JPH02219232A - Forming method of thin film - Google Patents

Forming method of thin film

Info

Publication number
JPH02219232A
JPH02219232A JP3988989A JP3988989A JPH02219232A JP H02219232 A JPH02219232 A JP H02219232A JP 3988989 A JP3988989 A JP 3988989A JP 3988989 A JP3988989 A JP 3988989A JP H02219232 A JPH02219232 A JP H02219232A
Authority
JP
Japan
Prior art keywords
thin film
gas
film
plasma
teos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3988989A
Other languages
Japanese (ja)
Other versions
JPH06103691B2 (en
Inventor
Kosaku Yano
矢野 航作
Kazuyuki Sawada
和幸 澤田
Shoichi Tanimura
谷村 彰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1039889A priority Critical patent/JPH06103691B2/en
Publication of JPH02219232A publication Critical patent/JPH02219232A/en
Publication of JPH06103691B2 publication Critical patent/JPH06103691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain excellent SiO2 and improve insulation characteristics by eliminating impurity of a thin film formed of TEOS by using oxygen radical produced by oxygen plasma or light. CONSTITUTION:After an SiO2 film is formed by using tetraoxisilane (TEOS), the film is exposed to the following atmosphere or irradiated with light; said atmosphere is produced by decomposing one or more gas out of O2, N2O, NO, NO2, CO, and CO2, or mixed gas of N2 and inert gas, by using plasma. For example, a first insulating film 12 is formed on a substrate 11; an aluminum wiring containing Si is patterned as a first metal wiring 13; an SiO2 film is formed as a second insulating film 14 by performing plasma decomposition of TEOS and O2 gas in a parallel flat plates type plasma CVD apparatus. Further, after the SiO2 film is deposited, it is exposed to O2 gas plasma for about 5 minutes and treated. Thereby the leak current of the SiO2 film of TEOS can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超LSIなどの絶縁膜に用いられる薄膜の形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a thin film used as an insulating film for VLSI and the like.

従来の技術 従来、テトラオキシシラン(以下TEO8と記す)と0
2のプラズマ分解(以下プラズマCVDと記す)や、T
E01と03との熱分解(以下熱CVDと記す)により
形成した薄膜はステップカバレッジが良好なために超L
SIにおける多層配線の層間絶縁膜の形成技術として用
いられている。
Conventional technology Conventionally, tetraoxysilane (hereinafter referred to as TEO8) and 0
2 plasma decomposition (hereinafter referred to as plasma CVD), T
The thin film formed by thermal decomposition (hereinafter referred to as thermal CVD) of E01 and 03 has a good step coverage, so it is ultra-L.
It is used as a technique for forming interlayer insulating films for multilayer wiring in SI.

この1例の簡単な素子断面を第3図に示す。A simple device cross section of this example is shown in FIG.

同図において、11はトランジスタ等が作り込まれた基
板、12は第1の絶縁膜、13は第1の金属配線、14
は600nmの厚みのTE01のプラズマCvDと20
0nm厚みのTE01の熱CVDで形成した薄膜の第2
の絶縁膜、15は第2の金属配線を示す。このようにス
テップカバレッジが良好なために第2の金属配線の短絡
や断線の発生が抑えられている。
In the figure, 11 is a substrate on which transistors and the like are built, 12 is a first insulating film, 13 is a first metal wiring, and 14
is the plasma CVD of TE01 with a thickness of 600 nm and 20
The second thin film formed by thermal CVD of TE01 with a thickness of 0 nm
15 is an insulating film, and 15 is a second metal wiring. Since the step coverage is thus good, the occurrence of short circuits and disconnections in the second metal wiring is suppressed.

発明が解決しようとする課題 しかし、かかる構成によれば、超LSIにおける微細化
が進み、金属配線間隙が例えば1μm程度になるとTE
01で形成した薄膜の絶縁特性が劣化するといった問題
があった。上述問題は以下の理由で生じる。すなわち、
TE01を用いた薄膜は次のような反応となる。
Problems to be Solved by the Invention However, with such a configuration, as miniaturization in VLSI progresses and the metal wiring gap becomes, for example, about 1 μm, the TE
There was a problem that the insulation properties of the thin film formed in No. 01 deteriorated. The above problem arises for the following reasons. That is,
A thin film using TE01 exhibits the following reaction.

S i  (OC2H6) a+24 (0)→S  
i  02+ 8 C02+ 10 HpOしかし、現
実には上記反応を500℃以下の低温にて行うために完
全な形のSiO2は形成されず、膜中にはCHやCOや
OH等不純物が取り込まれており、前記不純物を介して
リーク電流が流れ易くなるために絶縁特性の劣化を来す
。このために例えば02雰囲気中にて450″C程度の
熱処理を行うと絶縁特性の改善を計ることができる。
S i (OC2H6) a+24 (0) → S
i 02+ 8 C02+ 10 HpO However, in reality, the above reaction is carried out at a low temperature below 500°C, so SiO2 in perfect form is not formed, and impurities such as CH, CO, and OH are incorporated into the film. , leakage current tends to flow through the impurities, resulting in deterioration of insulation properties. For this purpose, for example, heat treatment at about 450''C in a 02 atmosphere can improve the insulation properties.

しかし、熱処理を行うために熱ストレスを受けて金属配
線の断線を生じたり、配線金属が5iOaを突き破って
成長するヒロックが発生して他の配線と短絡するといっ
た問題がある。
However, there are problems such as disconnection of the metal wiring due to heat stress due to heat treatment, and hillocks where the metal wiring breaks through 5iOa and grows, resulting in short circuit with other wiring.

本発明は、上述の問題点に鑑みて為されたもので、断線
や短絡を発生することなく、絶縁特性を改善することが
できる薄膜の形成方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for forming a thin film that can improve insulation properties without causing disconnections or short circuits.

課題を解決するための手段 本発明は、プラズマCVDあるいは熱CVDにてTE0
1より形成した薄膜に酸素プラズマまたは光で生成した
酸素ラジカルを照射させるという構成を備えたものであ
る。
Means for Solving the Problems The present invention provides TE0 by plasma CVD or thermal CVD.
The thin film formed from No. 1 is irradiated with oxygen plasma or oxygen radicals generated by light.

作用 本発明は上述の構成によって、TE01にて作成した薄
膜の不純物を酸素プラズマまたは光で生成した酸素ラジ
カルによって除くことで良好なSiO2にすることがで
き、絶縁特性の改善が可能となる。
Operation According to the present invention, with the above-described configuration, impurities in the thin film formed by TE01 can be removed by oxygen plasma or oxygen radicals generated by light, thereby making it possible to obtain good SiO2, thereby making it possible to improve the insulation properties.

実施例 第1図は本発明の一実施例による薄膜の形成方法のプロ
セスを示す説明図である。同図(a)において、トラン
ジスタ等が作り込まれた基板11上に、第1の絶縁膜1
2を形成し、第1の金属配線13として2%Si含有の
アルミ(以下AIと記す)配線が厚さ0. 8μmでパ
ターン化されている。同図(b)において、第2の絶縁
膜14として平行平板形のプラズマCVD装置にてTE
01と02ガスのプラズマ分解を行い、基板温度380
℃にて5ide膜を形成する。さらに上記SiO2膜を
堆積後、O1!ガスのみのプラズマに約5分間さらして
処理を行う。
Embodiment FIG. 1 is an explanatory diagram showing a process of a thin film forming method according to an embodiment of the present invention. In the same figure (a), a first insulating film 1 is formed on a substrate 11 on which transistors and the like are formed.
2, and a 2% Si-containing aluminum (hereinafter referred to as AI) wiring is formed as the first metal wiring 13 with a thickness of 0.2%. It is patterned at 8 μm. In the same figure (b), TE is used as the second insulating film 14 in a parallel plate type plasma CVD apparatus.
Plasma decomposition of 01 and 02 gases was performed, and the substrate temperature was 380℃.
A 5ide film is formed at ℃. Furthermore, after depositing the above SiO2 film, O1! The treatment is performed by exposing to gas-only plasma for about 5 minutes.

このような構成の基板における2本の平行に走るスペー
ス1μm1 長さ10mmのAI配線間に電圧を印加し
、前記AI配線間のリーク電流を測定した。その結果を
第2図に示す。同図で明らかなように上記処理をしない
ものは5vの印加電圧に対して数百pAのリーク電流が
観察されるが、本実施例によれば数pAのリーク電流と
極めて低減することができる。
A voltage was applied between two AI wires having a space of 1 μm and a length of 10 mm running in parallel on the substrate having such a configuration, and the leakage current between the AI wires was measured. The results are shown in FIG. As is clear from the figure, a leakage current of several hundred pA is observed for an applied voltage of 5V without the above treatment, but according to this example, the leakage current can be extremely reduced to a few pA. .

なお本実施例ではo2ガスの例を示したが、N201 
N01N02、C01CO2ガスにいずれであっても同
様の効果は観察された。
In this example, an example of O2 gas was shown, but N201
Similar effects were observed with either N01N02 or C01CO2 gas.

発明の効果 以上の説明から明らかなように、本発明は、TE01に
よるS i Oa膜を形成した後にOa、  N201
 NOl NO2、C01CO2ガスのうちの1つ以上
のガスか、前期1つ以上のガスとN2または不活性ガス
との混合ガスをプラズマにて分解した雰囲気中にさらす
か、光照射を行うことでTE01による5i02膜をよ
り強固にするため、前記TEO8によるSiO2膜のリ
ーク電流の低減という効果を有するものである。
Effects of the Invention As is clear from the above explanation, the present invention provides the following advantages: After forming a SiOa film using TE01, Oa, N201
TE01 can be achieved by exposing one or more of NOl NO2, CO1CO2 gases, or a mixed gas of one or more of the preceding gases and N2 or an inert gas to an atmosphere in which plasma is used to decompose it, or by irradiating it with light. In order to make the 5i02 film stronger, the TEO8 has the effect of reducing the leakage current of the SiO2 film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の薄膜形成工程の部分断面
図、第2図は、同方法にて形成された絶縁膜のリーク特
性図、第3図は、従来の眉間絶縁膜により絶縁された半
導体装置の断面構造図である。 11・・・基板、12・・・第1の絶縁膜、13・・・
第1の金属配線、14・・・第2の絶縁膜。
FIG. 1 is a partial cross-sectional view of a thin film forming process according to an embodiment of the present invention, FIG. 2 is a leakage characteristic diagram of an insulating film formed by the same method, and FIG. 3 is a diagram showing a conventional glabella insulating film. FIG. 2 is a cross-sectional structural diagram of an insulated semiconductor device. 11... Substrate, 12... First insulating film, 13...
First metal wiring, 14... second insulating film.

Claims (2)

【特許請求の範囲】[Claims] (1)テトラオキシシランとO_2ガスのプラズマ分解
にて薄膜を堆積する第1の工程か、テトラオキシシラン
とO_3ガスの熱分解にて薄膜を堆積する第2の工程か
、上記第1と第2の工程を複数回繰り返して薄膜を堆積
する第3の工程、または上記第1か第2あるいは第3の
工程で堆積した薄膜の1部をエッチングする第4の工程
よりなる薄膜の形成方法において、上記第1の工程かま
たは第2の工程または第3の工程または第4の工程にて
形成した薄膜をO_2、N_2O、NO、NO_2、C
O、CO_2ガスのうちの1つ以上のガスか、前期1つ
以上のガスとN_2または不活性ガスとの混合ガスをプ
ラズマにて分解した雰囲気中にさらす工程よりなること
を特徴とする薄膜の形成方法。
(1) The first step is to deposit a thin film by plasma decomposition of tetraoxysilane and O_2 gas, or the second step is to deposit a thin film by thermal decomposition of tetraoxysilane and O_3 gas. A method for forming a thin film comprising: a third step of depositing a thin film by repeating step 2 a plurality of times; or a fourth step of etching a part of the thin film deposited in the first, second or third step. , the thin film formed in the first step, second step, third step, or fourth step is O_2, N_2O, NO, NO_2, C
A method for producing a thin film characterized by a step of exposing one or more of O, CO_2 gases, or a mixed gas of one or more of the above gases and N_2 or an inert gas to an atmosphere in which plasma has been decomposed. Formation method.
(2)テトラオキシシランとO_2ガスのプラズマ分解
にて薄膜を堆積する第1の工程か、テトラオキシシラン
とO_3ガスの熱分解にて薄膜を堆積する第2の工程か
、上記第1と第2の工程を複数回繰り返して薄膜を堆積
する第3の工程、または上記第1か第2あるいは第3の
工程で堆積した薄膜の1部をエッチングする第4の工程
よりなる薄膜の形成方法において、上記第1の工程かま
たは第2の工程または第3の工程または第4の工程にて
形成した薄膜をO_2、N_2O、NO、NO_2、C
O、CO_2ガスのうちの1つ以上のガスか、前期1つ
以上のガスとN_2または不活性ガスとの混合ガス中に
て保持し、光照射を行う工程よりなることを特徴とする
薄膜の形成方法。
(2) The first step is to deposit a thin film by plasma decomposition of tetraoxysilane and O_2 gas, or the second step is to deposit a thin film by thermal decomposition of tetraoxysilane and O_3 gas. A method for forming a thin film comprising: a third step of depositing a thin film by repeating step 2 a plurality of times; or a fourth step of etching a part of the thin film deposited in the first, second or third step. , the thin film formed in the first step, second step, third step, or fourth step is O_2, N_2O, NO, NO_2, C
A thin film characterized by comprising a step of maintaining the thin film in one or more of O and CO_2 gases or a mixed gas of one or more of the above gases and N_2 or an inert gas, and irradiating it with light. Formation method.
JP1039889A 1989-02-20 1989-02-20 Method of forming thin film Expired - Fee Related JPH06103691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039889A JPH06103691B2 (en) 1989-02-20 1989-02-20 Method of forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039889A JPH06103691B2 (en) 1989-02-20 1989-02-20 Method of forming thin film

Publications (2)

Publication Number Publication Date
JPH02219232A true JPH02219232A (en) 1990-08-31
JPH06103691B2 JPH06103691B2 (en) 1994-12-14

Family

ID=12565539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039889A Expired - Fee Related JPH06103691B2 (en) 1989-02-20 1989-02-20 Method of forming thin film

Country Status (1)

Country Link
JP (1) JPH06103691B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438829A (en) * 1990-06-04 1992-02-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5302555A (en) * 1991-06-10 1994-04-12 At&T Bell Laboratories Anisotropic deposition of dielectrics
WO1995002896A1 (en) * 1993-07-15 1995-01-26 Tadahiro Ohmi Method for manufacturing semiconductor
US5427824A (en) * 1986-09-09 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
US5610105A (en) * 1992-10-23 1997-03-11 Vlsi Technology, Inc. Densification in an intermetal dielectric film
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JP2007281516A (en) * 2002-10-30 2007-10-25 Fujitsu Ltd Method for manufacturing semiconductor device
US8349722B2 (en) 2002-10-30 2013-01-08 Fujitsu Semiconductor Limited Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device
US8778814B2 (en) 2002-10-30 2014-07-15 Fujitsu Semiconductor Limited Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427824A (en) * 1986-09-09 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
US5629245A (en) * 1986-09-09 1997-05-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming a multi-layer planarization structure
US5855970A (en) * 1986-09-09 1999-01-05 Semiconductor Energy Laboratory Co., Ltd. Method of forming a film on a substrate
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JPH0438829A (en) * 1990-06-04 1992-02-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5302555A (en) * 1991-06-10 1994-04-12 At&T Bell Laboratories Anisotropic deposition of dielectrics
US5610105A (en) * 1992-10-23 1997-03-11 Vlsi Technology, Inc. Densification in an intermetal dielectric film
WO1995002896A1 (en) * 1993-07-15 1995-01-26 Tadahiro Ohmi Method for manufacturing semiconductor
JP2007281516A (en) * 2002-10-30 2007-10-25 Fujitsu Ltd Method for manufacturing semiconductor device
US8349722B2 (en) 2002-10-30 2013-01-08 Fujitsu Semiconductor Limited Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device
US8778814B2 (en) 2002-10-30 2014-07-15 Fujitsu Semiconductor Limited Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device

Also Published As

Publication number Publication date
JPH06103691B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
KR100755122B1 (en) In situ chemical generator and method
JPH0729897A (en) Manufacture of semiconductor device
DE69728683T2 (en) METHOD FOR THE DEPOSITION OF FLUOR-DOPED SILICON DIOXIDE LAYERS
EP0032024A2 (en) Process for producing semiconductor devices, devices produced by the process, and circuits and articles including such devices
KR950021220A (en) Tungsten Silicide Formation Method of Semiconductor Device
JPH02219232A (en) Forming method of thin film
KR100255404B1 (en) Dry etching method
JPH0691014B2 (en) Semiconductor device manufacturing equipment
US5700736A (en) Method for making semiconductor device
KR0172031B1 (en) Layer insulation film forming method of semiconductor device
KR19980073847A (en) Semiconductor Wafer Cleaning Method and Oxide Film Forming Method
JPH0383337A (en) Post processing method
JPH02209753A (en) Formation of multilayer wiring of semiconductor device
KR0146173B1 (en) Method for manufacturing oxide film of semiconductor device
JPH06349831A (en) Manufacture of semiconductor device
KR20020051283A (en) Method for fabricating dual gate-oxide
KR20010004969A (en) Method of forming a gate oxide in a semiconductor device
JPS63136630A (en) Ashing of resist
JPH08203890A (en) Formation of interlayer insulation film in semiconductor device
KR20020059879A (en) Method of forming a low-k insulating layer for semiconductor integrated circuit
JPH0467632A (en) Multilayer wiring formation in semiconductor device
JP2841423B2 (en) Method for selective formation of tungsten film
JPS59119763A (en) Formation of thin film metal insulator semiconductor transistor
JP2757618B2 (en) Method for manufacturing semiconductor device
JPS61271844A (en) Method for making the surface of compound semiconductor inactive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees