JPH02183965A - Power generating system for fuel cell - Google Patents
Power generating system for fuel cellInfo
- Publication number
- JPH02183965A JPH02183965A JP1001503A JP150389A JPH02183965A JP H02183965 A JPH02183965 A JP H02183965A JP 1001503 A JP1001503 A JP 1001503A JP 150389 A JP150389 A JP 150389A JP H02183965 A JPH02183965 A JP H02183965A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel cell
- reformer
- air blower
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 78
- 238000010248 power generation Methods 0.000 claims description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 abstract description 10
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 50
- 239000007789 gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000006057 reforming reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は燃料電池光電池システムに関し、特に燃料電
池の負荷に応じた空気流量の制御に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell photovoltaic system, and particularly to control of air flow rate in accordance with the load of a fuel cell.
燃料電池発電システムは、従来の汽力発電に比べ高効率
が期待できること環境保全性が良い等の利点があり、実
用化を目脂して近年盛んに開発が進められている。燃料
電池発電システムは、空気極、燃料極及び電界質層から
成る燃料電池と、天然ガス等の炭化水素系燃料を改質し
て燃料電池の燃料極に水素リンチガスを供給する改質器
とを備えている。また、燃料電池の空気極に対し酸化剤
として空気を、さらに改質器に対し燃焼用として空気を
供給するための空気供給源が設置される。Fuel cell power generation systems have advantages over conventional steam power generation, such as higher efficiency and better environmental protection, and have been actively developed in recent years with the hope of putting them into practical use. A fuel cell power generation system consists of a fuel cell consisting of an air electrode, a fuel electrode, and an electrolyte layer, and a reformer that reforms hydrocarbon fuel such as natural gas and supplies hydrogen lynch gas to the fuel electrode of the fuel cell. We are prepared. Further, an air supply source is installed for supplying air as an oxidizing agent to the air electrode of the fuel cell and further supplying air for combustion to the reformer.
いわゆるオンサイト用として、数百k11100比較的
小容量のシステムの場合、燃料電池が数百mmAq程度
の圧力で動作する常圧タイプが一般に採用され、この場
合空気供給源には空気ブロワが適用される。For so-called on-site use, in the case of relatively small capacity systems of several hundred k11100, a normal pressure type in which the fuel cell operates at a pressure of about several hundred mmAq is generally adopted, and in this case, an air blower is used as the air supply source. Ru.
この様な燃料電池発電システムにおいて、部分負荷の効
率を向上させることなどを目的として、燃料電池の負荷
に応じて燃料や空気の量を変化させることが一般に行わ
れる。この具体的な従来の方法として、例えば日本産業
機械工業会発行昭和59年5月「オンサイト型燃料電池
の技術調査報告書」第53〜54ページの燃料電池シス
テム系統図に示す方法があり、その概要を第3図に示す
。In such a fuel cell power generation system, the amount of fuel or air is generally changed in accordance with the load of the fuel cell for the purpose of improving partial load efficiency. As a specific conventional method, there is, for example, the method shown in the fuel cell system diagram on pages 53-54 of "Technical Survey Report on On-Site Fuel Cells" published by Japan Industrial Machinery Manufacturers Association, May 1980. The outline is shown in Figure 3.
図において、+11は燃料極(1a)、空気極(lb)
を有する燃料電池、(2)は炭化水素系燃料(図の例で
は天然ガス)を改質して、燃料電池+11の燃料極(1
a)に水素を多く含む改質ガスを供給する改質器で、改
質反応部(2a)とバーナ部(2b)とで構成される。In the figure, +11 is the fuel electrode (1a) and the air electrode (lb)
(2) is a fuel cell with a fuel cell + 11 fuel electrodes (1
This is a reformer that supplies reformed gas containing a large amount of hydrogen to a), and is composed of a reforming reaction section (2a) and a burner section (2b).
(3)は燃料電池+11の空気極(1b)、及び改質器
(2)のバーナ部(2b)へ空気を供給する空気ブロワ
、(4)は空気ブロワ(3)から燃料電池(1)の空気
極(I b)へ空気を供給するための燃料電池空気供給
配管、(5)は空気ブロワ(3)から改質器(2)のバ
ーナ部(2b)へ空気を供給するための改質器空気供給
配管、(8)は燃料電池(1)の空気極(1b)への供
給空気と同空気極(1b)からの排出空気とを熱交換さ
せる熱交換器である。(6)は燃料電池空気供給配管(
4)の途中に設けた燃料電池空気tF1節弁、イア)は
改質器空気供給配管(5)の途中に設けた改質器空気調
節弁、(9)はこれらの調節弁(6)、(7)の開度を
調節するコントローラである。(3) is an air blower that supplies air to the air electrode (1b) of fuel cell +11 and the burner section (2b) of the reformer (2); (4) is an air blower that supplies air from the air blower (3) to the fuel cell (1); (5) is a fuel cell air supply pipe for supplying air to the air electrode (Ib) of the fuel cell; The air supply pipe (8) is a heat exchanger that exchanges heat between the air supplied to the air electrode (1b) of the fuel cell (1) and the air discharged from the air electrode (1b). (6) is the fuel cell air supply piping (
The fuel cell air tF1 control valve installed in the middle of 4), the reformer air control valve installed in the middle of the reformer air supply pipe (5), (9) these control valves (6), (7) This is a controller that adjusts the opening degree.
次に、上記の様に構成された従来のシステムの動作につ
いて説明する。天然ガス等の炭化水素系燃料が改質器(
2)の反応部(2a)に投入され、その中で改質反応が
行われ、水素を主成分とする改質ガスに変換される。改
質ガスは燃料電池(11の燃料極(1a)に供給され、
そこで反応に消費される。消費されたあとの残りの余剰
燃料は改質器(2)のバーナ部(2b)に送られる。バ
ーナ部(2b)では余剰燃料を燃焼させ、反応部(2a
)に対し改質反応に必要な熱を与える。空気ブロワ(3
)からの空気の一部は、燃料電池空気供給配管(41を
経て、さらに熱交換器(8)で予熱されて燃料電池(1
1の空気極(lb)に供給される。空気ブロワ(3)か
らの残りの空気は、改質器空気供給配管(5)を経て改
質器(2)のバーナ部(2b)へ供給され、そこで燃焼
用空気として消費される。Next, the operation of the conventional system configured as described above will be explained. Hydrocarbon fuels such as natural gas are used in reformers (
The gas is introduced into the reaction section (2a) of 2), where a reforming reaction is carried out and converted into a reformed gas containing hydrogen as a main component. The reformed gas is supplied to the fuel cell (11 fuel electrodes (1a),
There it is consumed in the reaction. The remaining surplus fuel after being consumed is sent to the burner section (2b) of the reformer (2). The burner section (2b) burns excess fuel, and the reaction section (2a
) is given the heat necessary for the reforming reaction. Air blower (3
A part of the air from the fuel cell (1
1 air electrode (lb). The remaining air from the air blower (3) is supplied via the reformer air supply pipe (5) to the burner section (2b) of the reformer (2) where it is consumed as combustion air.
空気極(1b)において反応に使われた残りの排出空気
は熱交換器(8)を経て、バーナ部(2b)からの燃焼
排ガスとともに大気へ放出される。燃料電池空気供給配
管(4)上に設けられた燃料電池空気調節弁(6)、改
質器空気供給配管(5)上に設けられた改質器空気調節
弁(7)は燃料電池illの負荷に応じてそれぞれの空
気流量を適正に調節するためのもので、負荷に応じた弁
の開度指令がコントローラ(9)より各調節弁に対して
与えられる。部分負荷条件時は、効率の向上、システム
内での熱バランスなどの点から、燃料、空気の量を定格
条件時よりも減らす必要があり、このため、コントロー
ラ(9)より各々の調節弁(6)、(7)に対し、負荷
に応じた開度指令が与えられる。The remaining exhaust air used for the reaction at the air electrode (1b) passes through the heat exchanger (8) and is discharged to the atmosphere together with the combustion exhaust gas from the burner section (2b). The fuel cell air control valve (6) provided on the fuel cell air supply pipe (4) and the reformer air control valve (7) provided on the reformer air supply pipe (5) are connected to the fuel cell ill. This is for appropriately adjusting each air flow rate according to the load, and a valve opening command according to the load is given to each control valve from the controller (9). During partial load conditions, it is necessary to reduce the amount of fuel and air compared to rated conditions in order to improve efficiency and maintain heat balance within the system. Therefore, the controller (9) controls each control valve ( 6) and (7), an opening command according to the load is given.
従来のシステムは、上記に示したように、調節弁のみで
空気流量を制御しようとするものであったが、この様な
方法では、空気ブロワの特性上、空気流量を広い範囲で
安定に制御することが困難であるという問題点があった
。即ち、一般の空気ブロワは、低い流量域でサージング
と呼ばれる不安定現象を起こすため、流量の制御範囲が
ある値以上に限られるという問題があった。また空気ブ
ロワの吐出側調節弁を絞って空気流量を制御する方式で
は、あまり空気ブロワ動力の低減にはならず、空気流量
を絞っても、部分負荷効率の向上には殆どつながらない
という問題点もあった。As shown above, conventional systems attempt to control the air flow rate using only a control valve, but due to the characteristics of the air blower, this method cannot stably control the air flow rate over a wide range. The problem was that it was difficult to do so. That is, a general air blower causes an unstable phenomenon called surging in a low flow rate range, so there is a problem in that the control range of the flow rate is limited to a certain value or more. In addition, the method of controlling the air flow rate by throttling the air blower's discharge side control valve does not significantly reduce the air blower power, and even if the air flow rate is throttled, there is the problem that it hardly improves the partial load efficiency. there were.
この発明は上記の様な問題点を解決するためになされた
もので、空気ブロワから燃料電池及び改質器へ供給され
る空気の流量を燃料電池の負荷に応じて、広い範囲で安
定に制御することができる燃料電池発電システムを提供
するものである。This invention was made to solve the above problems, and it stably controls the flow rate of air supplied from the air blower to the fuel cell and reformer over a wide range according to the load of the fuel cell. The purpose of this invention is to provide a fuel cell power generation system that can.
(課題を解決するための手段〕
この発明に係わる燃料電池発電システムは、空気ブロワ
から燃料電池に至る燃料電池空気供給配管上又は空気ブ
ロワから改質器に至る改質器空気供給配管上の少なくと
も一方に設置された調節弁と、空気ブロワの回転数を制
御する制御手段とを設けたものである。(Means for Solving the Problems) The fuel cell power generation system according to the present invention provides at least a portion of the fuel cell air supply piping from the air blower to the fuel cell or the reformer air supply piping from the air blower to the reformer. A control valve installed on one side and a control means for controlling the rotation speed of the air blower are provided.
この発明における燃料電池発電システムは、空気ブロワ
の回転数を制御することにより、空気ブロワから燃料電
池及び改質器へ供給される空気の流量を燃料電池の負荷
に応じ、広い流量範囲で安定に制御することができる。The fuel cell power generation system of this invention stabilizes the flow rate of air supplied from the air blower to the fuel cell and the reformer over a wide range of flow rates according to the load of the fuel cell by controlling the rotational speed of the air blower. can be controlled.
以下、この発明の一実施例を第1図に基いて説明する。 An embodiment of the present invention will be described below with reference to FIG.
第1図において、+11〜(2)、(4)〜(9)は上
述した従来システムの構成と同じものである。 Qlは
回転数制御が可能な空気プロワ、aυは、この空気ブロ
ワα場の回転数を制御する例えばインバータから制御手
段(以下、インバータと記す)である。In FIG. 1, +11 to (2) and (4) to (9) are the same as the configuration of the conventional system described above. Ql is an air blower whose rotation speed can be controlled, and aυ is a control means (hereinafter referred to as an inverter) such as an inverter that controls the rotation speed of the air blower α field.
次に、この発明の詳細な説明する。天然ガス等の炭化水
素系燃料が改質器(2)の改質反応部(2a)で改質ガ
スに変換され、改質ガスが燃料電池(11の燃料極(1
a)に導かれ、そこで反応に消費された残りの余剰燃料
が改質器(2)のバーナ部(2b)へ送られ燃焼に消費
される。空気プロワO1から供給される空気の一部が、
燃料電池空気供給配管器(4)を経て、熱交換器(8)
で予熱されたあと燃料電池+11の空気極(1b)に供
給され、空気プロワO1からの残りの空気は、改質器空
気供給配管(5)を経て改質器(2)のバーナ部(2b
)に燃焼用として送られる。空気極(!b)で反応に使
われた残りの排出空気は熱交換器(8)を経て、バーナ
部(2b)からの燃焼排ガスとともに大気へ放出される
。以上の動作は上述した従来技術の動作と同じである。Next, the present invention will be explained in detail. Hydrocarbon fuel such as natural gas is converted into reformed gas in the reforming reaction section (2a) of the reformer (2), and the reformed gas is fed to the fuel cell (11 fuel electrodes (1
The remaining surplus fuel that is led to the fuel cell a) and consumed in the reaction there is sent to the burner section (2b) of the reformer (2) and consumed for combustion. A part of the air supplied from air blower O1 is
Via the fuel cell air supply piping (4), the heat exchanger (8)
The remaining air from the air blower O1 is supplied to the burner section (2b) of the reformer (2) via the reformer air supply pipe (5).
) for combustion. The remaining exhaust air used for the reaction at the air electrode (!b) passes through the heat exchanger (8) and is released into the atmosphere together with the combustion exhaust gas from the burner section (2b). The above operation is the same as that of the prior art described above.
この発明の実施例では、燃料電池(1)及び改質器(2
)への供給空気の流量の制御が、燃料電池空気供給配管
(4)、改質器空気供給配管(5)にそれぞれに設けた
調節弁(61,+71の制御と、空気ブロワ顛の回転数
制御とを組合わせて行われる。In an embodiment of the invention, a fuel cell (1) and a reformer (2) are used.
) is controlled by the control valves (61, +71) installed in the fuel cell air supply pipe (4) and the reformer air supply pipe (5), and the rotational speed of the air blower. This is done in combination with control.
この制御方法の一例を第2図について説明する。An example of this control method will be explained with reference to FIG.
第2図の亜は、空気プロワの特性曲線を示すもので、0
罎、0嚇は、空気プロワOIの風圧(P)−風量(Q)
特性曲線上にシステムの運転動作点をプロットしたもの
である。まず、システムの定格負荷条件においては、空
気プロワα1は定格条件での必要風量、風圧を維持する
だけの回転数N1で運転される。空気プロワ叫の回転数
は、コントローラ(9)からインバータaυに対し指令
値が与えられ、それによりインバータallに接続され
た空気プロワ01の電導機の周波数が制御されて、所要
の値に維持される。この状態での空気プロワ(IIの風
圧−風量特性曲線、及びシステムの空気系統の圧力損失
曲線が図の03.αeであり、それぞれの曲線Q’J、
QI9が交叉するポイント(第2図のA点)が空気プロ
ワ0Illlの定格動作点となる。破線で示した曲線0
9は、空気プロワαψのサージング限界線であり、この
曲線09から左側のゾーン(低風量側)ではサージング
発生の恐れがあるため、曲線a9の右側のゾーン(高風
量側)に動作点をもって来なければならない。定格動作
点(A)は、このサージング限界線051に対し、十分
な余裕があり問題ない。次に部分負荷運転を行う場合、
従来技術のとおり調節弁(6)。Figure 2 shows the characteristic curve of the air blower.
However, 0 threat is the wind pressure (P) - air volume (Q) of the air blower OI.
The operating points of the system are plotted on the characteristic curve. First, under the rated load conditions of the system, the air blower α1 is operated at a rotational speed N1 sufficient to maintain the required air volume and wind pressure under the rated conditions. A command value is given to the inverter aυ from the controller (9) to control the rotation speed of the air blower, and the frequency of the electric motor of the air blower 01 connected to the inverter all is thereby controlled and maintained at the required value. Ru. In this state, the wind pressure-air volume characteristic curve of the air blower (II) and the pressure loss curve of the air system of the system are 03.αe in the figure, and the respective curves Q'J,
The point where QI9 intersects (point A in FIG. 2) is the rated operating point of the air blower 0Ill. Curve 0 shown by dashed line
9 is the surging limit line of the air blower αψ, and since there is a risk of surging occurring in the zone to the left of curve 09 (low air volume side), the operating point is set to the zone to the right of curve a9 (high air volume side). There must be. The rated operating point (A) has a sufficient margin with respect to this surging limit line 051, so there is no problem. Next, when performing partial load operation,
Control valve (6) as in the prior art.
(7)を絞ることのみで、風量をコントロールした場合
、空気プロワQlの動作点が、回転数N、での特性曲線
01上を低風量側に移動するために、サージ、ング域に
入るか或は近づく可能性があった。従来技術による部分
負荷動作点の一例を81に示す。If the air volume is controlled only by restricting (7), the operating point of the air blower Ql will move to the low air volume side on the characteristic curve 01 at the rotation speed N, so will it enter the surge range? Or it could come close. An example of a partial load operating point according to the prior art is shown at 81.
この発明による方法では、まず負荷低減とともに調節弁
+61.171の開度一定のまま空気プロワα〔の回転
数を下げる。燃料電池+11及び改質器(2)へ必要な
空気を供給できる最低の回転数N!までの範囲(図のA
−Xの範囲)は、空気プロワO1の回転数制御で対応す
る。それ以上の負荷低減に対しては、空気プロワO1の
回転数を固定し、調節弁(61,171の開度を絞り空
気流量を減少させる。U4節弁+61. +71を絞る
ことにより、システムの空気系統の圧力損失が増大する
ので、動作点は回転数N8一定の特性曲線−上を低風量
側へ移動し、例えばB点に至る。空気プロワαlは回転
数によって、サージング限界が図の様に変化し、低い回
転数はどサージング限界が狭く、逆に安定域が広がる傾
向にある。In the method according to the present invention, first, the load is reduced and the rotational speed of the air blower α is lowered while the opening of the control valve +61.171 is kept constant. The lowest rotation speed N that can supply the necessary air to the fuel cell +11 and the reformer (2)! (A in the diagram)
-X range) is handled by controlling the rotation speed of the air blower O1. For further load reduction, fix the rotation speed of air blower O1 and reduce the air flow rate by reducing the opening of control valves (61, 171). As the pressure loss in the air system increases, the operating point moves to the low air volume side on the characteristic curve with constant rotation speed N8, reaching, for example, point B. Air blower αl has a surging limit depending on the rotation speed as shown in the figure. The surging limit tends to be narrower at lower rotation speeds, and the stability range tends to widen.
このため、同じ部分負荷空気流量(Qg)に於いても、
従来技術では、サージング限界αつの内側(B1点)に
あったものが、この発明による方法ではサージング限界
α−の外側(B点)で安定に動作させることができる0
本発明によれば、例えば図のB点をシステムの最低負荷
条件相当とした場合、空気プロワ6Iの動作点はA←−
X −Bの各点の間を安定に移動する。また、図のQl
、α喝は、上述した回転数N、、N、にそれぞれ対応
する空気プロワα〔の動力(L)−風量(Q)の特性曲
線である。先に述べた空気プロワQlの風圧(P)風量
(Q)特性曲線上にプロットしたAXX、B。Therefore, even at the same partial load air flow rate (Qg),
In the conventional technology, the device was located inside the surging limit α (point B1), but with the method of the present invention, it can be operated stably outside the surging limit α- (point B).
According to the present invention, for example, when point B in the figure corresponds to the minimum load condition of the system, the operating point of the air blower 6I is A←-
Move stably between each point of X-B. Also, Ql in the figure
, α are characteristic curves of power (L) - air volume (Q) of air blower α [corresponding to the above-mentioned rotational speeds N, , N, respectively. AXX and B plotted on the wind pressure (P) and air volume (Q) characteristic curves of the air blower Ql mentioned above.
83点が、それぞれ曲A11(III、 Ql上(7)
a 、 x 、 b、b、に対応する。これに示す樟
に、従来技術だと部分負荷条件時に於いても空気プロワ
動力は定格時に比べさほど低下しないのに圧し、この発
明による方法では、部分負荷時の空気プロワ動力を大幅
に低減させることが可能で、その分システムの部分負荷
効率を向上させることが可能である0部分負荷効率を空
気ブロワa1の回転数制御のみで行い、調節弁を使用し
ない方法も考えられるが、低負?rJwi域では空気プ
ロワα・の吐出圧力が低下するので、燃料電池(11用
と改質器(2)用にバランス良く空気を供給することが
困難であり、実用は難しい。83 points are for songs A11 (III, Ql upper (7))
Corresponds to a, x, b, b. In contrast, with the conventional technology, the power of the air blower does not decrease much compared to the rated state even under partial load conditions, but the method according to the present invention significantly reduces the power of the air blower under partial load conditions. It is possible to achieve 0 partial load efficiency by controlling the rotation speed of air blower A1 only and not using a control valve, but it is possible to improve the partial load efficiency of the system accordingly. In the rJwi region, the discharge pressure of the air blower α decreases, making it difficult to supply air in a well-balanced manner to the fuel cell (11) and the reformer (2), making it difficult to put it into practical use.
なお、上記実施例では、部分負荷における空気流量制御
を、空気ブロワQlの回転数制御による負荷領域と、調
節弁(61,(7)の制御による負荷領域に分ける例を
示したが、必ずしもこの様に分ける必要がなく、負荷低
減とともに空気ブロワQlの回転数制御と調節弁(61
,(71の制御を併用しても良く、上記実施例と同じ効
果を奏する。この方法による動作点移動の一例を第2図
のT2−に示す、要は、空気ブロワaωの回転数制御と
調節弁161.17)の量制御を組合せることが重要で
あり、それにより本発明の目的が達せられる。In addition, in the above embodiment, an example was shown in which the air flow rate control at partial load is divided into a load area by controlling the rotation speed of the air blower Ql and a load area by controlling the control valves (61, (7)), but this is not necessarily the case. There is no need to separate the air blower Ql rotation speed and control valve (61
, (71) may be used in combination, and the same effect as in the above embodiment is obtained. An example of operating point movement by this method is shown at T2- in FIG. It is important to combine the quantity control of the regulating valves 161, 17), thereby achieving the object of the invention.
また、上記実施例では、燃料電池空気供給配管(4)上
と改質器空気供給配管(5)上の両方に調節弁(6)(
7)を設ける例を示したが、必ずしも両方に調節弁を設
ける必要はなく、いずれか一方にのみ調節弁を設けても
良い0例えば、改質器(2)に要求される空気供給圧力
が、燃料電池+11に要求される。空気供給圧力よりも
高い場合、改質器空気供給配管(5)上の調節弁(7)
は必ずしも必要ではなく省略できる。In addition, in the above embodiment, the control valve (6) (
7), but it is not necessary to provide a control valve in both, and a control valve may be provided in only one of them.For example, if the air supply pressure required for the reformer (2) is , required for fuel cells +11. If higher than the air supply pressure, the control valve (7) on the reformer air supply pipe (5)
is not necessarily required and can be omitted.
この場合、負荷の変化に際し、改質器(2)への空気流
量の制御は基本的に空気ブロワO1の回転数制御で行い
、燃料電池+11への空気流量制御は、調節弁(6)の
制御により行う、逆の場合も同様である。In this case, when the load changes, the air flow rate to the reformer (2) is basically controlled by controlling the rotation speed of the air blower O1, and the air flow rate to the fuel cell +11 is controlled by the control valve (6). The same applies to the reverse case where the control is used.
以上の様に、この発明によれば、燃料電池の負荷に応じ
、空気ブロワの回転数を制御して空気流量を制御するよ
うに構成したので、燃料電池と改質器に対し広い流量範
囲で安定に空気を供給するできる効果を奏する。As described above, according to the present invention, the rotation speed of the air blower is controlled according to the load of the fuel cell to control the air flow rate, so that a wide flow range can be applied to the fuel cell and the reformer. It has the effect of stably supplying air.
第1図はこの発明の一実施例による燃料電池発電システ
ムを示す系統図、第2図はこの発明における空気ブロワ
の特性曲線の一例を示す特性図、第3図は従来の燃料電
池発電システムを示す系統図である。
図において、【1)は燃料電池本体、(1a)は燃料極
、(lb)は空気極、(2)は改質器、(4)は燃料電
池空気供給配管、(5■よ改質器空気供給配管、(6)
は燃料電池空気調節弁、(7)は改質器空気調節弁、Q
lは空気ブロワ、aυはインバータである。
なお、図中、同一符号は同一、又は相当部分を示す。
1と)、
項三
第3図Fig. 1 is a system diagram showing a fuel cell power generation system according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing an example of the characteristic curve of the air blower in this invention, and Fig. 3 is a system diagram showing a conventional fuel cell power generation system. FIG. In the figure, [1] is the fuel cell body, (1a) is the fuel electrode, (lb) is the air electrode, (2) is the reformer, (4) is the fuel cell air supply pipe, and (5■ is the reformer). Air supply piping, (6)
is the fuel cell air control valve, (7) is the reformer air control valve, Q
l is an air blower and aυ is an inverter. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. 1), Section 3, Figure 3
Claims (1)
水素ガスを供給する改質器と、前記燃料電池と前記改質
器に空気を供給する空気ブロワとを備えた燃料電池発電
システムにおいて、前記空気ブロワから前記燃料電池に
至る燃料電池空気供給配管上又は、前記空気ブロワから
前記改質器に至る改質器空気供給配管上の少くとも一方
に設置された調節弁と、前記空気ブロワの回転数を制御
する制御手段とを備えたことを特徴とする燃料電池発電
システム。A fuel cell power generation system comprising a fuel cell, a reformer that reforms hydrocarbon fuel and supplies hydrogen gas to the fuel cell, and an air blower that supplies air to the fuel cell and the reformer. , a control valve installed on at least one side of the fuel cell air supply piping from the air blower to the fuel cell or on the reformer air supply piping from the air blower to the reformer; A fuel cell power generation system comprising: a control means for controlling the rotation speed of a blower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1001503A JP2922209B2 (en) | 1989-01-06 | 1989-01-06 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1001503A JP2922209B2 (en) | 1989-01-06 | 1989-01-06 | Fuel cell power generation system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10373350A Division JPH11317234A (en) | 1998-12-28 | 1998-12-28 | Fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02183965A true JPH02183965A (en) | 1990-07-18 |
JP2922209B2 JP2922209B2 (en) | 1999-07-19 |
Family
ID=11503275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1001503A Expired - Lifetime JP2922209B2 (en) | 1989-01-06 | 1989-01-06 | Fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2922209B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0479165A (en) * | 1990-07-20 | 1992-03-12 | Mitsubishi Electric Corp | Operating method for fuel cell |
EP1770811A2 (en) * | 2005-09-29 | 2007-04-04 | JTEKT Corporation | Fuel-cell apparatus with coupled compressor and turbine |
JP2016091833A (en) * | 2014-11-05 | 2016-05-23 | トヨタ自動車株式会社 | Fuel cell system |
JP2019033022A (en) * | 2017-08-09 | 2019-02-28 | パナソニックIpマネジメント株式会社 | Fuel cell system |
CN115672918A (en) * | 2022-11-16 | 2023-02-03 | 福建鼎盛钢铁有限公司 | Dust removal energy-saving control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166671A (en) * | 1982-03-27 | 1983-10-01 | Kansai Electric Power Co Inc:The | Pressure control method of fuel cell power generating system |
JPS6332868A (en) * | 1986-07-24 | 1988-02-12 | Mitsubishi Electric Corp | Fuel cell power generating system |
-
1989
- 1989-01-06 JP JP1001503A patent/JP2922209B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166671A (en) * | 1982-03-27 | 1983-10-01 | Kansai Electric Power Co Inc:The | Pressure control method of fuel cell power generating system |
JPS6332868A (en) * | 1986-07-24 | 1988-02-12 | Mitsubishi Electric Corp | Fuel cell power generating system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0479165A (en) * | 1990-07-20 | 1992-03-12 | Mitsubishi Electric Corp | Operating method for fuel cell |
EP1770811A2 (en) * | 2005-09-29 | 2007-04-04 | JTEKT Corporation | Fuel-cell apparatus with coupled compressor and turbine |
EP1770811A3 (en) * | 2005-09-29 | 2007-04-25 | JTEKT Corporation | Fuel-cell apparatus with coupled compressor and turbine |
JP2016091833A (en) * | 2014-11-05 | 2016-05-23 | トヨタ自動車株式会社 | Fuel cell system |
JP2019033022A (en) * | 2017-08-09 | 2019-02-28 | パナソニックIpマネジメント株式会社 | Fuel cell system |
CN115672918A (en) * | 2022-11-16 | 2023-02-03 | 福建鼎盛钢铁有限公司 | Dust removal energy-saving control method |
Also Published As
Publication number | Publication date |
---|---|
JP2922209B2 (en) | 1999-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5527632A (en) | Hydrocarbon fuelled fuel cell power system | |
JP5888245B2 (en) | Fuel cell power generation system and control method for fuel cell power generation system | |
JP3924180B2 (en) | Fuel cell system | |
JPH02183965A (en) | Power generating system for fuel cell | |
JP3930426B2 (en) | Fuel cell combined power generation system | |
JPS6332868A (en) | Fuel cell power generating system | |
JPH11317234A (en) | Fuel cell power generation system | |
JPS60160574A (en) | Turbo-compressor system for fuel cell power generation | |
JP3433959B2 (en) | Operation and control method of fuel cell | |
JPH0316750B2 (en) | ||
JPS6180765A (en) | Control method for fuel cell power generation system | |
JP2006226639A (en) | Cogeneration system | |
JPH06105619B2 (en) | Control method of fuel cell power generation system | |
JP2841703B2 (en) | Method and apparatus for controlling amount of air for cathode of molten carbonate fuel cell | |
JPH0317353B2 (en) | ||
JPS6028173A (en) | Operating and controlling method for exhaust heat collection turbine | |
JPS6345764A (en) | Operating controller of fuel cell power generating plant | |
JPS63195334A (en) | Turbocompressor system | |
JPH0317352B2 (en) | ||
JPS61176076A (en) | Fuel battery equipment | |
JPH07282826A (en) | Differential pressure control method for fuel cell and device | |
JPS6298571A (en) | Controlling method for fuel cell power generating system | |
JPH036623B2 (en) | ||
KR20200072200A (en) | Control method for supplying hydrogen to fuel cell | |
JPH088107B2 (en) | Flow control method for internal reforming fuel cell |