JPH0226057A - Heat radiation plate - Google Patents

Heat radiation plate

Info

Publication number
JPH0226057A
JPH0226057A JP17512288A JP17512288A JPH0226057A JP H0226057 A JPH0226057 A JP H0226057A JP 17512288 A JP17512288 A JP 17512288A JP 17512288 A JP17512288 A JP 17512288A JP H0226057 A JPH0226057 A JP H0226057A
Authority
JP
Japan
Prior art keywords
diamond
substrate
copper
alloy
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17512288A
Other languages
Japanese (ja)
Inventor
Mitsuo Kimura
光夫 木村
Masayuki Numata
沼田 公志
Yuji Manabe
真鍋 裕司
Yoshio Matsumura
松村 喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP17512288A priority Critical patent/JPH0226057A/en
Publication of JPH0226057A publication Critical patent/JPH0226057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an improved heat conduction by forming a diamond-shaped substance layer on a substrate consisting of dispersion strengthened type alloy made by dispersing a metal oxide particle into a matrix of copper or copper alloy. CONSTITUTION:A substrate consists of a dispersion strengthened type alloy made by dispersion a metal oxide particle into a matrix of copper or copper alloy. Copper alloy constituting this matrix is an alloy which mainly consists of copper such as Cu-Al and Cu-Zn. Then, a diamond-shaped substance layer is formed on a substrate consisting of a dispersion strengthened type alloy and the formation of this diamond-shape substance layer is performed by the gaseous phase growth method. It achieves a high coherency between the substrate and the diamind-shaped substance layer even after heating cycle history, thus obtaining an improved heat conduction as a whole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザー、ICパッケージ、ハイブリ
ッドIC,ペルチェ素子などのデバイスに用いられる放
熱板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat sink used in devices such as semiconductor lasers, IC packages, hybrid ICs, and Peltier elements.

〔従来の技術〕[Conventional technology]

従来、半導体レーザー、ICパッケージ、ハイブリッド
IC1ペルチエ素子などのデバイスの放熱板としては、
銅、銅合金、単結晶ダイヤモンドなどよりなるものが用
いられてきた。しかし、単結晶ダイヤモンド以外の放熱
板は熱伝導性が十分でないため、デバイスの高出力化あ
るいは高集積化に十分に対応することができないという
問題点がある。一方、単結晶ダイヤモンドよりなる放熱
板においては、熱伝導性については問題はないが、高価
であり大量入手が困難であるという問題があった。
Conventionally, as a heat sink for devices such as semiconductor lasers, IC packages, and hybrid IC1 Peltier devices,
Materials made of copper, copper alloys, single crystal diamond, etc. have been used. However, heat sinks made of materials other than single-crystal diamond do not have sufficient thermal conductivity, so there is a problem that they cannot adequately respond to higher output or higher integration of devices. On the other hand, heat sinks made of single-crystal diamond do not have any problems with thermal conductivity, but they have the problem of being expensive and difficult to obtain in large quantities.

然るに近年にふいては、熱フイラメント法、プラズマC
VD法などの気相成長法によって例えば20JAff1
以上の厚みを有するダイヤモンド状物質層が作製できる
ようになっており、このダイヤモンド状物質層は、銅の
2倍以上の熱伝導性を有することから、デバイスのため
の放熱板の材料として期待されている。しかし、上記の
ダイヤモンド状物質層は、シリコンウェハー、石英ガラ
ス、炭化タングステンなどの基板上に形成されるもので
あるが、これらの基板は熱伝導率が小さいため、全体の
熱伝導率が低いものとなってしまい、そのままでは有用
な放熱板として利用することはできない。
However, in recent years, hot filament method, plasma C
For example, 20JAff1 is produced by a vapor phase growth method such as a VD method.
It is now possible to produce a diamond-like material layer with a thickness greater than 100%, and since this diamond-like material layer has thermal conductivity more than twice that of copper, it is expected to be used as a material for heat sinks for devices. ing. However, the diamond-like material layer described above is formed on a substrate such as a silicon wafer, quartz glass, or tungsten carbide, but these substrates have low thermal conductivity, so the overall thermal conductivity is low. Therefore, it cannot be used as a useful heat sink as it is.

そこで熱伝導率の高い銅や銅合金を基板として用い、そ
の上にダイヤモンド状物質層を形成して放熱板を得る試
みがなされている。
Therefore, attempts have been made to obtain a heat sink by using copper or a copper alloy with high thermal conductivity as a substrate and forming a diamond-like material layer thereon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、銅や銅合金よりなる基板を用いる場合に
は、形成されるダイヤモンド状物質層と基板との間に高
い密着性を得ることができず、その結果ダイヤモンド状
物質層の剥離やひび割れが生じ、高い熱伝導性を得るこ
とができないという問題点がある。
However, when using a substrate made of copper or copper alloy, it is not possible to obtain high adhesion between the formed diamond-like material layer and the substrate, resulting in peeling or cracking of the diamond-like material layer. However, there is a problem that high thermal conductivity cannot be obtained.

本発明は、以上のような事情に基づき、ダイヤモンド状
物質層が形成される基板が高い熱伝導率を有し、しかも
熱サイクル履歴後にも当該基板とダイヤモンド状物質層
との間に高い密着性が得られ、全体として高い熱伝導性
を有する放熱板を提供することを目的とするものである
Based on the above circumstances, the present invention provides that the substrate on which the diamond-like material layer is formed has high thermal conductivity, and that the substrate and the diamond-like material layer have high adhesion even after thermal cycle history. It is an object of the present invention to provide a heat dissipation plate which has high thermal conductivity as a whole.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の放熱柩は、銅または銅合金中に金属酸化物粒子
が分散されてなる分散強化型合金よりなる基板と、この
基板上に形成したダイヤモンド状物質層とよりなること
を特徴とする。
The heat dissipation coffin of the present invention is characterized by comprising a substrate made of a dispersion-strengthened alloy in which metal oxide particles are dispersed in copper or a copper alloy, and a diamond-like material layer formed on the substrate.

本発明の放熱板における基板は、銅または銅合金をマト
リックスとし、このマトリックス中に金属酸化物粒子が
分散されてなる分散強化型合金よりなるものである。こ
こでマトリックスを形成する銅合金としては、例えばC
u−Al、 Cu−Zn、 Cu −釦、Cu−Ti、
Cu−5i1Cu−Ni、 Cu−Cr5Cu−N+ 
−81、Cu−Ni−Moなどの銅を主成分とする合金
であって銅を50重量%以上、好ましくは70〜99.
9重量%含むものが用いられる。
The substrate in the heat sink of the present invention is made of a dispersion-strengthened alloy in which copper or a copper alloy is used as a matrix, and metal oxide particles are dispersed in the matrix. Here, as the copper alloy forming the matrix, for example, C
u-Al, Cu-Zn, Cu-button, Cu-Ti,
Cu-5i1Cu-Ni, Cu-Cr5Cu-N+
-81, Cu-Ni-Mo and other copper-based alloys containing 50% by weight or more of copper, preferably 70-99.
The one containing 9% by weight is used.

これらのマトリックス中に分散される金属酸化物粒子と
しては、例えば^1203、SiO□、Ti01Tin
、、Tl2O,、C’aO1Br20*  、HfO2
、Hg01Try2、t、’azL、Rh2Off、5
c203、Ni01The、、v205、Yb20+、
5rO1Se02、SeO,などよりなる粒子が用いら
れる。
Examples of metal oxide particles dispersed in these matrices include ^1203, SiO□, and Ti01Tin.
,,Tl2O,,C'aO1Br20*,HfO2
,Hg01Try2,t,'azL,Rh2Off,5
c203, Ni01The,, v205, Yb20+,
Particles made of 5rO1Se02, SeO, etc. are used.

このうち、特に八1203、SiO□、TlO2などが
好ましい。
Among these, 81203, SiO□, TlO2, etc. are particularly preferred.

本発明において、基板を形成する分散強化型合金におけ
る金属酸化物粒子は微細に分散されていることが好まし
いが、金属酸化物粒子の粒形状は特に限定されるもので
はない。また、分散状態は均一分散でもよいし、マトリ
ックス金属表面に金属酸化物粒子が多く分散しマトリッ
クス金属内部での分散が少ないような勾配を有していて
もよい。
In the present invention, the metal oxide particles in the dispersion-strengthened alloy forming the substrate are preferably finely dispersed, but the shape of the metal oxide particles is not particularly limited. Further, the dispersion state may be uniformly dispersed, or may have a gradient such that many metal oxide particles are dispersed on the surface of the matrix metal and less dispersed inside the matrix metal.

なお、マトリックス金属における金属酸化物粒子の粒径
は例えば100A〜5−の範囲内のものであり、その含
有割合は例えば体積分率で0.1〜50%、好ましくは
2〜40%である。
The particle size of the metal oxide particles in the matrix metal is, for example, within the range of 100A to 5-5, and the content thereof is, for example, 0.1 to 50% in volume fraction, preferably 2 to 40%. .

分散強化型合金の製造方法としては、例えばプラズマ法
(米国特許第4.701.301号明細書)、ライネス
バック法(F、 N、 Rh1nes Tr′ans、
 Met。
Examples of methods for producing dispersion-strengthened alloys include plasma method (US Pat. No. 4.701.301), lineback method (F, N, Rhnes Tr'ans,
Met.

Sac、 A IME 137 (1940) 246
)などによる内部酸化法および金属酸化物粒子と銅また
は銅合金の粒子とを混合して成型するメカニカルアロイ
ング法が挙げられ、特に制約されるものではないが、製
造効率の点からはプラズマ法による内部酸化法が好まし
い。
Sac, A IME 137 (1940) 246
), and the mechanical alloying method in which metal oxide particles and copper or copper alloy particles are mixed and molded.Although there are no particular restrictions, the plasma method is preferred from the viewpoint of manufacturing efficiency. The internal oxidation method is preferred.

このプラズマ法による内部酸化法は、銅または銅合金よ
りなるマトリックス金属中に選択的に酸化されるべき金
属が含有されてなるものを材料合金とし、この材料合金
を加熱しながら、酸素および/または酸素原子を有する
化合物のガス(以下これを「酸素含有ガス」という。)
の存在下において発生させたプラズマ(以下「酸素含有
プラズマ」という。)を材料合金に作用させることによ
り、当該材料合金におけるマトリックス金属以外の金属
元素を選択的に酸化させる方法(以下「内部酸化法」と
いう。)である。この方法に用いられる材料合金は、溶
製法、スパッタリング法などの方法によって作ることが
でき、その製造法は特に制限されるものではない。
In this internal oxidation method using a plasma method, a material alloy is prepared by containing a metal to be selectively oxidized in a matrix metal made of copper or a copper alloy, and while heating this material alloy, oxygen and/or Gases of compounds containing oxygen atoms (hereinafter referred to as "oxygen-containing gases")
A method of selectively oxidizing metal elements other than the matrix metal in a material alloy by causing plasma generated in the presence of oxygen (hereinafter referred to as "oxygen-containing plasma") to act on the material alloy (hereinafter referred to as "internal oxidation method"). ). The material alloy used in this method can be made by a method such as a melting method or a sputtering method, and the manufacturing method is not particularly limited.

以上のプラズマ法に用いられる材料合金に含有される選
択的に酸化される金属としては、^1、C’a。
The selectively oxidized metal contained in the material alloy used in the above plasma method is ^1, C'a.

Er%Hf、 Hg5Ir、 L’aSRh、 Sc、
 Se、 Si、N1、Th。
Er%Hf, Hg5Ir, L'aSRh, Sc,
Se, Si, N1, Th.

T1、V s YJ Srなどから選ばれた1種以上を
用いることができるが、好ましいものはAI、Ti5S
i、N1などであり、特に好ましいものはAl5Ti、
81などである。
One or more selected from T1, V s YJ Sr, etc. can be used, but preferred are AI, Ti5S
i, N1, etc., and particularly preferred are Al5Ti,
81 etc.

以下に酸素含有プラズマによる内部酸化法を説明する。The internal oxidation method using oxygen-containing plasma will be explained below.

使用される酸素含有ガスの種類としては、02、COi
、NO,、N2O3、N2O4、N2O3、SO□、S
03、TeO□、Teas、Sea、、5eas、P=
OIo、P、CI、、As2O5、AS、O,、5b2
0s、sb、o、、Bi、05、Bi、0.、H,Gな
どを挙げることができる。また、I(elAr、 Xe
などの希ガス、N2、N2.8□などのガスをキャリア
ガスとして酸素含有ガスに加えることもできる。
The types of oxygen-containing gas used include 02, COi
,NO,,N2O3,N2O4,N2O3,SO□,S
03, TeO□, Teas, Sea, 5eas, P=
OIo,P,CI,,As2O5,AS,O,,5b2
0s, sb, o, , Bi, 05, Bi, 0. , H, G, etc. Also, I(elAr, Xe
A rare gas such as N2, N2.8□, etc. can also be added to the oxygen-containing gas as a carrier gas.

プラズマ発生空間における真空度は、lX10−’〜1
00 Tarrであることが好ましく、さらに好ましく
はlXl0−5〜10Torrである。真空度が1×1
0−’Torr未満または100Torrを越える場合
には、プラズマを安定に、かつ均一に発生させることが
困難になる。
The degree of vacuum in the plasma generation space is lX10-'~1
00 Torr, more preferably 1X10-5 to 10 Torr. Vacuum degree is 1×1
If it is less than 0-' Torr or more than 100 Torr, it becomes difficult to generate plasma stably and uniformly.

そして斯かる条件において、上記酸素含有ガスの分圧が
l Xl0−5〜1Q7orrであることが好ましく、
特にIXIQ−5〜l Torrが好ましい。酸素含有
ガスの分圧がI X10−’Torr未満の場合には、
マ) IJフックス属中の酸化されるべき金属の酸化速
度がきわめて遅く、一方10Torrを越えるとマトリ
ックス金属も酸化されるおそれがある。
Under such conditions, it is preferable that the partial pressure of the oxygen-containing gas is 1X10-5 to 1Q7orr,
Particularly preferred are IXIQ-5 to l Torr. If the partial pressure of the oxygen-containing gas is less than IX10-'Torr,
M) The oxidation rate of the metal to be oxidized in IJ Fuchs is extremely slow, and on the other hand, if it exceeds 10 Torr, the matrix metal may also be oxidized.

酸素含有プラズマを発生させる手段、態様、装置などに
ついては特に制限はない。例えば反応器としてはペルジ
ャー型、チニーブラーフロー型などを用いることができ
、放電のタイプは直流放電、低周波放電、高周波放電、
マイクロ波放電、陰極加熱型放電などの何れでもよく、
電極としては平行平板型、高周波放電による場合のコイ
ル型、ホローカソード型の電極などを用いることもでき
る。
There are no particular limitations on the means, mode, device, etc. for generating oxygen-containing plasma. For example, the reactor can be a Pelger type, Chiny-Blar flow type, etc., and the types of discharge can be DC discharge, low frequency discharge, high frequency discharge, etc.
Any method such as microwave discharge or cathode heating type discharge may be used.
As the electrode, a parallel plate type, a coil type in the case of high frequency discharge, a hollow cathode type, etc. can also be used.

さらにマイクロ波放電の場合には、キャビティーを用い
るカップリング若しくははしご形カップリングによる電
極を用いてもよい。これらの電極のうち、コイル型の具
体例としては、円筒型、角型、平型などを挙げることが
できる。
Furthermore, in the case of microwave discharge, electrodes with cavity couplings or ladder couplings may be used. Among these electrodes, specific examples of the coil type include cylindrical, square, and flat types.

酸素含有プラズマを発生させるときの酸素含有ガスの流
量は、例えば内容積1501のプラズマ反応器を用いる
場合には、0.1〜100 cc(STP) /分の範
囲とするのが好ましい。酸素含有ガスの流量が0.1 
cc(STP) /分未満の場合には、マトリックス金
属中の酸化されるべき金属の酸化速度が小さく、100
 cc(STP)/分を越える場合にはマトリックス金
属も酸化されるおそれがある。
The flow rate of the oxygen-containing gas when generating oxygen-containing plasma is preferably in the range of 0.1 to 100 cc (STP)/min, for example, when a plasma reactor with an internal volume of 1501 is used. The flow rate of oxygen-containing gas is 0.1
cc(STP)/min, the oxidation rate of the metal to be oxidized in the matrix metal is low, and 100
If it exceeds cc(STP)/min, there is a possibility that the matrix metal may also be oxidized.

内部酸化法においては、材料合金を加熱することが必要
であり、この加熱は、誘導加熱によるのが便利であるが
、勿論、ヒーター、赤外線などによって外部から材料合
金を加熱することも可能である。
In the internal oxidation method, it is necessary to heat the material alloy, and this heating is conveniently done by induction heating, but of course it is also possible to heat the material alloy from the outside using a heater, infrared rays, etc. .

材料合金を誘導加熱によって加熱する場合において、誘
導加熱を行う電極、態様、装置などについては特に制限
はない。例えば電源周波数は低周波、高周波、マイクロ
波などのいずれでもよいが一般的には50Hz〜300
0 M Hzが好ましい。
When heating a material alloy by induction heating, there are no particular restrictions on the electrode, mode, device, etc. for performing induction heating. For example, the power supply frequency may be low frequency, high frequency, microwave, etc., but generally it is 50Hz to 300Hz.
0 MHz is preferred.

酸素含有プラズマの発生と誘導加熱は、同一容器内にお
いて共通の電極を用いて同時に行うこともできるし、ま
た2台以上の電極により、酸素台をプラズマの発生と誘
導加熱を独立にあるいは相補的に行うこともできる。
Generation of oxygen-containing plasma and induction heating can be performed simultaneously in the same container using a common electrode, or two or more electrodes can be used to perform plasma generation and induction heating independently or complementarily. It can also be done.

以上のような内部酸化法により、本発明において基板と
して用いられる分散強化型合金を製造する場合の材料合
金の温度は500℃以上であればよい。
When producing the dispersion-strengthened alloy used as the substrate in the present invention by the internal oxidation method described above, the temperature of the material alloy only needs to be 500° C. or higher.

本発明の放熱板は、以上の分散強化型合金よりなる基板
の表面にダイヤモンド状物質層が形成されて構成される
。このダイヤモンド状物質層の形成は気相成長法により
行われるが、具体的な手段は特に制限されるものではな
い。従って、例えばマイクロ波プラズマ法(M、 K釦
o、Y、S≧tO,S。
The heat sink of the present invention is constructed by forming a diamond-like material layer on the surface of a substrate made of the above dispersion-strengthened alloy. This diamond-like material layer is formed by a vapor phase growth method, but the specific method is not particularly limited. Therefore, for example, microwave plasma method (M, K button o, Y, S≧tO, S.

Mhtsumoto  knd  N、 5etkk:
a  : Jor、  Cryst。
Mhtsumoto knd N, 5etkk:
a: Jor, Cryst.

Growth 62 (1983) 642)、熱フイ
ラメント法(S。
Growth 62 (1983) 642), thermal filament method (S.

Mhtsumoto、  Y、 5lato、  M、
 Khmo  hnd  N。
Mhtsumoto, Y., 5lato, M.
Khmo hnd N.

5etalGa  : Jor、 J、 Appl、P
hys、 21 (1982)  L183)、RF熱
プラズマ法(S9M’atsumoto、  M。
5etalGa: Jor, J, Appl, P
hys, 21 (1982) L183), RF thermal plasma method (S9M'atsumoto, M.

Hino knd T、 Kotfay’ashi :
 Appl、 Phys、Lett51 (1987)
 737)などの気相成長法を利用することができる。
Hino knd T, Kotfay'ashi:
Appl, Phys, Lett51 (1987)
A vapor phase growth method such as 737) can be used.

以下、マイクロ波プラズマ法について説明する。The microwave plasma method will be explained below.

マイクロ波プラズマ法は、マイクロ波キャビティーに石
英管を通して含炭素化合物と水素の混合ガスを供給して
マイクロ波プラズマを発生させ、そのプラズマ中に配置
された基体表面にダイヤモンド状物質を膜状に形成する
方法である。
In the microwave plasma method, a mixed gas of a carbon-containing compound and hydrogen is supplied through a quartz tube into a microwave cavity to generate microwave plasma, and a diamond-like substance is deposited in the form of a film on the surface of a substrate placed in the plasma. This is a method of forming.

使用される含炭素化合物としては、例えばメタン、エタ
ン、プロパン、ブタン、ペンタン、オクタン、シクロヘ
キサンなどの鎖状もしくは環状の飽和炭化水素;エチレ
ン、プロピレン、ブタジェン、ベンゼン、スチレン、ア
セチレン、アレンなどの二重結合もしくは三重結合を含
む不飽和炭化水素;モノフルオロメタン、ジフルオロメ
タン、トリフルオロメタン、テトラフルオロメタン、モ
ノクロロメタン、ジクロロメタン、トリクロロメタン、
テトラクロロメタン、モノフルオロジクロロメタン、モ
ノフルオロエタン、トリフルオロエタン、テトラフルオ
ロエタン、ペンタフルオロエタン、ヘキサフルオロエタ
ン、ジクロロエタン、テトラクロロエタン、ヘキサクロ
ロエタン、ジフルオロジクロロエタン、トリフルオロト
リクロロエタン、モノフルオロプロパン、トリフルオロ
プロパン、ペンタフルオロプロパン、パーフルオロプロ
パン、ジクロロプロパン、テトラクロロエタン、ヘキサ
クロロプロパン、パークロロプロパン、ジフルオロジク
ロロプロパン、テトラフルオロジクロロプロパン、ブロ
モメタン、メチレンブロマイド、ブロモホルム、カーボ
ンテトラブロマイド、テトラブロモエタン、ペンタブロ
モエタン、メチルショート、ショートメタン、モノフル
オロブタン、トリフルオロブタン、テトラフルオロブタ
ン、オクタフルオロブタン、ジフルオロブタン、モノフ
ルオロペンタン、ペンタフルオロペンクン、オクタクロ
ロペンクン、パークロロペンクン、トリフルオロトリク
ロロペンタン、テトラフルオロヘキサン、ノナクロロヘ
キサン、ペンタフルオロトリクロロヘキサン、テトラフ
ルオロへブタン、ヘキサフルオロへブタン、トリフルオ
ロペンタクロロヘプタン、ジフルオロオクタン、ペンタ
フルオロオクタン、ジフルオロテトラクロロオクタン、
モノフルオロノナン、ヘキサフルオロノナン、デカクロ
ロノナン、ヘプタフルオロへキサクロロノナン、ジフル
オロデカン、ペンタフルオロデカン、テトラクロロデカ
ン、テトラフルオロテトラクロロデカン、オクタデカク
ロロデカンなどのハロゲン化アルカン;アリルアミン、
メチルアミン、エチルアミン、ピリジン、ピリミジン、
プリン、ピコリン、アクリルアミドなどの含窒素有機化
合物;二硫化炭素、メチルメルカプタン、エチルメルカ
プタンなどの含イオウ有機化合物;メタノール、エタノ
ール、プロパツールなどのアルコール;フェノール、ク
レゾールなどのフェノール化合物:ホルムアルデヒド、
アセトアルデヒドなどのアルデヒド化合物;アセトン、
メチルエチルケトンなどのケトン化合物;ならびにギ酸
、酢酸、プロピオン酸などの脂肪酸;これら脂肪酸のメ
チルエステル、エチルエステノペブチルエステルなどの
アルキルエステルなどを挙げることができる。さらに、
含炭素化合物の別の例として、−酸化炭素、二酸化炭素
、ジアゾメタン、二酸化三炭素などの無機含炭素化合物
を挙げることができる。
Examples of carbon-containing compounds used include linear or cyclic saturated hydrocarbons such as methane, ethane, propane, butane, pentane, octane, and cyclohexane; Unsaturated hydrocarbons containing double or triple bonds; monofluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, monochloromethane, dichloromethane, trichloromethane,
Tetrachloromethane, monofluorodichloromethane, monofluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, hexafluoroethane, dichloroethane, tetrachloroethane, hexachloroethane, difluorodichloroethane, trifluorotrichloroethane, monofluoropropane, trifluoropropane , pentafluoropropane, perfluoropropane, dichloropropane, tetrachloroethane, hexachloropropane, perchloropropane, difluorodichloropropane, tetrafluorodichloropropane, bromomethane, methylene bromide, bromoform, carbon tetrabromide, tetrabromoethane, pentabromoethane, methyl Short, short methane, monofluorobutane, trifluorobutane, tetrafluorobutane, octafluorobutane, difluorobutane, monofluoropentane, pentafluoropencune, octachloropencune, perchloropencune, trifluorotrichloropentane, tetrafluorobutane Hexane, nonachlorohexane, pentafluorotrichlorohexane, tetrafluorohebutane, hexafluorohebutane, trifluoropentachloroheptane, difluorooctane, pentafluorooctane, difluorotetrachlorooctane,
Halogenated alkanes such as monofluorononane, hexafluorononane, decachlorononane, heptafluorohexachlorononane, difluorodecane, pentafluorodecane, tetrachlorodecane, tetrafluorotetrachlorodecane, octadecachlorodecane; allylamine,
Methylamine, ethylamine, pyridine, pyrimidine,
Nitrogen-containing organic compounds such as purine, picoline, and acrylamide; Sulfur-containing organic compounds such as carbon disulfide, methyl mercaptan, and ethyl mercaptan; Alcohols such as methanol, ethanol, and propatool; Phenol compounds such as phenol and cresol; Formaldehyde,
Aldehyde compounds such as acetaldehyde; acetone,
Examples include ketone compounds such as methyl ethyl ketone; fatty acids such as formic acid, acetic acid, and propionic acid; and alkyl esters of these fatty acids such as methyl esters and ethylestenopebutyl esters. moreover,
Other examples of carbon-containing compounds include inorganic carbon-containing compounds such as -carbon oxide, carbon dioxide, diazomethane, and tricarbon dioxide.

これらの含炭素化合物の中でも、特に好ましいものは炭
素数が4以下の有機化合物であり、例えハ、メタン、エ
タン、プロパン、ブタン、エチレン、プロピレン、ブタ
ジェン、アリルアミン、メチルアミン、エチルアミン、
二硫化炭素、メタノール、エタノール、ホルムアルデヒ
ド、アセトアルデヒド、メチルエチルケトン、ギ酸、酢
酸エチルなどが挙げられる。
Among these carbon-containing compounds, particularly preferred are organic compounds having 4 or less carbon atoms, such as methane, ethane, propane, butane, ethylene, propylene, butadiene, allylamine, methylamine, ethylamine,
Examples include carbon disulfide, methanol, ethanol, formaldehyde, acetaldehyde, methyl ethyl ketone, formic acid, and ethyl acetate.

水素と含炭素化合物との使用割合は、水素100モル当
り含炭素化合物0.1〜5モルが好ましく、0.2〜2
モルがより好ましい。含炭素化合物の割合が小さすぎる
と、ダイヤモンド状物質の成長速度が遅くなりやすく、
一方、この割合が大きすぎると、アモルファスカーボン
を大量に含むダイヤモンド状物質が生成しやすくなる。
The ratio of hydrogen and carbon-containing compound to be used is preferably 0.1 to 5 moles, and 0.2 to 2 moles of carbon-containing compound per 100 moles of hydrogen.
Mole is more preferred. If the proportion of carbon-containing compounds is too small, the growth rate of diamond-like substances tends to be slow;
On the other hand, if this ratio is too large, a diamond-like substance containing a large amount of amorphous carbon is likely to be produced.

また水素の流量は、反応器の容量1001当り、0.1
〜101/分の範囲が好ましい。
The flow rate of hydrogen is 0.1 per 1001 reactor capacity.
A range of ~101/min is preferred.

なお、水素と含炭素化合物は別々に反応帯域に供給して
混合と共にマイクロ波放電に供してもよいし、予め混合
された混合ガスとして反応帯域に供給しマイクロ波放電
に供してもよい。いずれの場合でも、供給される水素、
含炭素化合物またはこれらの混合ガスには、ヘリウム、
アルゴン、キセノンなどの希ガスを混合してもよい。希
ガスの割合は特に制限はないが、水素100モル当り8
0モル以下が好ましい。
Note that the hydrogen and the carbon-containing compound may be separately supplied to the reaction zone and mixed and subjected to microwave discharge, or may be supplied to the reaction zone as a pre-mixed gas mixture and subjected to microwave discharge. In either case, the hydrogen supplied,
Carbon-containing compounds or mixed gases include helium,
A rare gas such as argon or xenon may be mixed. There is no particular restriction on the ratio of rare gas, but it is 8 per 100 moles of hydrogen.
It is preferably 0 mol or less.

マイクロ波プラズマ法を実施する際の基体近傍の圧力は
、0.5〜760 Torr、特に1〜200 Tor
rが好ましく、励起されるプラズマのエネルギー密度は
、3 =200W/cがでよく、このましくは6〜80
W/cm”である。
The pressure near the substrate when performing the microwave plasma method is 0.5 to 760 Torr, especially 1 to 200 Torr.
r is preferable, and the energy density of the excited plasma may be 3 = 200 W/c, preferably 6 to 80 W/c.
W/cm".

マイクロ波プラズマ法を実施する際には、基体はプラズ
マにより加熱され、通常200〜800℃になるが、ダ
イヤモンド状物質を生成させるためには700〜900
℃であることが望ましく、従って、必要に応じて基体を
補助的に加熱することが好ましい。このような加熱には
、例えば、赤外線加熱、伝熱加熱、誘導加熱などの方法
を利用することができる。
When performing the microwave plasma method, the substrate is heated by plasma, usually at a temperature of 200 to 800°C, but in order to generate a diamond-like material, the temperature is 700 to 900°C.
℃, and therefore it is preferable to supplementally heat the substrate as necessary. For such heating, methods such as infrared heating, heat conduction heating, and induction heating can be used, for example.

以上のようにして得られるダイヤモンド状物質層の平均
厚みは特に制限されるものではないが、高い熱伝導性が
得られることから、50−以上、特に10011111
以上であることが好ましく、通常は10mm以下である
The average thickness of the diamond-like material layer obtained as described above is not particularly limited, but it is preferably 50- or more, especially 10011111, since high thermal conductivity can be obtained.
It is preferably at least 10 mm, and usually 10 mm or less.

〔実施例〕〔Example〕

以下、本発明の実施例について説明するが、これらによ
って本発明が限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these.

実施例1 平均粒径3Jl111の電解銅の粉末に平均粒径0.0
5鱗の酸化アルミニウムの微粉末を体積分率で4%とな
る割合で混合し、この混合粉末1.5kgを直径9.5
Mの鋼球17kgと共に容量51の乾式微粉砕装置に入
れ、アルゴンガス雰囲気中にて回転数35゜rpmで8
時間微粉砕処理を行った。
Example 1 Electrolytic copper powder with an average particle size of 3Jl111 had an average particle size of 0.0
Five scales of aluminum oxide fine powder are mixed at a volume fraction of 4%, and 1.5 kg of this mixed powder is made into a powder with a diameter of 9.5 kg.
It was placed in a dry pulverizer with a capacity of 51 mm along with 17 kg of M steel balls, and was pulverized at a rotation speed of 35° rpm in an argon gas atmosphere.
A time pulverization process was performed.

斯くして得られた銅と酸化アルミニウムとの混合微粉末
を、ロール径150mの圧延機により、ロール荷重2.
5トン、回転速度5 rpmで圧延し、幅35止、厚さ
500即の板状圧粉体を得た。この板状圧粉体を乾燥水
素ガス中において980℃で1時間加熱して焼結させ、
次いで35%冷間圧延を行い、その後800℃で1時間
乾燥水素ガス中で焼鈍を行い、更に30%冷間圧延を行
って、酸化アルミニウムが銅マトリツクス中に微細に分
散されてなる厚み約200鱗の分散強化型合金板を得、
これより長さ10m、幅5fflI11.厚さ200J
II11の板片を切り出して基板を作製した。
The thus obtained mixed fine powder of copper and aluminum oxide was rolled using a rolling mill with a roll diameter of 150 m under a roll load of 2.
It was rolled at 5 tons and at a rotational speed of 5 rpm to obtain a plate-shaped green compact with a width of 35 mm and a thickness of 500 mm. This plate-shaped powder compact is heated at 980°C for 1 hour in dry hydrogen gas to sinter it,
Next, 35% cold rolling was performed, followed by annealing at 800°C for 1 hour in dry hydrogen gas, and further 30% cold rolling to form a copper matrix with a thickness of approximately 200 mm, in which aluminum oxide was finely dispersed in the copper matrix. Obtain a scale dispersion strengthened alloy plate,
From this, the length is 10m and the width is 5fflI11. Thickness 200J
A board was prepared by cutting out a plate piece of II11.

そして第1図に示すように、石英製反応管1の一端にガ
ス供給部(図示せず)を接続すると共に他端に排気機構
を接続し、この反応管1と交差して伸びるようマイクロ
波導波管2を配設してなるマイクロ波プラズマ反応装置
を用い、反応管l内の導波管2によるマイクロ波導波領
域に前記基板Pを配置し、反応管1にガス供給部よりメ
タンガスを流量1cc(STP) /分および水素ガス
を流量100cc (STP) /分で供給しながら、
圧力4Q Torrの条件下、基板温度が800℃とな
るようにマイクロ波電力を調整した状態で、基板Pにマ
イクロ波加熱とマイクロ波によるメタンと水素の混合プ
ラズマを作用させて75時間反応を行い、平均厚み50
賜のダイヤモンド状物質層を基板Pの表面に形成し、放
熱板を製造した。
As shown in FIG. 1, a gas supply section (not shown) is connected to one end of the quartz reaction tube 1, and an exhaust mechanism is connected to the other end, and a microwave guide is connected to extend across the reaction tube 1. Using a microwave plasma reactor equipped with a wave tube 2, the substrate P is placed in the microwave waveguide region of the wave guide 2 in the reaction tube 1, and a flow rate of methane gas is supplied from the gas supply section to the reaction tube 1. 1 cc (STP) / min and hydrogen gas at a flow rate of 100 cc (STP) / min,
Under the conditions of a pressure of 4Q Torr, and with the microwave power adjusted so that the substrate temperature was 800°C, a reaction was performed for 75 hours by applying microwave heating and a mixed plasma of methane and hydrogen using the microwave to the substrate P. , average thickness 50
A diamond-like material layer was formed on the surface of the substrate P to produce a heat sink.

この放熱板を恒温槽に入れ、0〜400℃の熱サイクル
試験を行ったが、50回の熱サイクル履歴後においても
、ダイヤモンド状物質層には、剥離やひび割れなどの異
常は発生しなかった。
This heat sink was placed in a constant temperature oven and subjected to a heat cycle test from 0 to 400 degrees Celsius, but no abnormalities such as peeling or cracking occurred in the diamond-like material layer even after 50 heat cycles. .

実施例2 第2図に示すように、石英製反応管11の一端にガス供
給部(図示せず)を接続すると共に他端に排気機構を接
続し、この反応管11と交差して伸びるようマイクロ波
導波管12を配設し更に高周波コイル13による誘導加
熱領域を配設してなるマイクロ波プラズマ反応装置を用
い、反応管11内の高周波コイル13による誘導加熱領
域に、長さ10m、幅5aua、厚さ200関のアルミ
ニウムを体積分率で4%含有するアルミニウムー銅合金
よりなる基板材料Mを配置し、反応管11にガス供給部
より酸素ガスを流量1 cc<5TP)/分で供給しな
がら、圧力2Torrの条件下、高周波コイル13によ
り基板材料Mを800℃に加熱した状態で、電力510
Wのマイクロ波によって発生させた酸素含有プラズマを
基板材料Mに2時間作用させ、これにより、銅マトリツ
クス中に酸化アルミニウムがほぼ均一に体積分率で7%
分散されてなる分散強化型合金板を製造した。
Example 2 As shown in FIG. 2, a gas supply section (not shown) was connected to one end of the quartz reaction tube 11, and an exhaust mechanism was connected to the other end, so that the gas supply section (not shown) was connected to the other end so as to extend across the reaction tube 11. Using a microwave plasma reactor in which a microwave waveguide 12 is provided and an induction heating area by a high frequency coil 13 is provided, the induction heating area by the high frequency coil 13 in the reaction tube 11 has a length of 10 m and a width. A substrate material M made of an aluminum-copper alloy containing aluminum at a volume fraction of 4% and having a thickness of 5aua and 200mm was placed, and oxygen gas was supplied to the reaction tube 11 from the gas supply section at a flow rate of 1cc<5TP)/min. While supplying the material, the substrate material M was heated to 800° C. by the high-frequency coil 13 under the condition of a pressure of 2 Torr and a power of 510° C.
Oxygen-containing plasma generated by microwaves of W is applied to the substrate material M for 2 hours, so that aluminum oxide is almost uniformly distributed in the copper matrix at a volume fraction of 7%.
A dispersion-strengthened alloy plate was manufactured.

この分散強化型合金板を基板Pとして用いたほかは実施
例1と同様にして、基板Pの表面に平均厚み50賜のダ
イヤモンド状物質層を形成し、放熱板を製造した。
A heat sink was manufactured in the same manner as in Example 1 except that this dispersion-strengthened alloy plate was used as the substrate P, by forming a diamond-like material layer with an average thickness of 50 mm on the surface of the substrate P.

この放熱板について、実施例1と同様の熱サイクル試験
を行ったが、50回の熱サイクル履歴後にふいても、ダ
イヤモンド状物質層に剥離やひび割れなどの異常は発生
しなかった。
This heat sink was subjected to the same heat cycle test as in Example 1, but no abnormality such as peeling or cracking occurred in the diamond-like material layer even after wiping it after 50 heat cycles.

比較例1 実施例2において基板材料として用いたちのき同様のア
ルミニウムー銅合金板を内部酸化法に供さすにそのまま
基板Pとして用い、実施例2と同様にしてダイヤモンド
状物質層を形成したが、形成直後にダイヤモンド状物質
層に剥離およびひび割れが発生した。
Comparative Example 1 A similar aluminum-copper alloy plate used as the substrate material in Example 2 was used as the substrate P for internal oxidation, and a diamond-like material layer was formed in the same manner as in Example 2. , peeling and cracking occurred in the diamond-like material layer immediately after formation.

実施例3 長さ10mm、幅5市、厚さ200刺の体積分率2%の
チタンを含有するチタン−銅合金よりなる基板材料Mを
実施例2と同様に内部酸化法に供し、分散強化型合金板
を製造し、更にこれを基板Pとして用いたほかは実施例
1と同様にして、基板Pの表面に平均厚み50μsのダ
イヤモンド状物質層を形成し、放熱板を製造した。
Example 3 A substrate material M made of a titanium-copper alloy containing titanium with a volume fraction of 2% and having a length of 10 mm, a width of 5 cm, and a thickness of 200 ribs was subjected to the internal oxidation method in the same manner as in Example 2, and was dispersion strengthened. A diamond-like material layer having an average thickness of 50 μs was formed on the surface of the substrate P in the same manner as in Example 1 except that a type alloy plate was manufactured and this was used as the substrate P, and a heat sink was manufactured.

この放熱板について、実施例1と同様の熱サイクル試験
を行ったが、50回の熱サイクル履歴後においても、ダ
イヤモンド状物質層に剥離やひび割れなどの異常は発生
しなかった。
This heat sink was subjected to the same heat cycle test as in Example 1, but no abnormalities such as peeling or cracking occurred in the diamond-like material layer even after 50 heat cycles.

実施例4 長さ10mm、幅5s、厚さ200−の寸法の体積分率
で2.5%のシリコンを含有するシリコン−銅合金より
なる基板材料Mを実施例2と同様に内部酸化法に供し、
分散強化型合金板を製造し、更にこれを基板Pとして用
いたほかは実施例1と同様にして、基板Pの表面に平均
厚み50μsのダイヤモンド状物質層を形成し、放熱板
を製造した。
Example 4 A substrate material M made of a silicon-copper alloy containing 2.5% silicon at a volume fraction of 10 mm in length, 5 seconds in width, and 200 mm in thickness was subjected to the internal oxidation method in the same manner as in Example 2. Offer,
A dispersion-strengthened alloy plate was manufactured, and in the same manner as in Example 1 except that this was used as the substrate P, a diamond-like material layer with an average thickness of 50 μs was formed on the surface of the substrate P, and a heat sink was manufactured.

この放熱板について、実施例1と同様の熱サイクル試験
を行ったが、50回の熱サイクル履歴後においても、ダ
イヤモンド状物質層に剥離やひび割れなどの異常は発生
しなかった。
This heat sink was subjected to the same heat cycle test as in Example 1, but no abnormalities such as peeling or cracking occurred in the diamond-like material layer even after 50 heat cycles.

実施例5 体積分率で2%のアルミニウムを含有するアルミニウム
ー調合よりなる基板材料Mを、基板材料Mの温度を90
0℃とする以外は実施例2と同様の内部酸化法に供し、
分散強化型合金板を製造した。
Example 5 A substrate material M consisting of an aluminum formulation containing 2% aluminum by volume fraction was prepared at a temperature of 90°C.
Subjected to the same internal oxidation method as in Example 2 except that the temperature was 0°C,
A dispersion strengthened alloy plate was manufactured.

この分散強化型合金板の表面部分における酸化アルミニ
ウムの体積分率は3%であり、厚み方向内部における表
面から深さ1100uの位置での体積分率は1.7%で
あった。
The volume fraction of aluminum oxide in the surface portion of this dispersion-strengthened alloy plate was 3%, and the volume fraction at a depth of 1100 u from the surface inside the thickness direction was 1.7%.

この分散強化型合金板を基板Pとして用いたほかは実施
例1と全く同様にして、基板Pの表面に平均厚み50μ
sのダイヤモンド状物質層を形成し、放熱板を製造した
Except for using this dispersion-strengthened alloy plate as the substrate P, the process was carried out in exactly the same manner as in Example 1, and the surface of the substrate P was coated with an average thickness of 50 μm.
A heat sink was manufactured by forming a diamond-like material layer of s.

この放熱板について、実施例1と同様の熱サイクル試験
を行ったが、50回の熱サイクル履歴後においても、ダ
イヤモンド状物質層に剥離やひび割れなどの異常は発生
しなかった。
This heat sink was subjected to the same heat cycle test as in Example 1, but no abnormalities such as peeling or cracking occurred in the diamond-like material layer even after 50 heat cycles.

実施例6 実施例2におけるダイヤモンド状物質層の形成時間を1
5(]時間とすることによって平均厚み100Aのダイ
ヤモンド状物質層を形成した以外は実施例2と同様にし
て放熱板を製造した。
Example 6 The formation time of the diamond-like material layer in Example 2 was changed to 1
A heat sink was manufactured in the same manner as in Example 2, except that a diamond-like material layer with an average thickness of 100 A was formed for 5 hours.

この放熱板について、実施例1と同様の熱サイクル試験
を行ったが、50回の熱サイクル履歴後においても、ダ
イヤモンド状物質層に剥離やひび割れなどの異常は発生
しなかった。
This heat sink was subjected to the same heat cycle test as in Example 1, but no abnormalities such as peeling or cracking occurred in the diamond-like material layer even after 50 heat cycles.

〔発明の効果〕〔Effect of the invention〕

本発明の放熱板は、以上のように、銅または銅合金中に
金属酸化物粒子が分散されてなる分散強化型合金よりな
る基板上に、ダイヤモンド状物質層が形成されてなるも
のであるため、熱サイクル履歴後にも基板とダイヤモン
ド状物質層との間に高い密着性が得られ、全体として高
い熱伝導性を有する。従って、半導体レーザー、ICパ
ッケージ、ハイブリッドIC,ペルチェ素子などのデバ
イスのための放熱板としてきわめて有用である。
As described above, the heat sink of the present invention has a diamond-like material layer formed on a substrate made of a dispersion-strengthened alloy made of copper or a copper alloy in which metal oxide particles are dispersed. Even after a thermal cycle history, high adhesion between the substrate and the diamond-like material layer is obtained, and the overall thermal conductivity is high. Therefore, it is extremely useful as a heat sink for devices such as semiconductor lasers, IC packages, hybrid ICs, and Peltier elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロ波プラズマ反応装置の一例における構
成を示す説明用断面図、第2図はプラズマ反応装置の一
例における構成を示す説明用断面図である。 1・・・反応管     2・・・マイクロ波導波管P
・・・基板      11・・・反応管12・・・マ
イクロ波導波管
FIG. 1 is an explanatory sectional view showing the configuration of an example of a microwave plasma reaction device, and FIG. 2 is an explanatory sectional view showing the configuration of an example of the plasma reaction device. 1... Reaction tube 2... Microwave waveguide P
... Substrate 11 ... Reaction tube 12 ... Microwave waveguide

Claims (1)

【特許請求の範囲】[Claims] 1)銅または銅合金中に金属酸化物粒子が分散されてな
る分散強化型合金よりなる基板と、この基板上に形成し
たダイヤモンド状物質層とよりなることを特徴とする放
熱板。
1) A heat sink comprising a substrate made of a dispersion-strengthened alloy in which metal oxide particles are dispersed in copper or a copper alloy, and a diamond-like material layer formed on the substrate.
JP17512288A 1988-07-15 1988-07-15 Heat radiation plate Pending JPH0226057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17512288A JPH0226057A (en) 1988-07-15 1988-07-15 Heat radiation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17512288A JPH0226057A (en) 1988-07-15 1988-07-15 Heat radiation plate

Publications (1)

Publication Number Publication Date
JPH0226057A true JPH0226057A (en) 1990-01-29

Family

ID=15990666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17512288A Pending JPH0226057A (en) 1988-07-15 1988-07-15 Heat radiation plate

Country Status (1)

Country Link
JP (1) JPH0226057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962629B2 (en) 2011-09-12 2018-05-08 3M Innovative Properties Company Contactors, cartridges, components, systems, and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962629B2 (en) 2011-09-12 2018-05-08 3M Innovative Properties Company Contactors, cartridges, components, systems, and related methods

Similar Documents

Publication Publication Date Title
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
TWI554634B (en) Ultra high selectivity ashable hard mask film
EP1885909B1 (en) Nanostructure production methods
JPH0218392A (en) Production of polycrystalline diamond film
JPH02233593A (en) Method for adhesion of diamond coating film
CN112030133A (en) Diamond and preparation method and application thereof
Chau et al. Effect of target temperature on the reactive dc-sputtering of silicon and niobium oxides
JPH0226057A (en) Heat radiation plate
JPH0948693A (en) Method for forming diamond single crystal film
KR100266943B1 (en) Dry-etching method and apparatus
JPH01317197A (en) Diamond thin film substrate and production thereof
EP1806317A1 (en) PROCESS FOR PRODUCING SiOx PARTICLE
JP2010269982A (en) Method for manufacturing carbon nanotube assembly
JP2679067B2 (en) Manufacturing method of substrate with diamond film
WO1990005701A1 (en) Diamond production
JP2926192B2 (en) Diamond film manufacturing method
Jałochowski et al. Rheed intensity and electrical resistivity oscillations during metallic film growth
JP2962631B2 (en) Method for producing diamond-like carbon thin film
USH1792H (en) Selection of crystal orientation in diamond film chemical vapor deposition
JP2807790B2 (en) Photoconductor production method
JPH062139A (en) Formation of diamond film
JP3071855B2 (en) Diamond film fabrication method
Hatta et al. Low temperature chemical vapor deposition
JP3760175B2 (en) Diamond film formation method
JPH07122140B2 (en) Membrane formation method