JPH0219712A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPH0219712A
JPH0219712A JP16979688A JP16979688A JPH0219712A JP H0219712 A JPH0219712 A JP H0219712A JP 16979688 A JP16979688 A JP 16979688A JP 16979688 A JP16979688 A JP 16979688A JP H0219712 A JPH0219712 A JP H0219712A
Authority
JP
Japan
Prior art keywords
frequency
resonance point
section
displacement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16979688A
Other languages
Japanese (ja)
Inventor
Kenichi Takahashi
健一 高橋
Shinichi Sakaguchi
真一 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Seisakusho KK
Original Assignee
Nagano Keiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Seisakusho KK filed Critical Nagano Keiki Seisakusho KK
Priority to JP16979688A priority Critical patent/JPH0219712A/en
Publication of JPH0219712A publication Critical patent/JPH0219712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To remarkably use the title instrument for various purposes by latching a resonance point of an AC signal whose frequency to be supplied is varied, to a primary coil which is brought to inductive coupling to a coil of a no-power source resonance circuit part. CONSTITUTION:First of all, when a displacement quantity is generated in a part to be measured, a resonance frequency of a no-power source resonance circuit part 2 is varied in accordance with its displacement quantity. Also, a resonance point of an AC signal Sa supplied to a primary coil 6 placed in an inductive coupling state is varied. On the other hand, a resonance point detecting part 8 detects this resonance point, and also, based on this timing, a latching part 9 fixes a frequency of a measuring signal generating part 7, that is, a frequency of the AC signal Sa. Therefore, by measuring the frequency in the resonance point in a frequency measuring part 10, and also, calculating the displacement quantity corresponding to the frequency of the resonance point in an arithmetic part 11, the object displacement quantity is obtained. In this regard, in such a case, correlation of the frequency in the resonance point to the displacement quantity is converted to data in advance in the arithmetic part 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定部位の変位量を非接触状態で測定する脳
内圧計等に用いて好適な変位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement measuring device suitable for use in an intracerebral manometer or the like that measures the amount of displacement of a region to be measured in a non-contact manner.

〔背景技術及び課題〕[Background technology and issues]

物体の変位量を測定する変位測定装置としては、従来よ
り差動変圧器、ポテンショメータ等で代表される各種装
置が知られている。
2. Description of the Related Art As displacement measuring devices for measuring the amount of displacement of an object, various devices typified by differential transformers, potentiometers, etc. have been known.

ところで、変位量を非接触状態で測定する場合、変位量
を光学的手段、静電的手段、或は電磁的手段等により当
該非接触状態を介して計測する必要がある。
By the way, when measuring the amount of displacement in a non-contact state, it is necessary to measure the amount of displacement in the non-contact state by optical means, electrostatic means, electromagnetic means, or the like.

しかし、いずれの手段を用いても変位量を直接的に計測
するため、被測定部位に対する測定部位を位置決めして
固定する必要がある等、使い勝手に劣り、しかも高い測
定精度を得にくい問題があった。
However, no matter which method is used, since the amount of displacement is directly measured, there are problems such as the need to position and fix the measurement part with respect to the measurement part, which makes it less convenient to use and makes it difficult to obtain high measurement accuracy. Ta.

また、光学的手段では遮光媒体の存在により測定が不能
になるとともに、静電的手段では媒体間隔が大きいと測
定が困難になる等、用途が著しく制限される問題があっ
た。
Further, with optical means, measurement is impossible due to the presence of a light-shielding medium, and with electrostatic means, measurement becomes difficult when the distance between the media is large, which significantly limits the application.

本発明はこのような背景技術に存在する諸問題を解決し
た変位測定装置lの提供を目的とするものである。
The object of the present invention is to provide a displacement measuring device 1 that solves the problems existing in the background art.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る変位測定装置1は、まず、被測定部位に設
置する無電源共振回路部2を備える。同回路部2はコン
デンサ3及び二次コイル4を備え、被測定部位の変位量
に対応してキャパシタンス又はインダクタンスの少なく
とも一方が変化する。
The displacement measuring device 1 according to the present invention first includes a power-free resonant circuit section 2 installed at a site to be measured. The circuit section 2 includes a capacitor 3 and a secondary coil 4, and at least one of capacitance and inductance changes depending on the amount of displacement of the part to be measured.

また、変位測定回路部5を備える。同回路部5は二次コ
イル4に誘導結合可能な一次コイル6と、この一次コイ
ル6に対し周波数が変化する交流信号Saを供給する測
定信号発生部7と、この交流信号Saの共振点Pを検出
する共振点検出部8と、共振点Pの検出に基づき交流信
号Saの周波数を固定するラッチ部9と、共振点Pの周
波数を測定する周波数測定部IOと、共振点Pの周波数
に対応する変位量を算出する演算部11を備えて構成す
る。
It also includes a displacement measurement circuit section 5. The circuit section 5 includes a primary coil 6 that can be inductively coupled to the secondary coil 4, a measurement signal generating section 7 that supplies an alternating current signal Sa whose frequency changes to the primary coil 6, and a resonance point P of the alternating current signal Sa. a latch unit 9 that fixes the frequency of the AC signal Sa based on the detection of the resonance point P; a frequency measurement unit IO that measures the frequency of the resonance point P; It is configured to include an arithmetic unit 11 that calculates a corresponding displacement amount.

〔作  用〕[For production]

次に、本発明に係る変位測定装置lの作用について説明
する。
Next, the operation of the displacement measuring device 1 according to the present invention will be explained.

まず、被測定部位に変位量が生ずると、その変位量に対
応して無電源共振回路部2の共振周波数が変化し、さら
に、誘導結合状態に置かれる一次コイル6に供給される
交流信号Saの共振点Pが変化する。
First, when an amount of displacement occurs in the part to be measured, the resonant frequency of the non-power resonant circuit section 2 changes corresponding to the amount of displacement, and furthermore, the AC signal Sa supplied to the primary coil 6 placed in an inductively coupled state The resonance point P of changes.

一方、共振点検出部8は当該共振点Pを検出するととも
に、このタイミングに基づいてラッチ部9は測定信号発
生部7の周波数、即ち、交流信号Saの周波数を固定す
る。よって、周波数測定部10において当該共振点Pに
おける周波数を測定し、さらに演算部11において、共
振点Pの周波数に対応する変位量を算出すれば目的の変
位量を得る。なお、この場合、演算部11においては変
位量に対する共振点における周波数の相関関係が予めデ
ータ化されている。
On the other hand, the resonance point detection section 8 detects the resonance point P, and based on this timing, the latch section 9 fixes the frequency of the measurement signal generation section 7, that is, the frequency of the alternating current signal Sa. Therefore, by measuring the frequency at the resonance point P in the frequency measuring section 10 and further calculating the displacement amount corresponding to the frequency of the resonance point P in the calculation section 11, the target displacement amount can be obtained. Note that in this case, the correlation between the frequency at the resonance point and the amount of displacement is previously converted into data in the calculation unit 11.

〔実 施 例〕〔Example〕

次に、本発明に係る好適な実施例を図面に基づき詳細に
説明する。
Next, preferred embodiments of the present invention will be described in detail based on the drawings.

まず、本発明に係る変位測定装置lの構成について、第
1図及び第2図を参照して説明する。
First, the configuration of a displacement measuring device 1 according to the present invention will be explained with reference to FIGS. 1 and 2.

変位測定装置lはそれぞれ別体に構成する無電源共振回
路部2と変位測定回路部5からなる。
The displacement measuring device 1 consists of a non-power-supply resonance circuit section 2 and a displacement measuring circuit section 5, which are constructed separately.

無電源共振回路部2は、コンデンサ3と二次コイル4を
ループ接続して構成する。また、コンデンサ3はキャパ
シタンスが被測定部位の変位量に対応して変化するよう
に構成する。この場合、例えば誘電体位置と電極板位置
が被測定部位の変位量に追従して相対変位可能に構成す
ればよい。なお、コンデンサ3のキャパシタンスを変化
させる代わりに、二次コイル4のインダクタンスを変化
させてもよい。この場合、例えば二次コイル4に用いる
コア位置を被測定部位の変位量に追従して変位可能に構
成すればよい。
The unpowered resonant circuit section 2 is configured by connecting a capacitor 3 and a secondary coil 4 in a loop. Further, the capacitor 3 is configured such that its capacitance changes in accordance with the amount of displacement of the portion to be measured. In this case, for example, the dielectric position and the electrode plate position may be configured to be relatively displaceable following the amount of displacement of the part to be measured. Note that instead of changing the capacitance of the capacitor 3, the inductance of the secondary coil 4 may be changed. In this case, for example, the position of the core used in the secondary coil 4 may be configured to be able to be displaced in accordance with the amount of displacement of the part to be measured.

一方、変位測定回路部5は、二次コイル4に対し非接触
状態で誘導結合可能な一次コイル6を備える。また、一
次コイル6には周波数が掃引する交流信号Saを供給す
る測定信号発生部7を接続する。測定信号発生部7はク
ロックパルスを発振する発振器20と、このクロックパ
ルスをアップダウン方向へ交互に計数し、計数値をディ
ジタル信号で出力するカウンタ21と、このディジタル
信号をアナログ信号に変換するD/A変換器22と、同
アナログ信号の振幅に対応して周波数が変化する交流信
号Saを出力する掃引周波数発生器23を備え、この交
流信号Saが一次コイル6に供給される。
On the other hand, the displacement measurement circuit section 5 includes a primary coil 6 that can be inductively coupled to the secondary coil 4 in a non-contact manner. Further, a measurement signal generator 7 is connected to the primary coil 6, which supplies an alternating current signal Sa whose frequency is swept. The measurement signal generator 7 includes an oscillator 20 that generates clock pulses, a counter 21 that alternately counts the clock pulses in up and down directions and outputs the counted value as a digital signal, and a D converter that converts this digital signal into an analog signal. /A converter 22 and a sweep frequency generator 23 that outputs an alternating current signal Sa whose frequency changes in accordance with the amplitude of the analog signal, and this alternating current signal Sa is supplied to the primary coil 6.

また、一次コイル6には交流信号Saの共振点Pを検出
する共振点検出部8を接続する。共振点検出部8の一例
を第2図に示す。同検出部8は、一次コイル6に供給さ
れる°交流信号Saを検波する検波回路25、同回路2
5の出力信号から高周波信号を除去するフィルタ26、
フィルタ26の出力信号(反転信号)のピーク値をホー
ルドするピークホールド回路27、ビ・−り値と実測値
の偏差値を得るアンプ28、偏差値と基準値を比較し、
偏差値が基準値を超えたら出力状態が反転するコンパレ
ータ29を備えてなる。また、カウンタ2IとD/A変
換器22間には前記共振点検出部8における出力状態の
反転、即ち、共振点Pの検出タイミングと同時にカウン
タ21の計数値を固定するラッチ部9を接続する。
Further, a resonance point detection section 8 is connected to the primary coil 6 to detect a resonance point P of the alternating current signal Sa. An example of the resonance point detection section 8 is shown in FIG. The detection unit 8 includes a detection circuit 25 that detects the AC signal Sa supplied to the primary coil 6;
a filter 26 for removing high frequency signals from the output signal of 5;
A peak hold circuit 27 that holds the peak value of the output signal (inverted signal) of the filter 26, an amplifier 28 that obtains the deviation value between the beam value and the actual measurement value, and a comparison between the deviation value and the reference value,
It is equipped with a comparator 29 whose output state is reversed when the deviation value exceeds the reference value. Furthermore, a latch unit 9 is connected between the counter 2I and the D/A converter 22 to fix the count value of the counter 21 at the same time as the reversal of the output state in the resonance point detection unit 8, that is, the detection timing of the resonance point P. .

冬らにまた2、一次コイル6には1、これに供給される
交流信号Saの周波数を測定する周波数測定部lOを接
続する。また、同測定部lOには共振点p (J:、周
波数に基づいて変位量を算出する演算部11を接続する
。なお、演算部11は変位量対共振点における周波数の
相関関係に係わる関数データ或はデータテーブル等が予
め設定されており、マイクロフンピユータ機能を備える
。また、演算部11の出力側には算出された変位量をア
ナログ信号に変換するD/A変換器31、同変換器31
の出力信号を供給する所定の制御系或は表示器等の出力
部32を接続する。
2. Also connected to the primary coil 6 is a frequency measuring section 10 that measures the frequency of the alternating current signal Sa supplied thereto. In addition, a calculation unit 11 that calculates the amount of displacement based on the resonance point p (J:, frequency) is connected to the measurement unit 1O. Data or data tables, etc. are set in advance, and a microcomputer function is provided.In addition, on the output side of the calculation unit 11, there is a D/A converter 31 for converting the calculated displacement amount into an analog signal; Vessel 31
An output section 32 such as a predetermined control system or display device that supplies an output signal is connected.

次に、本発明に係る変位測定装置lの機能に・ついて、
第1図及び第3図を参照して説明する。
Next, regarding the functions of the displacement measuring device l according to the present invention,
This will be explained with reference to FIGS. 1 and 3.

まず、発振器20はクロックパルスを発振し、同信号は
カウンタ21へ供給される。カウンタ21はこのクロッ
クパルスを計数し、12ビツトのディジタル信号として
出力する。また、カウンタ21はセット状態から正方向
へ計数するとともに、カウントアツプにより負方向へ計
数し、セ・)(・状態により再び正方向へ計数する機能
を備え、例えば周期が20 m sとなるカウントアツ
プダウンを交互に繰返す。よって、カウンタ21のディ
ジクル信号をD/A変換器22を介してアナログ信号に
変換すれば第3図(a)に示す三角波信号Seを得る。
First, the oscillator 20 generates a clock pulse, and the same signal is supplied to the counter 21 . The counter 21 counts these clock pulses and outputs them as a 12-bit digital signal. In addition, the counter 21 has a function of counting in the positive direction from the set state, counting in the negative direction by counting up, and counting in the positive direction again depending on the state. Up-down is repeated alternately.Therefore, if the digital signal of the counter 21 is converted into an analog signal via the D/A converter 22, a triangular wave signal Se shown in FIG. 3(a) is obtained.

また、三角波信号Scは掃引周波数発生器23に供給さ
れ、同発生器23は三角波信号SCの振幅値に比例して
周波数が変化する第3図(b)の交流信号Saを出力す
る。なお、二の交流信号Saの周波数範囲は例えば33
0kHz〜360 kHzを選定する。そして、交流信
号Saは一次コイル6に供給される。この際、掃引周波
数発生器23から出力する交流イ=号Saの振幅は一定
であるが、一次コ・イル6を接続することにより、同図
(’、 b )のように共振点【>がデイツプする波形
となる。
Further, the triangular wave signal Sc is supplied to a sweep frequency generator 23, which outputs an AC signal Sa shown in FIG. 3(b) whose frequency changes in proportion to the amplitude value of the triangular wave signal SC. Note that the frequency range of the second AC signal Sa is, for example, 33
Select 0kHz to 360kHz. The alternating current signal Sa is then supplied to the primary coil 6. At this time, the amplitude of the AC signal Sa output from the sweep frequency generator 23 is constant, but by connecting the primary coil 6, the resonance point [> is changed as shown in the figure (', b). The waveform becomes a dip.

一方、交流信号Saの共振点P(最大デイツプ点)は共
振点検出部8によって検出される。共振点Pの検出によ
り、同検出部8の出力状態が反転り15.二のタイ°;
ング(こよって、ラッチ部9はカウンタ21の計数値を
固定する。この結果、固定された一定周波数L口共振周
波数)の交流信号Saが一次フイル6に供給維持される
ことになる。
On the other hand, the resonance point P (maximum dip point) of the AC signal Sa is detected by the resonance point detection section 8. Upon detection of the resonance point P, the output state of the detection section 8 is reversed15. Second tie °;
(Thus, the latch unit 9 fixes the count value of the counter 21. As a result, the alternating current signal Sa of the fixed constant frequency L-port resonance frequency is maintained to be supplied to the primary film 6.

よって、周波数測定部IOにより、一次コイル〔iに供
給される交流信号Saの周波数を測定すれば、共振点P
の周波数を得ることができる。なお、周波数の測定は、
例えば、演算部IIのクロックを交流信号Saの所定周
期間で計数し、算出すればよい。モして、演算部11で
は共振点Pの周波数から対応Cる変位量を算出する。二
の変位量は出力部32に供給され、表示器等によって表
示することができる。
Therefore, if the frequency measuring unit IO measures the frequency of the AC signal Sa supplied to the primary coil [i, the resonance point P
frequency can be obtained. In addition, the frequency measurement is
For example, the calculation may be made by counting the clock of the calculation unit II in a predetermined cycle period of the AC signal Sa. Then, the calculation unit 11 calculates the corresponding displacement amount C from the frequency of the resonance point P. The second displacement amount is supplied to the output section 32 and can be displayed on a display or the like.

このように共振点Pの周波数を直接測定するため、測定
信号発生部7側のドリフト等には影響、されず、正確な
変位量を得ることができる。
Since the frequency of the resonance point P is directly measured in this manner, it is not affected by drift on the measurement signal generating section 7 side, and an accurate displacement amount can be obtained.

次に、用途例について第4図を参照して説明する。Next, a usage example will be explained with reference to FIG. 4.

本発明に係る変位測定装置1は、第4図に示すような脳
内圧計50に用いて好適である1、51は脳内圧センサ
部ごあり、例えば頭蓋骨と皮膚間、あるいは例示のよう
に腹部52等に埋設する1、脳内圧センサ部51には二
次コイル4aとニラ゛ノデンサ3aからなる無電源共振
回路部2を内蔵し、また、一次コイル6ばプローブ57
に、変位測定回路部5は測定装置本体53にそれぞれ内
蔵して変位測定装置lを構成する。脳内圧センサ部51
の内部空間にはカテーテル54を介して脳内圧を作用さ
せ、この脳内圧の大きさに対応1.て可動コア55が変
位するようにベローズ56によって支持する。そして、
可動コア55は前記コイル4aの中空部へ挿入してコイ
ル4aのインダクタンスが変化するように構成する。よ
って、脳内圧の変化に対応して可動コア55が変位し、
この変倦量を変位測定装置lにより測定できる。
The displacement measuring device 1 according to the present invention is suitable for use in an intracerebral pressure sensor 50 as shown in FIG. 1. The intracerebral pressure sensor section 51 has a built-in unpowered resonant circuit section 2 consisting of a secondary coil 4a and a nihon sensor 3a, and a primary coil 6 and a probe 57 are embedded in the intracerebral pressure sensor section 51.
In addition, the displacement measurement circuit section 5 is built into the measurement device main body 53 to constitute a displacement measurement device 1. Intracerebral pressure sensor section 51
Intracerebral pressure is applied to the internal space of the brain via the catheter 54, and the amount of pressure corresponding to the magnitude of this intracerebral pressure is 1. The movable core 55 is supported by a bellows 56 so as to be displaced. and,
The movable core 55 is inserted into the hollow portion of the coil 4a to change the inductance of the coil 4a. Therefore, the movable core 55 is displaced in response to changes in intracerebral pressure,
This amount of displacement can be measured by a displacement measuring device 1.

以上、実施例について詳細に説明したが、本発明はこの
ような実施例に限定されるものではない。
Although the embodiments have been described in detail above, the present invention is not limited to these embodiments.

例えば、非接触状態で測定する任意物体の変位量に対し
て適用できる。また、回路構成は同一機能を発揮する任
意の構成を採用できる。その他、細部において、本発明
の要旨を逸脱しない範囲で任意に変更できる。
For example, it can be applied to the amount of displacement of any object measured in a non-contact state. Furthermore, any circuit configuration that performs the same function can be adopted. Other details may be changed as desired without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る変位測定装置lは無電源共振
回路部に対し、同回路部のコイルに誘導結合する一次コ
イルを備えるとともに、この一次コイルに供給される周
波数が変化する交流信号の共振点をラッチし、これに基
づき直接共振点の周波数を測定して変位量を算出するよ
うにしたため、次のような効果を得る。
As described above, the displacement measuring device l according to the present invention is equipped with a primary coil inductively coupled to the coil of the unpowered resonant circuit section, and an AC signal whose frequency changes is supplied to the primary coil. Since the resonance point is latched and the displacement amount is calculated by directly measuring the frequency of the resonance point based on this, the following effects are obtained.

■ 被測定部位に対する測定部位の位置決めが不要のた
め、使い勝手に優れ、しかも用途を大幅に拡大できる。
■ Since there is no need to position the measuring part relative to the measuring part, it is easy to use and can be used in a wide range of applications.

■ 位置決め等によって測定精度が左右されないととも
に、変位量の伝達が周波数を媒体とした間接的な物理量
のため、高精度の測定が可能となる。
■ Measurement accuracy is not affected by positioning, etc., and the displacement is an indirect physical quantity using frequency as a medium, making highly accurate measurement possible.

■ 共振点の周波数をラッチし、かつ直接的に周波数を
測定するため、回路のドリフト等による影響を受けず、
確実で正確な測定が可能となる。
■ Since the frequency at the resonance point is latched and the frequency is directly measured, it is not affected by circuit drift, etc.
Reliable and accurate measurements are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1開局本発明に係る変位測定装置のブロック回路図、 第2図:同変位測定装置における共振点検出部の具体的
回路図、 第3図:同変位測定装置の主要部における信号のタイム
チャート、 第4図:同変位測定装置の用途例を示す脳内圧計の構成
図。 尚図面中、 l:変位測定装置  2:無電源共振回路部3:コンデ
ンサ   4:二次コイル 5:変位測定回路部 7:測定信号発生部 9:ラッチ部 11:演算部 P:共振点 6:一次コイル 8:共振点検出部 IO二局周波数測定 部a:交流信号 第1図 特許出願人 株式会社長野計器製作所 代理人弁理士 下   1)    茂第 2 図 第 3 図 第 図 50’
First opening: Block circuit diagram of the displacement measuring device according to the present invention, Figure 2: Specific circuit diagram of the resonance point detection section in the displacement measuring device, Figure 3: Time chart of signals in the main parts of the displacement measuring device. , Figure 4: A configuration diagram of an intracerebral manometer showing an example of the use of the displacement measuring device. In the drawing, l: displacement measurement device 2: powerless resonance circuit section 3: capacitor 4: secondary coil 5: displacement measurement circuit section 7: measurement signal generation section 9: latch section 11: calculation section P: resonance point 6: Primary coil 8: Resonance point detection section IO two-station frequency measurement section a: AC signal Fig. 1 Patent applicant Nagano Keiki Seisakusho Co., Ltd. Patent attorney 2 1) Shigeru 2 Fig. 3 Fig. 50'

Claims (1)

【特許請求の範囲】 〔1〕次の各回路部を具備してなる変位測定装置。 (a)コンデンサおよび二次コイルを備え、被測定部位
の変位量に対応してキャパシタンスまたはインダクタン
スの少なくとも一方が変化する無電源共振回路部、 (b)前記二次コイルに誘導結合可能な一次コイルと、
前記一次コイルに対し周波数が変化する交流信号を供給
する測定信号発生部と、前記交流信号の共振点を検出す
る共振点検出部と、共振点の検出に基づき交流信号の周
波数を固定するラッチ部と、共振点の周波数を測定する
周波数測定部と、共振点の周波数に対応する変位量を算
出する演算部を備えてなる変位測定回路部、 〔2〕測定信号発生部はクロック信号を計数するカウン
タを備え、このカウンタの計数値に対応して交流信号の
周波数を変化させることを特徴とする請求項1記載の変
位測定装置。 〔3〕無電源共振回路部は人体内に埋設する脳内圧セン
サ部に内蔵することを特徴とする請求項1記載の変位測
定装置。
[Scope of Claims] [1] A displacement measuring device comprising the following circuit sections. (a) an unpowered resonant circuit section that includes a capacitor and a secondary coil, and in which at least one of capacitance and inductance changes in response to the amount of displacement of the part to be measured; (b) a primary coil that can be inductively coupled to the secondary coil; and,
a measurement signal generation section that supplies an alternating current signal whose frequency changes to the primary coil; a resonance point detection section that detects a resonance point of the alternating current signal; and a latch section that fixes the frequency of the alternating current signal based on the detection of the resonance point. and a displacement measurement circuit section comprising a frequency measurement section that measures the frequency of the resonance point, and a calculation section that calculates the amount of displacement corresponding to the frequency of the resonance point; [2] The measurement signal generation section counts the clock signal. 2. The displacement measuring device according to claim 1, further comprising a counter, and changing the frequency of the alternating current signal in accordance with the count value of the counter. [3] The displacement measuring device according to claim 1, wherein the power-free resonance circuit section is built into an intracerebral pressure sensor section buried within the human body.
JP16979688A 1988-07-07 1988-07-07 Displacement measuring instrument Pending JPH0219712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16979688A JPH0219712A (en) 1988-07-07 1988-07-07 Displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16979688A JPH0219712A (en) 1988-07-07 1988-07-07 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPH0219712A true JPH0219712A (en) 1990-01-23

Family

ID=15893048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16979688A Pending JPH0219712A (en) 1988-07-07 1988-07-07 Displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPH0219712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011015A1 (en) * 1991-11-29 1993-06-10 Seiko Epson Corporation Displacement in transfer apparatus and driving controller of transfer member
US5225749A (en) * 1990-09-26 1993-07-06 Mitsubishi Denki Kabushiki Kaisha System for controlling the rotational speed of a rotary member
EP0602970A2 (en) * 1992-12-16 1994-06-22 Kabushiki Kaisha Egawa A measuring method using resonance of a resonance body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596141A (en) * 1979-01-16 1980-07-22 Nagano Keiki Seisakusho Kk Cerebral internal pressure meter
JPS57211027A (en) * 1981-06-22 1982-12-24 Sharp Corp Temperature measuring device
JPS62109543A (en) * 1985-11-08 1987-05-20 株式会社 長野計器製作所 Intracapsular pressure gauge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596141A (en) * 1979-01-16 1980-07-22 Nagano Keiki Seisakusho Kk Cerebral internal pressure meter
JPS57211027A (en) * 1981-06-22 1982-12-24 Sharp Corp Temperature measuring device
JPS62109543A (en) * 1985-11-08 1987-05-20 株式会社 長野計器製作所 Intracapsular pressure gauge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225749A (en) * 1990-09-26 1993-07-06 Mitsubishi Denki Kabushiki Kaisha System for controlling the rotational speed of a rotary member
WO1993011015A1 (en) * 1991-11-29 1993-06-10 Seiko Epson Corporation Displacement in transfer apparatus and driving controller of transfer member
EP0602970A2 (en) * 1992-12-16 1994-06-22 Kabushiki Kaisha Egawa A measuring method using resonance of a resonance body
EP0602970A3 (en) * 1992-12-16 1995-02-15 Egawa Kk A measuring method using resonance of a resonance body.

Similar Documents

Publication Publication Date Title
JP3246727B2 (en) Inductive electronic caliper
JPS62235504A (en) Capacity-type position measuring transducer
Salpavaara et al. Readout methods for an inductively coupled resonance sensor used in pressure garment application
CN103512592A (en) Wireless passive LC resonance sensor detecting circuit and corresponding information acquiring method
JPH0219712A (en) Displacement measuring instrument
JPH0219713A (en) Displacement measuring instrument
Salpavaara et al. Wireless interrogation techniques for sensors utilizing inductively coupled resonance circuits
JP2001041703A (en) Range finder and thickness meter
JPH0549044B2 (en)
JPH0560554B2 (en)
Tian et al. The research of a frequency-modulated displacement sensor
SU1250931A1 (en) Method and apparatus for separate measuring magnetic permeability and electrical conductivity
DE60015878D1 (en) CAPACITIVE POWER CONVERTER
SU864094A1 (en) Moisture-content meter
RU2057283C1 (en) Device for measurement of displacement
SU798630A1 (en) Apparatus for measuring capacitor loss tangent
SU742784A1 (en) Device for monitoring concrete solidifying processes
SU978075A1 (en) Automatic dielcometer
SU1579990A1 (en) Ferroprobe converter of angle of borehole inclination
RU2001411C1 (en) Method for measuring dielectric characteristics and device to embody it
SU1441180A1 (en) Eddy-current measuring device
SU974285A1 (en) Device for measuring current density in electrolytes
SU1383087A1 (en) Device for measuring linear displacements
SU905644A2 (en) Thickness meter
SU842395A1 (en) Device for touch-free wire diameter monitoring