁への操作信号は弁6については信号13と1
7を加えたもの、弁7については信号14と18を加え
たものとする。このような構成では極間差圧16を一定
にする制御が優先されるため、圧力12を一定に保つよ
う操作信号20により弁11が駆動される。The above control method will be explained using FIG. 2. A controller 15 sends operation signals 13 and 14 to the valves 6 and 7 so as to keep the turbine inlet pressure 12 detected by the detector 9 constant.
Calculate and output. On the other hand, the controller 19 calculates and outputs operation signals 17 and 18 to the valves 6 and 7 so that the differential pressure 16 between the battery electrodes detected by the differential pressure detector 10 is kept constant. Actual operation signals to the valve are signals 13 and 1 for valve 6.
For valve 7, signals 14 and 18 are added. In such a configuration, priority is given to control to keep the interelectrode differential pressure 16 constant, so the valve 11 is driven by the operation signal 20 so as to keep the pressure 12 constant.
[発明の効果]
以上述べてきたように本発明によれば、同一のタービン
コンプレッサにより、酸化剤、還元剤ともに昇圧され燃
料電池の運転圧力及び電池極間差圧を確実に制御すると
ともにシステムを大幅に簡素化することができる。[Effects of the Invention] As described above, according to the present invention, both the oxidizing agent and the reducing agent are pressurized by the same turbine compressor, thereby reliably controlling the operating pressure of the fuel cell and the differential pressure between the cell electrodes, and improving the system. It can be greatly simplified.
第1図は本発明の燃料電池発電装置の一実施例を示すブ
ロック、第2図は第1図に示す構成における制御方法を
示したブロック図である。
1・・・燃料電池本体
2・・・燃料極
3・・・空気極
4・・・タービンコンプレッサ
5・・・補助燃料極
6・・・補助燃焼器燃料制御弁
7・・・補助燃焼器空気制御弁
8・・・リフォーム
15、19・・・制御器
代理人 弁理士 則 近 憲 佑
同 第子丸 健FIG. 1 is a block diagram showing an embodiment of the fuel cell power generating apparatus of the present invention, and FIG. 2 is a block diagram showing a control method in the configuration shown in FIG. 1. 1... Fuel cell body 2... Fuel electrode 3... Air electrode 4... Turbine compressor 5... Auxiliary fuel electrode 6... Auxiliary combustor fuel control valve 7... Auxiliary combustor air Control valve 8...Renovation 15, 19...Controller agent Patent attorney Yudo Noriyoshi Chika Ken Daishimaru
Claims (1)
燃料電池発電装置において、前記酸化剤および還元剤を
同一の運転圧力にまで昇圧するための同一軸から成るタ
ービンコンプレッサと、このタービンコンプレッサの動
力源となる燃焼ガスを生成するための補助燃焼器と、燃
料電池入口において前記酸化剤と還元剤の差圧を検出す
る差圧検出器と、この差圧を一定に保持するとともに電
池運転圧力をも一定に保持するように前記酸化剤及び還
元剤の一部をそれぞれ補助燃焼器に導入するための配管
及び流量調節手段とを具備し、燃料電池の酸化剤及び還
元剤の圧力差が常に一定となるように酸化剤及び還元剤
を昇圧することを特徴とする燃料電池発電装置。In a fuel cell power generation device whose main components are air as an oxidizing agent and hydrogen as a reducing agent, there is provided a turbine compressor having the same shaft for boosting the pressure of the oxidizing agent and the reducing agent to the same operating pressure; An auxiliary combustor for generating combustion gas that serves as a power source, a differential pressure detector for detecting the differential pressure between the oxidizing agent and the reducing agent at the fuel cell inlet, and a differential pressure detector for maintaining this differential pressure constant and controlling the battery operating pressure. The oxidizing agent and the reducing agent are provided with piping and flow rate adjusting means for respectively introducing a portion of the oxidizing agent and reducing agent into the auxiliary combustor so as to keep the pressure constant, so that the pressure difference between the oxidizing agent and the reducing agent in the fuel cell is always maintained constant. A fuel cell power generation device characterized by increasing the pressure of an oxidizing agent and a reducing agent so that the pressure is constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1084661A JPH02265170A (en) | 1989-04-05 | 1989-04-05 | Fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1084661A JPH02265170A (en) | 1989-04-05 | 1989-04-05 | Fuel cell power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02265170A true JPH02265170A (en) | 1990-10-29 |
Family
ID=13836908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1084661A Pending JPH02265170A (en) | 1989-04-05 | 1989-04-05 | Fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02265170A (en) |
-
1989
- 1989-04-05 JP JP1084661A patent/JPH02265170A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2890098B2 (en) | Dynamic output adjustment method and device for traveling vehicle with fuel cell | |
JPS6151772A (en) | Flow rate controller of fuel cell system | |
JP4338914B2 (en) | Fuel circulation fuel cell system | |
JPS6260791B2 (en) | ||
JPH02265170A (en) | Fuel cell power generating system | |
JPH07123050B2 (en) | Molten carbonate fuel cell power plant | |
JPH0317349B2 (en) | ||
JPS6332868A (en) | Fuel cell power generating system | |
JPS6260792B2 (en) | ||
JPS60157163A (en) | Fuel cell system | |
JPS5812268A (en) | Gas pressure control method of fuel cell | |
JPS60207255A (en) | Fuel cell control system | |
JPH0579813B2 (en) | ||
JPH10255827A (en) | Fuel cell power generation system | |
JPS6297266A (en) | Controller for fuel cell power generating plant | |
JPH09237634A (en) | Fuel cell generating device | |
JPS62160667A (en) | Fuel cell power generation system | |
JPH0316750B2 (en) | ||
JPS61126774A (en) | Fuel cell power generating system | |
JPS6028173A (en) | Operating and controlling method for exhaust heat collection turbine | |
JPH02213056A (en) | Fuel cell power generating plant | |
JPH0419964A (en) | Method and device for controlling amount of air for cathode of molten carbonate fuel cell | |
JPH11260386A (en) | Fuel cell power generating plant and its operation control method | |
JPS6394564A (en) | Fuel control device for fuel cell power generating plant | |
JPS6180762A (en) | Load control of fuel cell power generation system |