JPH02229505A - Filter - Google Patents
FilterInfo
- Publication number
- JPH02229505A JPH02229505A JP1050163A JP5016389A JPH02229505A JP H02229505 A JPH02229505 A JP H02229505A JP 1050163 A JP1050163 A JP 1050163A JP 5016389 A JP5016389 A JP 5016389A JP H02229505 A JPH02229505 A JP H02229505A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- layer
- filtration
- particle size
- basket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 152
- 238000001914 filtration Methods 0.000 claims description 82
- 239000002245 particle Substances 0.000 claims description 56
- 239000000126 substance Substances 0.000 claims description 8
- 229910001385 heavy metal Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 239000000543 intermediate Substances 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 59
- 239000007787 solid Substances 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 14
- 230000008929 regeneration Effects 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 239000002699 waste material Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 6
- 238000009287 sand filtration Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Filtration Of Liquid (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はろ過装置に関する.
〔従来技術〕
従来充てん層タイプのろ過装置としては、浄水場の凝集
沈澱槽の下段に設けられる砂ろ過装置がよ《知られてお
り、この砂ろ過装置は再生運用されている.
充てん層を平均粒径の異なる2相から形成することも知
られており、その場合、砂ろ過層の上により粒径の大き
い粒子を充てんし、上部の平均粒径の大きい充てん層部
で深層ろ過をおこさせ、再生サイクルの延長を図ってい
る.再生は、充てん層の下から上方向へ、通水時とは反
対向きに水を流し、充てん層をよ《ほぐしながら懸濁物
質を系外に排せきすることにより行う.従って、砂ろ過
層の上部に載せる粒径の大きい粒子には、砂よりも比重
の小さい物it(例えばアンスラサイト)が用いられ、
これによって逆生再生終了時に大粒径粒子が充てん層の
下部にくることを防止する.〔発明が解決しようとする
課題〕
しかしながら、上記の砂ろ過方式を再生運用すると、1
)再生設備が必要なため、その設備スペースが必要とな
り、再生運転も複雑となる、2)再生時に発生する廃液
量が処理対象液量の割りには多くなり効率が悪い、3)
再生にかかる時間が無視できない、4)再生時によくほ
ぐし切れない表層部の懸濁物質のかたまりが充てん層の
中に残ってしまう恐れがある、などの問題がある.
かかる問題は、懸濁物質の濃度が高く、有機物質を含有
するような、充てん層が目詰まりし易い難ろ過性廃液の
場合、特に処理対象廃液量がそれほど多くない小規模ろ
過において、一層顕著になる.
ろ過方法としては、他にもブリコートろ過、逆浸透法、
限外ろ過法等があるが、前記の砂ろ過法における再生運
用に伴う問題点1)、2)、3)と同様の問題、即ち再
生設備、再生効率及び再生時間の問題が残る.
本発明は、上記問題を有する再生運用方式の採用を改め
、非再生運用方式とすることの可能性を検討するととも
に、非再生運用方式とすることに伴う不利益を最小限に
することをその課題とする.従って、本発明は、再生設
備が不要であり、充てん層の目詰まりが進行して交換に
至るまでの時間が長く、さらに目詰まりした充てん層の
交換が容易かつ交換量の管理が容易で交換量を最小限と
する、非再生運用方式のろ過装置、特に懸濁物質濃度が
高く、有機物を含有する難ろ過性廃液の小規模ろ過に適
するろ過装置に関する.
さらには、処理水質基準のきびしい系統である、重金属
イオン等を含有する廃液のろ過に適するろ過装置を得る
ことを目的とする.
(課題を解決するための手段〕
上記目的は、平均粒径の小さい活性炭充てん層(A)の
上に、充てん層(A)の活性炭の粒径と同等又はそれと
類似の平均粒径を有する活性炭充てん層(A゜)とその
上に充てん層(A)の活性炭の粒径よりも平均粒径の大
きい活性炭充てん層(B)とを底に綱を張ったバスケッ
ト内に収納して、設けたことを特徴とするろ過装置によ
り達成されることが見出された.
本発明では、ろ過層として活性炭を用い、平均粒径の小
さい活性炭充てん層(A)の上に、より平均粒径の大き
い活性炭充てん層(B)を充てんし、表層ろ過と深層ろ
過の両方に対応できる様にして、上記充てん層(A)単
独に比べて目詰まりが進行して交換に至るまでの運転時
間を延長させている.同時に、活性炭は焼却処分が容易
であるため、非再生方式に適している.また、活性炭充
てん層のうち、平均粒径の小さい活性炭層の上部(A゛
)と平均粒径の大きい活性炭層(B)とを底に綱を張っ
たバスケット内に収納したことにより、目詰まりの進行
した活性炭層の交換が容易かつ交換量の管理が容易にな
った.また、交換はバスケット内の活性炭だけのため、
発生廃棄物量が非常に少なく脊効である.
従って、特に本発明のろ過は懸濁物tfi度が高く、有
機物を含むような、難ろ過廃液のろ過に適している.
各層に用いられる活性炭の粒径は特に限定的ではなく、
被処理水中の粒径lOμm以上の懸濁物質が、全懸濁物
質の50%(重量基準)以上の時は、(B)の平均粒径
〉(A)または(A゜)の平均粒径を満足しつつ、(A
)または(A′)の粒度は20メッシュ以上、(B)の
粒度は30メッシュ以下とするのが望ましい.粒径10
μm以下の懸濁物質が、全懸濁物質の50%(重量基準
゛)以上、特に1μm以下の粒子が無視できない時は、
(A) 、(A’)、(B)の粒径を相対的に約1/1
0近く粒径を下げる必要があるが、差圧上昇のインパク
トが非常に大きく、数pp一以下の低濃度で用いる以外
は経済的に得策とはいえない.
(A)ヒ(A″)は別粒径とすると、運用上(A)、(
A゜)、(B)の3つの活性炭を管理するので煩雑であ
る.従って、通常は(A)と(A゜)は同一粒径とする
.懸濁物質は、(A)まで侵入せず、(B) 、(A“
)で除去したいので(A)と(A゛)との粒径の差は小
さい方がよい.せいぜい(A)と(B)の平均粒径の平
均値以下とするのが好ましい.
粒度の小さい下層部と、粒度の大きい上層部から成る二
相ろ過系において、目詰まりによってろ過層の抵抗に最
も寄与するのは、充てん層の表層部の懸濁物質であり、
これを完全に系外に除去できれば充てん層の透水能力は
回復できる.また目視上、表層からある程度は深層ろ過
が進行している傾向がみられ、この部分も同時に除去し
た方が懸濁物質徘せき効率が上昇し、安定運用の観点か
ら好ましい。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a filtration device. [Prior Art] As a conventional packed bed type filtration device, a sand filtration device installed at the lower stage of a coagulation sedimentation tank in a water treatment plant is well known, and this sand filtration device is used for regeneration. It is also known that a packed layer can be formed from two phases with different average particle sizes. In this case, particles with a larger particle size are filled above the sand filter layer, and the upper filled layer with a larger average particle size is filled with deeper layers. We aim to extend the regeneration cycle by causing filtration. Regeneration is performed by flowing water from the bottom of the packed layer upwards in the opposite direction to the water flow, loosening the packed layer and draining suspended solids out of the system. Therefore, for the large particles placed on the top of the sand filter layer, materials with a specific gravity smaller than sand (for example, anthracite) are used.
This prevents large particles from coming to the bottom of the packed layer at the end of reverse regeneration. [Problem to be solved by the invention] However, when the above sand filtration method is regenerated, 1
2) The amount of waste liquid generated during regeneration is large compared to the amount of liquid to be treated, which is inefficient. 3)
There are problems such as the time required for regeneration cannot be ignored, and 4) lumps of suspended matter in the surface layer that cannot be thoroughly loosened during regeneration may remain in the packed layer. This problem is even more pronounced in the case of difficult-to-filter waste liquids that have a high concentration of suspended solids and contain organic substances, which easily clog the packed layer, especially in small-scale filtration where the amount of waste liquid to be treated is not large. become. Other filtration methods include bricoat filtration, reverse osmosis,
Although there are ultrafiltration methods, etc., the same problems as 1), 2), and 3) associated with regeneration operations in the sand filtration method, ie, problems with regeneration equipment, regeneration efficiency, and regeneration time, remain. The present invention examines the possibility of changing the adoption of the regenerative operation method that has the above-mentioned problems to a non-regenerative operation method, and also aims to minimize the disadvantages associated with adopting the non-regenerative operation method. This is a topic. Therefore, the present invention does not require regeneration equipment, it takes a long time to replace the packed layer as it progresses, and it is easy to replace the clogged packed layer and manage the amount of replacement. This paper relates to a filtration device that uses a non-regenerative operation method that minimizes the amount of waste, especially a filtration device that is suitable for small-scale filtration of difficult-to-filter waste liquids that have a high concentration of suspended solids and contain organic matter. Furthermore, the aim is to obtain a filtration device suitable for filtering waste liquid containing heavy metal ions, etc., which is a system with strict standards for treated water quality. (Means for Solving the Problems) The above object is to provide activated carbon having an average particle size equal to or similar to the particle size of the activated carbon of the filled layer (A) on the activated carbon filled layer (A) with a small average particle size. A filled layer (A゜) and an activated carbon filled layer (B) having an average particle size larger than that of the activated carbon in the filled layer (A) were placed in a basket with a rope attached to the bottom. It has been found that this can be achieved by a filtration device characterized by the following.In the present invention, activated carbon is used as the filtration layer, and on top of the activated carbon packed layer (A) with a small average particle size, The activated carbon packed layer (B) is filled so that it can handle both surface filtration and deep filtration, and the operating time until clogging progresses and replacement is extended compared to the packed layer (A) alone. At the same time, activated carbon is easy to dispose of by incineration, so it is suitable for non-regeneration methods.In addition, among the activated carbon filled layers, the upper part of the activated carbon layer (A゛) with a small average particle size and the upper part of the activated carbon layer with a large average particle size By storing the activated carbon layer (B) in a basket with a rope attached to the bottom, it is easy to replace the activated carbon layer that has become clogged and to manage the amount of replacement. Because it is only activated carbon,
The amount of waste generated is very small and it is economically effective. Therefore, the filtration of the present invention is particularly suitable for filtering difficult-to-filter waste liquids that have a high degree of suspended matter TFI and contain organic substances. The particle size of activated carbon used in each layer is not particularly limited;
When suspended solids with a particle size of 10 μm or more in the water to be treated account for 50% (by weight) or more of the total suspended solids, the average particle size of (B)> the average particle size of (A) or (A゜) While satisfying (A
) or (A') is preferably 20 mesh or more, and (B) is preferably 30 mesh or less. Particle size 10
When suspended solids smaller than μm account for more than 50% (by weight) of all suspended solids, especially when particles smaller than 1 μm cannot be ignored,
The particle sizes of (A), (A'), and (B) are relatively reduced to about 1/1.
Although it is necessary to reduce the particle size to near 0, the impact of the increase in differential pressure is very large, and it is not economically advisable to use it unless it is used at a low concentration of several pp or less. (A) Assuming that (A″) is a different particle size, operationally (A), (
It is complicated to manage three activated carbons, A゜) and (B). Therefore, (A) and (A°) are usually the same particle size. The suspended solids do not penetrate to (A), (B), (A"
), it is better to have a smaller difference in particle size between (A) and (A゛). It is preferable that the average particle size of (A) and (B) be at most the average value or less. In a two-phase filtration system consisting of a lower layer with small particle size and an upper layer with large particle size, it is the suspended solids in the surface layer of the packed layer that contribute most to the resistance of the filtration layer due to clogging.
If this can be completely removed from the system, the permeability of the packed layer can be restored. Visually, it can be seen that deep filtration tends to proceed to some extent from the surface layer, and it is preferable from the viewpoint of stable operation to increase suspended solid removal efficiency and to remove this portion at the same time.
また、粒度の小さい下層部と、粒度の大きい上層部の境
界についてみると、懸濁物質の大粒径部分は深層ろ過の
進行が境界部で停止するとみられ、目詰まり進行後充て
ん層を交換するのを粒径の小さい充てん層の上部(A゛
)と粒径の大きい充てん層部(B)のみとすることで、
上記境界部を含んで交換ができ、交換による懸濁物質除
去効率は一層上昇し、より安定した運用が可能となる.
本発明では、かかる交換相当部分(A゛とB)を予めバ
スケット内に収納し、交換を効率よくかつ安全容易に行
うことを達成した.
さらに、バスケットを持ち上げることができる構造にし
ておけば、目詰まりの進行した充てん層を、ろ過装置本
体とは別の場所で交換することもできる.
また、表層部分の懸濁物質のみの除去も容易となる
手でバスケットを持ち上げて交換する場合、バスケット
の網のサイズはバスケット内の粒径の小さい下部充てん
層(A゜)の活性炭のサイズと比べ、同等以下とし、か
つ材質的にも充てん層の重量にも耐える様、ステンレス
等を用いるのが好ましい.上層の粒度の大きい活性炭層
(B)の厚さは、活性炭の粒度、対象懸濁物質の粒径に
よっても異なる.長期的にみれば充てん層下部(A)の
方も少しずつ目詰まりは進行するので、その時は全量交
換となる.
さらに、原子力発電所の洗濯廃液処理の様に、処理水質
基準がきびしい場合には、充てん層の上層部(B)及び
/又は下層部(A) 、(A’)は活性炭に重金属イオ
ンの吸着性の高い化学物質を添着させたものを用いるこ
とが好ましい.例えば、原子力発電所の場合、Co−6
0は半減期が長く、洗濯排水の放射能濃度をあげる誘因
となっているが、例えば上記化学物質としてオキシンを
添着したものはコバルト、銅、マンガン、亜鉛等の重金
属除去効.果がある.製品としては、例えばK−MMC
(城北化学工業■製、24〜42メッシュ)がある.
〔実施例〕
以下、図面に示した実施例について詳細に説明する.
第1図はろ過装置とその配管状態を模式的に示す図であ
り、第2図は、ろ過装置本体を示す.ろ過装置lには、
その上方に被処理水をろ過装置内に導入するための被処
理水元弁12を有する流入管1lが被処理水人口Aを介
して、およびろ過された処理水を排出するための処理水
出口弁l4を有する流出管l3が処理水出口Bを介して
取付けられている.更に、ろ過装置の上方には、ろ過装
置内に洗浄水を導入する管l5および圧縮空気を導入す
る管l7がそれぞれ洗浄水人口H及び空気人口Gを介し
て、さらにろ過装置内の圧縮空気を解放するベント弁2
2を有するベントC、並びにろ過装置内の圧力を測定す
る圧力計24が取付口Eを介して、それぞれ備えられて
いる.なお、洗浄水導入管l5には洗浄水元弁16が、
空気導入管17にはろ過装置側から順に空気流量調節弁
18、逆止弁19、減圧弁20及び空気弁21が設けら
れている.また、ろ過装置の側面には、中間ドレインD
を介して中間水抜き弁28と、水抜き時の水位、ろ過層
の目視を可能にするのぞき窓2aとが設けられており(
バスケットを透明アクリル樹脂等でつくればバスケット
内のろ過層を目視可能)、さらにろ過装置の下方にはド
レンロFを介してブロー弁30が設けられている.ろ過
装置本体1の中段領域にはろ過材(活性炭)充てん層が
設けられており、このろ過材充てん層は、下方の細かい
活性炭層2(A)と、その上方のバスケット38内に収
容された細かい活性炭下層3(A”)及び粗い活性炭上
層4(B)とから成る.細かい活性炭層2はろ過装置本
体lの内方に突出したサポート36に保持されている.
第3図に詳細されるように、バスケット38の底には、
ボルト40によりスクリーン41が張られ、バスケット
38内の活性炭層3、4は、その下方にある細かい活性
炭N2と分離されている.バスケット38は上方に把持
部39を備えており、ろ過装置のM34を開けてろ過装
置本体lから上方へ取り外すことができる構造となって
いる.バスケットは、バスケットに充てんする活性炭レ
ベルより上の位置に穴を設け、空気を利用した水抜き時
にのぞき窓からバスント内充てん部附近まで水が抜けた
ことを確認できる様にする方が好ましい.ろ過装置本体
1の最上部には、胴フランジ33が形成され、この胴フ
ランジ33の外径に対応する蓋34がヒンジ35により
開閉できるように取付けられている.蓋34には、前述
のようにろ過装置本体内の空気を抜くためのべントCが
設けられ、また蓋34の締め付けは、例えば、胴フラン
ジ33の部分において、ボルト等により適宜行なうこと
ができる.
この活性炭ろ過装置において、細かい活性炭層2は粒径
24〜42メッシュ、層厚約9cm、バスケット内の細
かい活性炭N3は、粒径24〜42メッシュ、厚約1c
m+、粗い活性炭層4は、粒径8〜30メッシュ、層厚
約20一で設定した.尚、この活性炭ろ過装置は処理量
1〜4rrf/h(LV(流量(rrf/h)をろ過装
置断面積(イ)で除した値)で5〜20+*八)の処理
能力を想定し、L■は浄水場の砂ろ過装置の急速ろ過の
値とほぼ同じである.しかし、懸濁物質濃度や活性炭の
粒度選定により、上記処理量にしばられるものではない
.
以下、第1図に基づき、本発明のろ過装置を用いての被
処理水の処理運用を説明する.被処理水は、流入管11
から人口Aを通じてろ過装置本体内に導入され、ろ過済
処理水は、出口Bを通じて流出管13から排出される.
ろ過材の目詰まり進行は、圧力計24によって確認でき
、通水が進行し、圧力計24の指示値が増大して所定値
に達したとき、被処理水元弁12及び処理水出口弁l4
を閉じて通水を停止する.出口弁14を開き、次いで空
気流量調節弁l8を少しずつ開き、のぞき窓26から見
て活性炭層上部まで水が抜けたら、!ll節弁18、引
き続いて出目弁14を閉める.加圧空気で水抜きを行う
のは、ろ過層の抵抗が大きく、活性炭ろ過装置内の水を
ヘッドで落とそうとすると非常に時間がかかるためであ
る.次いでベント弁22を少しずつ開け、圧力を解放す
る.蓋34を開け、活性炭の一部(バスケット38内の
もの)を新しいものと交換する.蓋34を閉め、洗浄水
元弁l6を少しずつ開き、活性炭ろ過装W1を満水にす
る.満水確認後、洗浄水元弁l6つづいてベント弁22
を閉じる.以上の操作が完了したら、被処理水元弁l2
及び処理水出口弁l4を開き、通水を再開する.実験l
.
以下、活性炭を用いた充てん層型ろ過において、充てん
層の上層部に下層部より粒度の大きい粒子を充てんする
ことにより、深層ろ過を進行させて寿命を延ばし得るこ
とを確認する.
内径1 . 95c鶴のアクリル製カラムを2本用意し
、その底に40メッシュのポリエチレン製ネットをはり
、ここに8〜30メッシュの粒度分布をもつ活性炭(二
村化学工業■製、CW830B) 、24〜42メッシ
ェの粒度分布をもつ活性炭(二村化学工業■製11c4
2)をそれぞれ10cm充てんし、充てん層上端よりほ
ぼ15c−の位置に水位がくる樺にして模擬液をろ過し
た.模擬液は、ジッンソン・エンド・ジリンソン■製の
ジッンソンベビーパウダーを含有する500pp一水溶
液を用い、顕微鏡観察の結果、lO〜150μの粒度分
布をもつことが確認できた.結果を第4図に示す.
横軸にろ過時間、縦軸に総ろ過量をとり、直線の傾きが
大きいほどろ過流量が大で、ろ過抵抗が少ないことを示
す.
O印は粒度の粗い8〜30メッシュの活性炭に模擬液5
00ρPaを通した結果で、1iをろ過するまで傾きは
急で一定であり、ベビーパウダーは深層ろ過に近い形で
、一部充てん層に捕捉されていると推測される.
Δ印は、上記粒度の粗い活性炭に通した(0印の試験で
ろ遇した)ろ液を、24〜42メッシエの活性炭に通し
た結果で、12ろ過する間傾きは一定であり、O印と同
様深層ろ過に近い形で充てん層に捕捉されていると推測
される.ちなみにΔ印のろ液は、目視上透明であり、ベ
ビーパウダーはほとんど除去されていることを示してい
る,口印は24〜42メッシュの活性炭層に模擬液50
0pp一を通した結果で、ろ過開始17分まではΔ印と
同じろ過流量であるが、以降はろ過流量がΔ印の1/3
位に落ちていることがわかる.
以上の事実より、活性炭充てん層の上に、より平均粒径
の大きい活性炭Nを充てんして通水することにより、ろ
過抵抗をおさえることができ、活性炭を交換するまでの
運転時間を延ばせることがわかる.
実験2.
二重活性炭層における表層ろ過及び深層ろ過の進行程度
及びそれらのろ過抵抗に及ぼす影響を示す.
実験1と同様、内径1 . 95c−のアクリル製力ラ
ムの底に40メッシュのポリエチレン製ネットをはり、
ここに実験1で用いたと同様の、24〜42メッシュの
粒度分布をもつ活性炭を10cm充てんし、その上に8
〜30メッシュの粒度分布をもつ活性炭を20cs+充
てんする.
模擬液は実験lと同一仕様のベビーパウダーで、濃度は
12500pp−とした.
8〜30メッシュの充てん層の上端からほぼ15cmの
位置に水位を保つ様、カラムの上部より模擬液を間けつ
的に流しながら実験を行った(20℃).結果を第5図
に示す.
第5図においてO印は純水だけをカラムに流した場合で
ある.
Δ印は模擬液を加えた試験であるが、ろ過開始後3分位
は純水の時の透過水量とかわらない.しかし、それ以降
は急激に充てん層の抵抗が増え、透過水量が落ちてくる
.
ろ過後2.5時間では充てん層の上部に、さらにベビー
パウダー層が1.5c一位堆積し、ほとんど表層ろ過層
の抵抗が支配的になった.この状態で一時ろ過を止め、
カラムの人、出口部を手でおさえて、カラムを振ってパ
ウダー層の一部を充てん層の中にくい込ませた.それで
もベビーパウダー層の5一分は表層に残った(図中A)
.
ろ過開始2.5時間後、透過水量は回復してはいるが顕
著ではない.
ろ過開始3時間後に表層のベビーパウダー層に完全に除
去したら(図中B)、ろ過開始直後の状態に透過水量は
回復した.
これにより、深層ろ過よりも表層ろ過によって充てん層
の抵抗は増大し、表層部を完全に除去することは透過水
量回復の観点から重要なことがわかる.
(発明の効果)
本発明に従うろ過装置を用いることにより、粒度の小さ
い活性炭充てんl(A及びA“)の上に、より粒度の大
きい活性炭充てん層(B)を充てんし、表層ろ過と深層
ろ過の両方に対応できるようにしたため、粒度の細かい
活性炭層単独に比べて、目詰まりが進行して交換に至る
までの運用時間が延長される.
また、活性炭を用いて被再生運用とし、通水して充てん
層の目詰まりが進行した場合には、通水を止めて粒度の
大きい活性炭層(B)及び粒度の小さい活性炭層の一部
(A゛)だけを交換することにより、発生廃棄物量が少
なく、また活性炭であることから焼却処分も容易である
.ここでS交換すべき層を、底に網を張ったバスケット
内に収容するため、交換が容易であるば・かりでなく、
交換僅の管理も容易となる.バスケットを持ち上げ可能
とすれば、交換がさらに容易となる.
さらに、活性炭層(A)、(A゛)及び/又は(B)に
重金属イオンの吸着性の高い化学物質を添着した活性炭
を用いることで、原子力発電所の如く処理水質基準のき
びしい系統においても十分に対応できる.In addition, looking at the boundary between the lower layer with small particle size and the upper layer with large particle size, it seems that the progress of deep filtration stops at the boundary in the large particle size part of suspended solids, and the packed layer is replaced after clogging progresses. By limiting this to only the upper part of the packed layer with small particle size (A゛) and the filled layer part with large particle size (B),
Exchange can be performed including the boundary area mentioned above, which further increases suspended solids removal efficiency and enables more stable operation.
In the present invention, the replacement parts (A' and B) are stored in advance in a basket, thereby achieving efficient, safe and easy replacement. Furthermore, if the structure is such that the basket can be lifted, a clogged filling layer can be replaced at a location other than the filtration device itself. In addition, when replacing the basket by lifting it by hand, which makes it easier to remove only the suspended solids in the surface layer, the size of the basket mesh should be the same as the size of the activated carbon in the lower packed layer (A°) with small particle size inside the basket. In comparison, it is preferable to use stainless steel or the like so that it is the same or lower and can withstand the weight of the filling layer. The thickness of the upper activated carbon layer (B) with large particles varies depending on the particle size of the activated carbon and the particle size of the target suspended solids. In the long run, the lower part of the filled layer (A) will gradually become clogged, so at that time the entire amount will need to be replaced. Furthermore, in cases where treated water quality standards are strict, such as in the treatment of laundry wastewater at nuclear power plants, the upper part (B) and/or lower part (A) and (A') of the packed layer are activated carbon that adsorbs heavy metal ions. It is preferable to use a material that has a chemical substance attached to it that has high properties. For example, in the case of a nuclear power plant, Co-6
0 has a long half-life and causes an increase in the radioactivity concentration of laundry wastewater. However, for example, those impregnated with oxin as the chemical substance mentioned above are effective in removing heavy metals such as cobalt, copper, manganese, and zinc. There is a fruit. As a product, for example, K-MMC
(manufactured by Johoku Kagaku Kogyo ■, 24-42 mesh).
[Example] The example shown in the drawings will be described in detail below. Fig. 1 is a diagram schematically showing the filtration device and its piping state, and Fig. 2 shows the main body of the filtration device. In the filtration device l,
Above it, an inflow pipe 1l having a treated water source valve 12 for introducing treated water into the filtration device passes through the treated water population A, and a treated water outlet for discharging the filtered treated water. An outflow pipe l3 with a valve l4 is installed via the treated water outlet B. Further, above the filtration device, a pipe 15 for introducing washing water into the filtration device and a pipe 17 for introducing compressed air into the filtration device further supply compressed air into the filtration device via a washing water population H and an air population G, respectively. Vent valve 2 to release
2, and a pressure gauge 24 for measuring the pressure inside the filtration device are provided through the mounting port E, respectively. In addition, a wash water source valve 16 is installed in the wash water introduction pipe l5.
The air introduction pipe 17 is provided with an air flow control valve 18, a check valve 19, a pressure reducing valve 20, and an air valve 21 in this order from the filtration device side. In addition, there is an intermediate drain D on the side of the filtration device.
An intermediate drain valve 28 and a peephole 2a are provided through which the water level and filtration layer can be visually observed during draining (
If the basket is made of transparent acrylic resin or the like, the filtration layer inside the basket can be seen visually), and furthermore, a blow valve 30 is provided below the filtration device via a drain hole F. A filter material (activated carbon) filled layer is provided in the middle region of the filter main body 1, and this filter material filled layer is housed in a fine activated carbon layer 2 (A) below and a basket 38 above it. It consists of a fine activated carbon lower layer 3 (A") and a coarse activated carbon upper layer 4 (B). The fine activated carbon layer 2 is held on a support 36 that projects inward of the filter body l. Details are shown in FIG. So, at the bottom of the basket 38,
A screen 41 is stretched by bolts 40, and the activated carbon layers 3 and 4 in the basket 38 are separated from the fine activated carbon N2 located below. The basket 38 is provided with a grip portion 39 on the upper side, and has a structure that allows the filter device to be removed upwardly from the filter main body l by opening the M34 of the filter device. It is preferable to have a hole in the basket above the level of the activated carbon that is filled in the basket so that when water is drained using air, it is possible to confirm through the peephole that the water has drained to the vicinity of the filled part of the basket. A body flange 33 is formed at the top of the filter body 1, and a lid 34 corresponding to the outer diameter of the body flange 33 is attached to the lid 34 so that it can be opened and closed by a hinge 35. As described above, the lid 34 is provided with a vent C for venting the air inside the filtration device body, and the lid 34 can be tightened as appropriate with bolts or the like at the body flange 33, for example. .. In this activated carbon filtration device, the fine activated carbon layer 2 has a particle size of 24 to 42 mesh and a layer thickness of about 9 cm, and the fine activated carbon N3 in the basket has a particle size of 24 to 42 mesh and a thickness of about 1 cm.
m+, the coarse activated carbon layer 4 was set to have a particle size of 8 to 30 mesh and a layer thickness of approximately 20 mm. In addition, this activated carbon filtration device is assumed to have a processing capacity of 1 to 4 rrf/h (LV (value obtained by dividing the flow rate (rrf/h) by the cross-sectional area of the filtration device (a)) and 5 to 20 + * 8). L■ is almost the same as the value of rapid filtration in sand filtration equipment at water treatment plants. However, depending on the concentration of suspended solids and the particle size of activated carbon, the processing amount is not limited to the above amount. Hereinafter, the treatment operation of water to be treated using the filtration device of the present invention will be explained based on Fig. 1. The water to be treated flows through the inflow pipe 11
The filtered treated water is introduced into the main body of the filtration device through the outlet A, and is discharged from the outflow pipe 13 through the outlet B.
The progress of clogging of the filter medium can be confirmed by the pressure gauge 24, and when the water flow progresses and the indicated value of the pressure gauge 24 increases and reaches a predetermined value, the treated water source valve 12 and the treated water outlet valve l4
Close and stop water flow. Open the outlet valve 14, then open the air flow control valve l8 little by little, and when the water has drained to the top of the activated carbon layer as seen through the peephole 26! Close the control valve 18 and then close the exit valve 14. The reason why water is removed using pressurized air is because the resistance of the filtration layer is large, and it takes a very long time to remove water from the activated carbon filtration device using the head. Next, open the vent valve 22 little by little to release the pressure. Open the lid 34 and replace some of the activated carbon (the one in the basket 38) with a new one. Close the lid 34, open the wash water source valve l6 little by little, and fill the activated carbon filtration device W1 with water. After confirming that the water is full, open the cleaning water source valve 16, followed by the vent valve 22.
Close. After completing the above operations, open the water source valve l2 to be treated.
Then, open the treated water outlet valve l4 and restart water flow. experiment l
.. Below, we will confirm that in packed layer filtration using activated carbon, filling the upper layer of the packed layer with particles with a larger particle size than the lower layer can advance deep filtration and extend the service life. Inner diameter 1. Prepare two 95c Tsuru acrylic columns, put a 40 mesh polyethylene net on the bottom, and add activated carbon (manufactured by Nimura Chemical Industry ■, CW830B) with a particle size distribution of 8 to 30 mesh, 24 to 42 mesh. Activated carbon (manufactured by Nimura Chemical Industry ■ 11c4) with a particle size distribution of
2) was filled to a depth of 10 cm each, and the simulated liquid was filtered using a birch whose water level was approximately 15 cm from the top of the filled layer. The simulated solution was a 500pp aqueous solution containing Jinson Baby Powder manufactured by Jinson & Gilinson ■, and as a result of microscopic observation, it was confirmed that it had a particle size distribution of 10 to 150μ. The results are shown in Figure 4. The horizontal axis represents the filtration time, and the vertical axis represents the total filtration amount. The greater the slope of the line, the greater the filtration flow rate and the lower the filtration resistance. O mark indicates simulated liquid 5 on activated carbon with coarse particle size of 8 to 30 mesh.
The results show that the slope is steep and constant until 1i is filtered, and it is assumed that the baby powder is partially captured in the packed layer in a form similar to deep filtration. The Δ mark is the result of passing the filtrate passed through the above-mentioned coarse activated carbon (filtered in the 0 mark test) through 24 to 42 Messier activated carbon, and the slope is constant during 12 filtrations, and the O mark and It is presumed that it is trapped in the packed layer in a similar manner to deep filtration. By the way, the filtrate marked with Δ is visually transparent, indicating that most of the baby powder has been removed.
The result is that the filtration flow rate is the same as the Δ mark until 17 minutes after the start of filtration, but after that, the filtration flow rate is 1/3 of the Δ mark.
It can be seen that it has fallen to From the above facts, it is possible to suppress filtration resistance and extend the operating time until the activated carbon is replaced by filling activated carbon N with a larger average particle size on top of the activated carbon packed layer and passing water through it. Recognize. Experiment 2. This paper shows the progress of surface filtration and deep filtration in double activated carbon layers and their effects on filtration resistance. As in Experiment 1, the inner diameter was 1. Attach a 40 mesh polyethylene net to the bottom of a 95c-acrylic power ram,
10 cm of activated carbon with a particle size distribution of 24 to 42 mesh, similar to that used in Experiment 1, was filled, and 8 cm
Fill 20 cs+ of activated carbon with a particle size distribution of ~30 mesh. The simulated liquid was baby powder with the same specifications as in Experiment 1, and the concentration was 12,500 pp-. The experiment was conducted by intermittently flowing the simulated liquid from the top of the column to maintain the water level approximately 15 cm from the top of the 8-30 mesh packed layer (20°C). The results are shown in Figure 5. In Figure 5, the O mark indicates the case where only pure water is flowed into the column. The Δ mark is a test in which a simulated liquid was added, but the amount of permeated water is not different from that of pure water for about 3 minutes after the start of filtration. However, after that, the resistance of the packed layer increases rapidly and the amount of permeated water decreases. 2.5 hours after filtration, an additional 1.5 cm of baby powder layer was deposited on top of the packed layer, and the resistance of the surface filtration layer became almost dominant. In this state, temporarily stop filtration,
The person holding the column held the outlet with his hand and shook the column to force part of the powder layer into the packed layer. Even so, 50% of the baby powder layer remained on the surface layer (A in the figure).
.. 2.5 hours after the start of filtration, the amount of permeated water recovered, but not significantly. Three hours after the start of filtration, the amount of permeated water returned to the state immediately after the start of filtration when it was completely removed to the surface baby powder layer (B in the figure). This shows that surface filtration increases the resistance of the packed layer more than deep filtration, and that completely removing the surface layer is important from the perspective of restoring the amount of permeated water. (Effect of the invention) By using the filtration device according to the present invention, the activated carbon packed layer (B) with larger particle size is filled on top of the activated carbon filled layer (A and A'') with smaller particle size, and surface filtration and deep layer filtration are performed. Compared to using a fine-grained activated carbon layer alone, the operation time until clogging progresses and replacement is extended.In addition, activated carbon is used for regeneration operation, and water flow If clogging of the packed layer progresses, the amount of waste generated can be reduced by stopping the water flow and replacing only the activated carbon layer with large particle size (B) and a part of the activated carbon layer with small particle size (A). Since it is activated carbon, it is easy to incinerate.The layer to be replaced with S is stored in a basket with a net on the bottom, so it is not only easy to replace, but also easy to dispose of by incineration.
It also makes it easier to manage the number of replacements. If the basket can be lifted, replacement will be easier. Furthermore, by using activated carbon in which the activated carbon layer (A), (A゛) and/or (B) is impregnated with a chemical substance that has high adsorption properties for heavy metal ions, it can be used in systems with strict treatment water quality standards such as nuclear power plants. I can handle it well.
第1図は、ろ過装置とその配管状態を模式的に示す図で
あり、第2図はろ過装置本体を示し、第3図はろ過装置
本体におけるバスケット部の詳細図である.
第4ti!Qは、実験1に基づく総ろ過量の時間変化を
示すグラフであり、第5図は実験2に基づく二重活性炭
層の、総ろ過量の時間変化を示すグラフである.
■ろ過装置 2
3 細かい活性炭層(A゜)
4 粗い活性炭Jlil(B) 1112 被処理
水元弁 13
14 処理水出口弁 15
16 洗浄水元弁 17
l8 空気流tirui弁 19
20 減圧弁 2l
22 べ冫ト弁 24
26 のぞき窓 28
30 ブロー弁 31
32 底FX33
34蓋 35
36 サポート 37
38 バスケット 39
40 ボルト 4l
A 被処理水人口 B
C ベント D
E 圧力計取付口 F
細かい活性炭層(A)
被処理水流入管
処理水流出管
洗浄水導入管
空気流入管
逆止弁
空気元弁
圧力計
中間水抜き弁
胴
胴フランジ
ヒンジ
脚
把手
スクリーン
処理水出口
中間ドレン
ドレンロ
空気入口
洗浄水入口
第
図
第
図Fig. 1 is a diagram schematically showing the filtration device and its piping state, Fig. 2 shows the filtration device main body, and Fig. 3 is a detailed view of the basket portion in the filtration device main body. 4th ti! Q is a graph showing the time change in the total filtration amount based on Experiment 1, and FIG. 5 is a graph showing the time change in the total filtration amount of the double activated carbon layer based on Experiment 2. ■Filtration device 2 3 Fine activated carbon layer (A゜) 4 Coarse activated carbon (B) 1112 Water source valve to be treated 13 14 Treated water outlet valve 15 16 Washing water source valve 17 l8 Air flow tirui valve 19 20 Pressure reducing valve 2l 22 Drop valve 24 26 Peephole 28 30 Blow valve 31 32 Bottom FX33 34 Lid 35 36 Support 37 38 Basket 39 40 Bolt 4l A Water population to be treated B C Vent D E Pressure gauge installation port F Fine activated carbon layer (A) To be treated Water inflow pipe Treated water outflow pipe Cleaning water inlet pipe Air inlet pipe Check valve Air source valve Pressure gauge Intermediate drain valve Trunk flange Hinge Leg handle Screen Treated water outlet Intermediate drain Drain Lo Air inlet Cleaning water inlet Figure
Claims (1)
てん層(A)の活性炭の粒径と同等又はそれと類似の平
均粒径を有する活性炭充てん層(A′)とその上に充て
ん層(A)の活性炭の粒径よりも平均粒径の大きい活性
炭充てん層(B)とを底に網を張ったバスケット内に収
納して、設けたことを特徴とするろ過装置。 2、活性炭充てん層(A)、(A′)及び(B)のうち
少なくとも1層に、重金属イオンの吸着性の高い化学物
質を添着した活性炭を用いる、請求項1記載のろ過装置
。[Claims] 1. On the activated carbon filled layer (A) with a small average particle size, an activated carbon filled layer (A') having an average particle size equivalent to or similar to the activated carbon particle size of the filled layer (A). ) and an activated carbon filled layer (B) having an average particle size larger than that of the activated carbon in the filled layer (A), which is housed in a basket with a net on the bottom. Filtration device. 2. The filtration device according to claim 1, wherein activated carbon impregnated with a chemical substance having high adsorption properties for heavy metal ions is used in at least one of the activated carbon filled layers (A), (A'), and (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050163A JPH02229505A (en) | 1989-03-03 | 1989-03-03 | Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050163A JPH02229505A (en) | 1989-03-03 | 1989-03-03 | Filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02229505A true JPH02229505A (en) | 1990-09-12 |
Family
ID=12851533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1050163A Pending JPH02229505A (en) | 1989-03-03 | 1989-03-03 | Filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02229505A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001347264A (en) * | 2000-06-07 | 2001-12-18 | Shimadzu Corp | Water treatment equipment and water treatment method |
JP2010089058A (en) * | 2008-10-10 | 2010-04-22 | Kayama Sanso Kk | Liquid treatment unit |
-
1989
- 1989-03-03 JP JP1050163A patent/JPH02229505A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001347264A (en) * | 2000-06-07 | 2001-12-18 | Shimadzu Corp | Water treatment equipment and water treatment method |
JP2010089058A (en) * | 2008-10-10 | 2010-04-22 | Kayama Sanso Kk | Liquid treatment unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5647977A (en) | Method and apparatus for removing contaminants from industrial waste water | |
US3587861A (en) | Apparatus and method of filtering solids from a liquid effluent | |
JPH03501939A (en) | Filter media for filter systems | |
JPS62247812A (en) | Pressure-type upward flow deep bed filtration method and filter used in said method | |
US7713424B2 (en) | Methods for purging absorptive materials used in the removal of contaminates from an aqueous medium | |
DE1816527A1 (en) | Process for water treatment in a hydrophoric boiler and device for its implementation | |
CN106219797A (en) | A kind of micro-filtration membrane oilfield sewage treatment device and processing method | |
JPH02229505A (en) | Filter | |
JPH0217908A (en) | Method for washing solid-liquid separation apparatus | |
KR101228564B1 (en) | Clean water system and clean water method for subterrarean water and valley water | |
JPH05502819A (en) | Induction of liquid/solid interactions | |
EP2114545A1 (en) | Low operating head polishing sand filter | |
JP5858439B2 (en) | Water intake equipment in rivers | |
JP5768487B2 (en) | Filtration device | |
PL179767B1 (en) | Method of separating a solid material from a liquid containing it or, possibly, for breaking emulsions | |
US5102535A (en) | Plant to precipitate suspended matter out of water | |
KR200288787Y1 (en) | Filter bed backwash device | |
JP2606248Y2 (en) | Sewage treatment equipment | |
JP7243571B2 (en) | Industrial water circulation system | |
JPS5918111B2 (en) | Water treatment method | |
CN208711209U (en) | A kind of efficient filter cloth rotary disk filter | |
CA2104437C (en) | Method for purifying aqueous phases in hydrometallurigical extractions | |
KR820000468B1 (en) | Process for removal of suspended solids from liquid | |
GB2064350A (en) | Regenerating sand filters | |
JPS5920334Y2 (en) | Continuous "filtration" device |