JPH02201819A - Compound superconductive material and manufacture thereof - Google Patents

Compound superconductive material and manufacture thereof

Info

Publication number
JPH02201819A
JPH02201819A JP1021464A JP2146489A JPH02201819A JP H02201819 A JPH02201819 A JP H02201819A JP 1021464 A JP1021464 A JP 1021464A JP 2146489 A JP2146489 A JP 2146489A JP H02201819 A JPH02201819 A JP H02201819A
Authority
JP
Japan
Prior art keywords
platinum
layer
oxide superconductor
substrate
oxide superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1021464A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一生 山本
Minoru Yamada
穣 山田
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1021464A priority Critical patent/JPH02201819A/en
Publication of JPH02201819A publication Critical patent/JPH02201819A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the strength of attachment of oxide superconductive material to a coating material, substrate material, etc., and improve the mechanical strength by forming a layer of oxide superconductive layer through a middle reaction layer on a base body of platinum or platinum alloy. CONSTITUTION:An oxide superconductive material is heated up to over its fusing point to be fused, and the molten matter is applied on a layer of platinum or platinum alloy of a base body 1. Or otherwise the powders of the oxide superconductive material are applied on the layer of platinum or platinum alloy of the base body and then heated up to the fusing point of the oxide superconductive material to be fused. For applying the heated and fused oxide superconductive material, the base body is immersed in the fused material, or the fused material is applied through a nozzle provided in a lower part of a heat crucible. The oxide superconductive material over the fusing point on the layer of platinum or platinum alloy reacts with platinum and forms a middle reaction layer 3 which is dense and strongly connected with the base body. By then hardening the molten matter of the oxide superconductive material to crystallize it, a layer 2 of the oxide superconductive material is formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いた化合物超電導導体と
その製造方法に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a compound superconducting conductor using an oxide superconductor and a method for producing the same.

(従来の技術) 従来から、ある温度以下でその電気抵抗が零となる超電
導物質は数多く発見されており、それらを用いて超電導
導線や超電導電子デバイスを実現しようとする試みが種
々検討されてきている。
(Prior art) Many superconducting materials whose electrical resistance becomes zero below a certain temperature have been discovered, and various attempts have been made to use them to create superconducting wires and superconducting electronic devices. There is.

また、最近、液体窒素の沸点温度以上の転移温度を有す
る、いわゆる高温超電導体が種々発見され、高価な液体
ヘリウムを必要としない超電導導線や超電導デバイスを
実現する試みが関心を呼ぶに至っている。
In addition, various so-called high-temperature superconductors having transition temperatures higher than the boiling point temperature of liquid nitrogen have recently been discovered, and attempts to realize superconducting wires and superconducting devices that do not require expensive liquid helium have attracted interest.

上記高温超電導体としては、Y−Ba−Cu−0系で代
表される酸素欠陥を有する欠陥ペロブスカイト型酸化物
超電導体や、さらに臨界温度が高いB1−8r−Ca−
Cu−0系やTl−Ba−Ca−Cu−0系の酸化物超
電導体が発見されている。これら高温超電導体のうち、
Ba系やTI系の酸化物超電導体は110Kまたは80
にの高い臨界温度を有するばかりでなく、資源的に乏し
い希土類元素が不要であること、水分に対して安定で臨
界温度や臨界電流密度などの特性の劣化を起こさないこ
となどの利点を有しており、Y系などの酸化物超電導体
に比べて実用上有利であると考えられている。
Examples of the high-temperature superconductor include defective perovskite-type oxide superconductors having oxygen defects such as the Y-Ba-Cu-0 system, and B1-8r-Ca-
Cu-0 based and Tl-Ba-Ca-Cu-0 based oxide superconductors have been discovered. Among these high temperature superconductors,
Ba-based and TI-based oxide superconductors are heated at 110K or 80K.
It not only has a high critical temperature, but also has the advantages of not requiring rare earth elements, which are scarce in resources, and being stable against moisture and not causing any deterioration of properties such as critical temperature or critical current density. Therefore, it is considered to be practically advantageous compared to oxide superconductors such as Y-based superconductors.

ところで、これら酸化物超電導体を用いて超電導マグネ
ットなどに用いる導体や超電導電子デバイスなどを構成
しようとする場合、これら酸化物超電導体特有の脆さの
ために単独で線材化などすることが難しいという問題が
ある。そこで、加工性に優れ強度が大きく、さらに比抵
抗の小さい金属からなる被覆材や基板材をともなった複
合材として実用化が進められている。
By the way, when trying to use these oxide superconductors to construct conductors used in superconducting magnets, superconducting electronic devices, etc., it is difficult to make wires by themselves due to the inherent brittleness of these oxide superconductors. There's a problem. Therefore, practical use is progressing as a composite material with coating materials and substrate materials made of metals that have excellent workability, high strength, and low specific resistance.

このような被覆材や基板材は、外力に対する強度を高め
るだけでなく、超電導状態が破れた際の電流経路となり
、常電導状態の酸化物超電導体に大きな電流が流れるこ
とによって生じる焼損などを防止する安定化材としての
機能も有している。
Such coating materials and substrate materials not only increase the strength against external forces, but also serve as a current path when the superconducting state is broken, and prevent burnout that would occur when a large current flows through the oxide superconductor in the normal conducting state. It also functions as a stabilizing material.

現状における上記被覆材や基板材としζは、酸化物超電
導体に対する酸素の供給性や高温で熱処理した際に安定
であるなどの点から銀が多用されている。そして、たと
えば銀管内に酸化物超電導体粉末を充填し、所定の径や
形状まで線引きすることによって長尺な線材やテープ材
を形成することが試みられている。
At present, silver is often used as the coating material or substrate material because of its ability to supply oxygen to the oxide superconductor and its stability when heat treated at high temperatures. For example, attempts have been made to form long wires or tapes by filling a silver tube with oxide superconductor powder and drawing the tube to a predetermined diameter or shape.

(発明が解決しようとする課題) しかしながら、上述したような銀管内に酸化物超電導体
粉末を充填した後に線引きすることによって作製した超
電導線材や超電導テープ材は、鎖管内壁と酸化物超電導
体層とが単に機械的に接触しているだけであるため、こ
れらに曲げなどの外部応力が加わると、特にテープ材に
おいてはクラックやはがれなどが生じやすく、これによ
って臨界電流密度などの超電導特性が劣化するという問
題があった。
(Problem to be Solved by the Invention) However, the superconducting wire or superconducting tape material produced by filling the silver tube with oxide superconductor powder and then drawing the tube, as described above, does not have the inner wall of the chain tube and the oxide superconductor layer. Since these are only in mechanical contact, when external stress such as bending is applied to these, cracks and peeling are likely to occur, especially in tape materials, which deteriorates superconducting properties such as critical current density. There was a problem.

本発明は、このような従来技術の課題に対処するために
なされたもので、酸化物超電導体と被覆材や基板材など
との接合力を高め、機械的強度を向上させた化合物超電
導導体およびその製造方法を提供することを目的として
いる。
The present invention has been made to address the problems of the prior art, and provides a compound superconductor and a compound superconductor with improved mechanical strength by increasing the bonding force between the oxide superconductor and the covering material, substrate material, etc. The purpose of this invention is to provide a manufacturing method for the same.

[発明の構成] (課題を解決するための手段) すなわち本発明の化合物超電導導体は、少なくとも表面
に白金または白金合金層を有する基体と、この基体の前
記白金または白金合金層上に白金と酸化物超電導体の構
成元素との化合物を含む中間反応層を介して形成された
酸化物超電導体層とを有することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the compound superconducting conductor of the present invention comprises a substrate having a platinum or platinum alloy layer on at least the surface, and a platinum and oxidized layer on the platinum or platinum alloy layer of the substrate. It is characterized by having an oxide superconductor layer formed via an intermediate reaction layer containing a compound with a constituent element of the oxide superconductor.

また、本発明の化合物超電導導体の製造方法は、酸化物
超電導体または加熱により酸化物超電導体となる混合物
を加熱溶融した後、この溶融物を少なくとも表面に白金
または白金合金層を有する基体上に塗布し、あるいは前
記酸化物超電導体または加熱により酸化物超電導体とな
る混合物を前記基体の白金または白金合金層上に塗布し
た後、前記酸化物超電導体または加熱により酸化物超電
導体となる混合物を加熱溶融し、この後前記溶融物を結
晶化して酸化物超電導体層を形成することをことを特徴
としている。
Furthermore, the method for producing a compound superconducting conductor of the present invention includes heating and melting an oxide superconductor or a mixture that becomes an oxide superconductor by heating, and then applying the melt onto a substrate having a platinum or platinum alloy layer on at least the surface. or after coating the oxide superconductor or the mixture that becomes an oxide superconductor by heating on the platinum or platinum alloy layer of the substrate, the oxide superconductor or the mixture that becomes an oxide superconductor by heating. It is characterized in that it is heated and melted, and then the melt is crystallized to form an oxide superconductor layer.

酸化物超電導体としては多数のものが知られているが、
本発明においては希土類元素含有のペロブスカイト型構
造を有する酸化物超電導体や、B1−8r−Ca−Cu
−0系酸化物超電導体、Tl−Ba−Ca−Cu−0系
酸化物超電導体などが適用される。
Many oxide superconductors are known, but
In the present invention, an oxide superconductor having a perovskite structure containing rare earth elements, B1-8r-Ca-Cu
-0 series oxide superconductor, Tl-Ba-Ca-Cu-0 series oxide superconductor, etc. are applied.

ここでいう希土類元素を含有しペロブスカイト型構造を
有する酸化物超電導体は、超電導状態を実現できるもの
であればよく、たとえばLnM   Cu  O系(L
nは Y、 La、 Sc、 Nd、 SLl。
The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, for example, LnM CuO system (L
n is Y, La, Sc, Nd, SLl.

237−δ Eu、 Gd5Dy、 llo、 Er、 Ti、Yb
、 Luなどの希土類元素から選ばれた少なくとも 1
種の元素を、MはBa、Sr、 Caから選ばれた少な
くとも 1種の元素を、δは酸素欠陥を表し通常1以下
の数、Cuの一部はTI、V SCr%Mns Pe、
、00% Nl、Znなどで置換可能。)の酸化物など
が例示される。なお希土類元素は広義の定義としSc、
YおよびLa系を含むものとする。
237-δ Eu, Gd5Dy, llo, Er, Ti, Yb
, at least 1 selected from rare earth elements such as Lu.
A seed element, M is at least one element selected from Ba, Sr, and Ca, δ represents an oxygen defect and is usually a number of 1 or less, a part of Cu is TI, V SCr% Mns Pe,
, 00% Can be replaced with Nl, Zn, etc. ) are exemplified. Rare earth elements are broadly defined as Sc,
It shall include Y and La systems.

また、B1−9r−Ca−Cu−0系酸化物超電導体は
、化学式 %式%() B12  (Sr、Ca)  3 Cu3 0x   
      −−−−−−−−−(II )(式中、旧
の一部はpbやsbなどで置換可能。)などで表される
ものであり、T l−Ba−Ca−Cu−0系酸化物超
電導体は、化学式 %式%() などで表されるものである。
In addition, the B1-9r-Ca-Cu-0-based oxide superconductor has the chemical formula % formula % () B12 (Sr, Ca) 3 Cu3 0x
----------(II) (In the formula, part of the former can be replaced with pb, sb, etc.), etc., and is a T l-Ba-Ca-Cu-0 system. Oxide superconductors are represented by the chemical formula % ().

また、本発明に用いられる基体は、少なくとも表面に白
金または白金合金層を有するものであり、具体的な形態
としては、 ■ 白金またはAu−Pt合金、Ag−Pt合金、Pd
−pt金合金Rh−Pt合金などの各種白金合金からな
る基体。
Further, the substrate used in the present invention has a platinum or platinum alloy layer on at least the surface, and specific forms include: (1) platinum or Au-Pt alloy, Ag-Pt alloy, Pd
- A substrate made of various platinum alloys such as a pt gold alloy or a Rh-Pt alloy.

■ 銅やニッケルなどの金属基体の表面に、白金や上記
白金合金などの層を形成したもの。
■ A layer of platinum or the above-mentioned platinum alloys is formed on the surface of a metal substrate such as copper or nickel.

などが挙げられる。上記■の形態における金属基体は酸
化物超電導体を溶融させる温度に対して安定なものを使
用し、その上に蒸着法やスパッタ法などの各種膜形成法
によって白金や白金合金の層を形成して用いる。これら
基体は、テープ状や通常の基板形状など、各種形状のも
のを使用することが可能である。
Examples include. The metal substrate in the form (■) above is one that is stable at the temperature at which the oxide superconductor is melted, and a layer of platinum or platinum alloy is formed on it by various film forming methods such as vapor deposition and sputtering. used. These substrates can be of various shapes, such as a tape shape or a normal substrate shape.

上記白金合金を使用する場合には、白金を90重量%以
上含有するものが好ましく、また白金や白金合金の層を
表面に形成した基体を使用する場合には、白金の含有量
によっても異なるが、おおよそlOμ膳以上であること
が好ましい。
When using the above platinum alloy, it is preferable to use one containing 90% by weight or more of platinum, and when using a substrate with a layer of platinum or platinum alloy formed on the surface, the content varies depending on the platinum content. , is preferably approximately lOμ or more.

本発明の化合物超電導導体は、たとえば以下のようにし
て作製される。
The compound superconducting conductor of the present invention is produced, for example, as follows.

まず、上記酸化物超電導体をその融点以上に加熱して溶
融させ、この溶融物を上記基体の白金または白金合金層
上に塗布する。あるいは、上記酸化物超電導体の粉末を
基体の白金または白金合金層上に塗布し、この後酸化物
超電導体の融点以上に加熱して溶融させる。加熱溶融し
た酸化物超電導体の塗布は、溶融物中に基体を浸漬した
り、加熱ルツボ下部に設けたノズルから溶融物を塗布す
るなどの方法によって行われる。
First, the oxide superconductor is heated above its melting point to melt it, and this melt is applied onto the platinum or platinum alloy layer of the substrate. Alternatively, the powder of the oxide superconductor is applied onto the platinum or platinum alloy layer of the substrate, and then heated to a temperature higher than the melting point of the oxide superconductor to melt it. Application of the heated and melted oxide superconductor is carried out by immersing the substrate in the melt, or by applying the melt from a nozzle provided at the bottom of the heated crucible.

この酸化物超電導体の出発原料としては、その構成元素
の単体または化合物を所定の組成比となるように混合し
、所定の温度で仮焼して予め結晶化したもの、あるいは
上記酸化物超電導体の構成元素の単体や化合物の混合物
が使用される。この混合物を出発原料として使用する際
には、基本的に化学量論比の組成となるように混合した
ものを用いるが、この化学量論比の組成からずれていて
も酸化物超電導体の結晶は生成される。また、蒸気圧の
低い構成成分を予め多めに配合するなどしてもよい。
The starting material for this oxide superconductor may be one that has been pre-crystallized by mixing the constituent elements or compounds at a predetermined composition ratio and calcining the mixture at a predetermined temperature, or the above-mentioned oxide superconductor. Single constituent elements or mixtures of compounds are used. When using this mixture as a starting material, it is basically mixed so that it has a stoichiometric composition, but even if the composition deviates from this stoichiometric ratio, the crystals of the oxide superconductor will still form. is generated. Further, a large amount of components having low vapor pressure may be blended in advance.

白金または白金合金層上で融点以上の状態にある酸化物
超電導体は、白金と反応して緻密で基体に対して強固に
結合した中間反応層を形成する。
The oxide superconductor in a state above its melting point on the platinum or platinum alloy layer reacts with the platinum to form a dense intermediate reaction layer that is firmly bonded to the substrate.

そしてこの後、酸化物超電導体の溶融物を凝固させて結
晶化させることによって酸化物超電導体層を形成する。
Thereafter, the molten oxide superconductor is solidified and crystallized to form an oxide superconductor layer.

この酸化物超電導体の結晶化は、充分に酸素を供給する
ことが可能な雰囲気中で行うことが好ましい。
This crystallization of the oxide superconductor is preferably carried out in an atmosphere that can sufficiently supply oxygen.

なお、基体上に塗布された酸化物超電導体の溶融は、基
体と同様な表面に白金または白金合金層を有する素材で
被覆した後に行ってもよいし、また同様に基体上に塗布
された酸化物超電導体の溶融物の凝固を基体と同様な素
材で被覆した後に行ってもよい。また、酸化物超電導体
を結晶化させた後、酸化物超電導体の種類によっては必
要に応じて酸素雰囲気中で熱処理を施し、酸素の導入を
行う。
The oxide superconductor coated on the substrate may be melted after the same surface as the substrate is coated with a material having a platinum or platinum alloy layer, or the oxide superconductor coated on the substrate may be melted. The solidification of the molten material of the physical superconductor may be carried out after it is coated with the same material as the substrate. Further, after crystallizing the oxide superconductor, depending on the type of the oxide superconductor, heat treatment is performed in an oxygen atmosphere as necessary to introduce oxygen.

(作 用) 本発明においては、酸化物超電導体に対して基体の白金
または白金合金層上において溶融状態を経験させている
。酸化物超電導体の融点以上の温度において、酸化物超
電導体と白金との反応は急激に進み、酸化物超電導体と
基体との間に酸化物超電導体の構成元素と白金との化合
物を含む反応層が形成される。この反応層は、緻密質で
基体に対して強固に結合するとともに、凝固後の酸化物
超電導体層に対しても強固に結合する。
(Function) In the present invention, the oxide superconductor is caused to experience a molten state on the platinum or platinum alloy layer of the base. At temperatures above the melting point of the oxide superconductor, the reaction between the oxide superconductor and platinum proceeds rapidly, resulting in a reaction involving a compound of the constituent elements of the oxide superconductor and platinum between the oxide superconductor and the substrate. A layer is formed. This reaction layer is dense and strongly bonds to the substrate, and also firmly bonds to the oxide superconductor layer after solidification.

このように本発明の化合物超電導導体は、中間反応層に
よって基体と酸化物超電導体層とが強固に接合したもの
となる。したがって、曲げなどの外部応力が加わった際
にも、基体と酸化物超電導体層とのはがれや酸化物超電
導体層のクラックなどの発生が抑制され、これらによる
臨界電流密度などの超電導特性の劣化が防止される。
In this manner, the compound superconducting conductor of the present invention has a substrate and an oxide superconducting layer firmly bonded to each other by the intermediate reaction layer. Therefore, even when external stress such as bending is applied, the occurrence of peeling between the substrate and the oxide superconductor layer, cracking of the oxide superconductor layer, etc. is suppressed, and the resulting deterioration of superconducting properties such as critical current density. is prevented.

(実施例) 次に、この発明の実施例について説明する。(Example) Next, embodiments of the invention will be described.

実施例l B1−8r−Ca−Cu−0系酸化物超電導体の出発原
料としてBi2O3、SrCO3、CaCO3、CuO
の各粉末を、陽イオンのモル比がBi:Sr:Ca:C
u−2:2:2:3となるように所定量秤量し、これを
ボールミルで充分に混合した後、この混合粉末をアルミ
ナルツボに収容し、空気中において800℃×8時間の
条件で仮焼して固相反応させた。次いで、この仮焼物を
再びボールミルで充分粉砕混合して、臨界温度107K
を示すB i −8r−Ca−Cu−0系酸化物超電導
体粉末を得た。この粉末の陽イオン比は、Bi :Sr
:Ca:Cu−2:2:2:3であった。
Example 1 Bi2O3, SrCO3, CaCO3, CuO as starting materials for B1-8r-Ca-Cu-0 based oxide superconductor
The molar ratio of cations is Bi:Sr:Ca:C.
After weighing a predetermined amount so that the ratio of u-2:2:2:3 was sufficiently mixed in a ball mill, this mixed powder was placed in an aluminum crucible and temporarily heated in air at 800°C for 8 hours. It was baked and subjected to solid phase reaction. Next, this calcined product was thoroughly ground and mixed again in a ball mill to reach a critical temperature of 107K.
A B i -8r-Ca-Cu-0 based oxide superconductor powder was obtained. The cation ratio of this powder is Bi:Sr
:Ca:Cu-2:2:2:3.

次に、上記酸化物超電導体粉末を白金ルツボ中に収容し
、約1000℃の温度に加熱して溶融した。
Next, the oxide superconductor powder was placed in a platinum crucible and heated to a temperature of about 1000° C. to melt it.

次いで、この融液中にlOn+mX 50cu+X  
O,51mmの白金からなる基体を1時間程度浸漬した
後、白金基体を引上げて白金基体上にBi系酸化物超電
導体の溶融物を一様に付着させた。
Then, in this melt, 1On+mX 50cu+X
After a 51 mm platinum substrate was immersed for about 1 hour, the platinum substrate was pulled up and a molten Bi-based oxide superconductor was uniformly deposited on the platinum substrate.

この後、白金基体上に付着させたBi系酸化物超電導体
の溶融物を酸素含有雰囲気中において冷却し、溶融物を
凝固させることによって酸化物超電導体層を形成した。
Thereafter, the melt of the Bi-based oxide superconductor deposited on the platinum substrate was cooled in an oxygen-containing atmosphere, and the melt was solidified to form an oxide superconductor layer.

得られた超電導導体は、第1図に示すように、白金基体
1とBI系酸化物超電導体層2との間に、薄く一様な中
間反応層3を有しており、この中間反応層3によってB
i系酸化物超電導体層2は白金基体1に対して強固に接
合していた。この中間反応層3の存在は、断面の拡大観
察によって明らかに確認された。
As shown in FIG. 1, the obtained superconducting conductor has a thin and uniform intermediate reaction layer 3 between the platinum substrate 1 and the BI-based oxide superconductor layer 2. B by 3
The i-based oxide superconductor layer 2 was firmly bonded to the platinum substrate 1. The existence of this intermediate reaction layer 3 was clearly confirmed by enlarged observation of the cross section.

また、得られた超電導導体の臨界電流密度を測定したと
ころ、外部応力を印加しない状態では、77K 、 O
Tにおいてl100A/cぜであり、銀シースを用いた
通常の反応法による超電導導体の100 OA / c
dより若干改善される程度であったが、曲げ応力を加え
た状態における臨界電流密度の値は大幅に改善された。
In addition, when the critical current density of the obtained superconducting conductor was measured, it was found to be 77K, O
100 A/c at T, and 100 OA/c of a superconducting conductor by a conventional reaction method using a silver sheath.
Although it was only slightly improved compared to d, the critical current density value under bending stress was significantly improved.

その結果を第2図に示す。第2図は、この実施例の超電
導導体と従来の銀シースによる超電導導体とを用い、そ
れぞれに曲げ応力を加えつつ臨界電流密度の値をdpj
定した結果を曲げ歪みを横軸にとって示すグラフである
The results are shown in FIG. Figure 2 shows the values of critical current densities dpj and dpj using the superconducting conductor of this example and a conventional superconducting conductor with a silver sheath, while applying bending stress to each.
2 is a graph showing the determined results with bending strain plotted on the horizontal axis.

同図から明らかなように、この実施例の超電導導体は、
曲げ歪みの増加に対して臨界電流密度の低下が僅かであ
るのに対し、従来の銀シースによる超電導導体は曲げ歪
みの増加によって臨界電流密度が急激に低下することが
分る。
As is clear from the figure, the superconducting conductor of this example is
It can be seen that the critical current density decreases only slightly with an increase in bending strain, whereas in the conventional superconducting conductor with a silver sheath, the critical current density decreases rapidly with an increase in bending strain.

実施例2 上記実施例1における白金基体に代えて、第2図に示す
ように、銅の基板材11上に白金層12をスパッタ法に
よって形成した複合基体13を用いる以外は、実施例1
と同一条件でBi系酸化物超電導体層14を形成した。
Example 2 The procedure of Example 1 is repeated, except that a composite substrate 13 in which a platinum layer 12 is formed by sputtering on a copper substrate material 11 is used, as shown in FIG. 2, in place of the platinum substrate in Example 1.
A Bi-based oxide superconductor layer 14 was formed under the same conditions as described above.

この実施例の超電導導体においても、白金層12とB1
系酸化物超電導体層14との間に中間反応層15が形成
されていることを確認した。なお、白金層12の厚さは
5μmとした。
Also in the superconducting conductor of this example, the platinum layer 12 and B1
It was confirmed that an intermediate reaction layer 15 was formed between the oxide superconductor layer 14 and the oxide superconductor layer 14 . Note that the thickness of the platinum layer 12 was 5 μm.

この実施例の超電導導体においても、中間反応層15に
よって複合基体13とBi系酸化物超電導体層14とが
強固に接合していた。また、臨界電流密度の外部応力に
対する変化も、実施例1と同様に曲げ歪みの増加に対し
て臨界電流密度値の低下が僅かなものであった。
In the superconducting conductor of this example as well, the composite substrate 13 and the Bi-based oxide superconducting layer 14 were firmly joined by the intermediate reaction layer 15. Further, regarding the change in critical current density with respect to external stress, as in Example 1, the critical current density value decreased only slightly with respect to an increase in bending strain.

実施例3 実施例1で使用した白金基体上に実施例1で作製したB
i系酸化物超電導体粉末を一様に塗布し、白金基体の下
方からその融点以上となるように加熱して酸化物超電導
体粉末を溶融した。この後、Bi系酸化物超電導体の溶
融物を酸素含有雰囲気中において凝固させて酸化物超電
導体層を形成した。
Example 3 B produced in Example 1 on the platinum substrate used in Example 1
The i-type oxide superconductor powder was uniformly applied and heated from below the platinum substrate to a temperature above its melting point to melt the oxide superconductor powder. Thereafter, the melt of the Bi-based oxide superconductor was solidified in an oxygen-containing atmosphere to form an oxide superconductor layer.

このようにして得た超電導導体も、実施例1と同様に曲
げ応力に対する臨界電流密度の低下が大幅に改善されて
いた。
The superconducting conductor obtained in this way also showed a significant improvement in the reduction in critical current density with respect to bending stress, as in Example 1.

実施例4 次に、長尺状の超電導導体の製造について説明する。第
4図は長尺なテープ状の基体に対して酸化物超電導体層
を連続的に形成する装置の−購成例を示す図である。同
図において、21は高温浴であり、この高温浴21内で
酸化物超電導体22を溶融しその状態で保持する。そし
て、白金や白金合金からなるテープ状基体、あるいは表
面に白金や白金合金層を形成したテープ状基体23を、
ガイドローラ24によって高温浴21内の溶融状態の酸
化物超電導体22中を所定の速度で通過させることによ
って、テープ状基体23の表面にBi系酸化物超電導体
の溶融物層25が形成される。
Example 4 Next, manufacturing of a long superconducting conductor will be explained. FIG. 4 is a diagram showing a purchasing example of an apparatus for continuously forming an oxide superconductor layer on a long tape-shaped substrate. In the figure, 21 is a high temperature bath, and the oxide superconductor 22 is melted in this high temperature bath 21 and held in that state. Then, a tape-shaped substrate 23 made of platinum or a platinum alloy, or a tape-shaped substrate 23 with a platinum or platinum alloy layer formed on the surface, is
A molten layer 25 of the Bi-based oxide superconductor is formed on the surface of the tape-shaped substrate 23 by passing it through the molten oxide superconductor 22 in the high-temperature bath 21 at a predetermined speed using the guide roller 24. .

この後、別系酸化物超電導体の溶融物層25を連続的に
凝固させることによって長尺な超電導導体が形成され、
この長尺な超電導導体も上述した各実施例と同様にテー
プ状基体と酸化物超電導体層とが中間反応層によって強
固に接合したものとなり、各種超電導導体としてより安
定なものが得られる。
After that, a long superconducting conductor is formed by continuously solidifying the melt layer 25 of the other type of oxide superconductor,
This long superconducting conductor also has a tape-like substrate and an oxide superconducting layer firmly joined by an intermediate reaction layer, as in each of the above-mentioned examples, and more stable superconducting conductors of various types can be obtained.

なお、以上の各実施例においてはBi系酸化物超電導体
を例として説明したが、V系で代表される欠陥ペロブス
カイト型の酸化物超電導体やTl系の酸化物超電導体に
おいても同様な効果が期待できる。
In each of the above embodiments, a Bi-based oxide superconductor was explained as an example, but similar effects can be obtained in a defective perovskite-type oxide superconductor represented by a V-based oxide superconductor or a Tl-based oxide superconductor. You can expect it.

[発明の効果] 以上説明したように本発明によれば、基体と酸化物超電
導体層とが中間反応層によって強固に接合した化合物超
電導導体が得られる。よって外部応力が加わった際の臨
界電流密度などの超電導特性の低下が抑制でき、より安
定な化合物超電導導体を提供することが可能となる。
[Effects of the Invention] As explained above, according to the present invention, a compound superconducting conductor in which a substrate and an oxide superconductor layer are firmly joined by an intermediate reaction layer can be obtained. Therefore, deterioration of superconducting properties such as critical current density when external stress is applied can be suppressed, making it possible to provide a more stable compound superconducting conductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の化合物超電導導体の構成を
示す断面図、m2図は本発明の一実施例の化合物超電導
導体と従来の銀シースによる化合物超電導導体の臨界電
流密度の曲げ歪み依存性を示すグラフ、第3図は本発明
の他の実施例の化合物超電導導体の構成を示す断面図、
第4図は長尺状の化合物超電導導体を連続的に製造する
装置の−構成例を示す図である。 1・・・・・・白金基体、2.14・・・・・・酸化物
超電導体層、3.15・・・・・・中間反応層、11・
・・・・・銅からなる基板材、12・・・・・・白金層
、13・・・・・・複合基体、23・・・・・・テープ
状基体、25・・・・・・酸化物超電導体の溶融物層。 出願人      株式会社 東芝
Figure 1 is a sectional view showing the structure of a compound superconducting conductor according to an embodiment of the present invention, and Figure m2 is a bending strain of critical current density of a compound superconducting conductor according to an embodiment of the present invention and a conventional compound superconducting conductor with a silver sheath. A graph showing the dependence; FIG. 3 is a cross-sectional view showing the structure of a compound superconducting conductor according to another embodiment of the present invention;
FIG. 4 is a diagram showing an example of the configuration of an apparatus for continuously manufacturing elongated compound superconducting conductors. 1... Platinum substrate, 2.14... Oxide superconductor layer, 3.15... Intermediate reaction layer, 11.
... Substrate material made of copper, 12 ... Platinum layer, 13 ... Composite substrate, 23 ... Tape-shaped substrate, 25 ... Oxidation Molten layer of physical superconductor. Applicant: Toshiba Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも表面に白金または白金合金層を有する
基体と、この基体の前記白金または白金合金層上に白金
と酸化物超電導体の構成元素との化合物を含む中間反応
層を介して形成された酸化物超電導体層とを有すること
を特徴とする化合物超電導導体。
(1) A substrate having a platinum or platinum alloy layer on at least the surface, and an intermediate reaction layer containing a compound of platinum and a constituent element of an oxide superconductor formed on the platinum or platinum alloy layer of the substrate. A compound superconducting conductor comprising an oxide superconducting layer.
(2)酸化物超電導体または加熱により酸化物超電導体
となる混合物を加熱溶融した後、この溶融物を少なくと
も表面に白金または白金合金層を有する基体上に塗布し
、あるいは前記酸化物超電導体または加熱により酸化物
超電導体となる混合物を前記基体の白金または白金合金
層上に塗布した後、前記酸化物超電導体または加熱によ
り酸化物超電導体となる混合物を加熱溶融し、この後前
記溶融物を結晶化して酸化物超電導体層を形成すること
を特徴とする化合物超電導導体の製造方法。
(2) After heating and melting an oxide superconductor or a mixture that becomes an oxide superconductor by heating, this melt is applied onto a substrate having a platinum or platinum alloy layer on at least the surface, or the oxide superconductor or After applying a mixture that becomes an oxide superconductor by heating onto the platinum or platinum alloy layer of the substrate, the oxide superconductor or the mixture that becomes an oxide superconductor by heating is heated and melted, and then the melt is melted. A method for producing a compound superconductor, which comprises crystallizing to form an oxide superconductor layer.
JP1021464A 1989-01-31 1989-01-31 Compound superconductive material and manufacture thereof Pending JPH02201819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021464A JPH02201819A (en) 1989-01-31 1989-01-31 Compound superconductive material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021464A JPH02201819A (en) 1989-01-31 1989-01-31 Compound superconductive material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02201819A true JPH02201819A (en) 1990-08-10

Family

ID=12055704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021464A Pending JPH02201819A (en) 1989-01-31 1989-01-31 Compound superconductive material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02201819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465341A (en) * 1990-07-03 1992-03-02 Ngk Insulators Ltd Noble metal-bismuth-based superconducting laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465341A (en) * 1990-07-03 1992-03-02 Ngk Insulators Ltd Noble metal-bismuth-based superconducting laminate

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
EP0720244B1 (en) Superconducting oxide-metal composites
US4826808A (en) Preparation of superconducting oxides and oxide-metal composites
US5096878A (en) Method for production of bi-containing superconducting ceramics laminates
US5189009A (en) Preparation of superconducting oxides and oxide-metal composites
US5273959A (en) Alloy for HTSC composite conductors made of Au-Ag-Pd
JPH02201819A (en) Compound superconductive material and manufacture thereof
KR910009198B1 (en) Method of manufacturing superconductive products
JP2649242B2 (en) Superconducting ceramic laminate and its manufacturing method
JP7277721B2 (en) Oxide superconducting bulk conductor and its manufacturing method
JPH08315655A (en) Superconducting wire and manufacture thereof
JP2532914B2 (en) Superconducting ceramic laminate and its manufacturing method
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPS63237314A (en) Manufacture of superconductive compound material
JPH06283056A (en) Oxide superconductive wire
US5798034A (en) Process for the preparation of a superconductor material of the mixed oxide type
JPH029101B2 (en)
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPS63285813A (en) Manufacture of superconductive material with metallized surface
JP2000150972A (en) Manufacture of oxide superconducting current lead
CA2083566A1 (en) Alloy for htsc composite conductors
JPH02217352A (en) Production of oxide superconductor
JPH03285805A (en) Production of oxide superconductor