JPH02177569A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH02177569A
JPH02177569A JP63334675A JP33467588A JPH02177569A JP H02177569 A JPH02177569 A JP H02177569A JP 63334675 A JP63334675 A JP 63334675A JP 33467588 A JP33467588 A JP 33467588A JP H02177569 A JPH02177569 A JP H02177569A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
conductivity type
diffusion layer
solar cell
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63334675A
Other languages
Japanese (ja)
Inventor
Takayuki Minamimori
南森 孝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63334675A priority Critical patent/JPH02177569A/en
Publication of JPH02177569A publication Critical patent/JPH02177569A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify a manufacturing process of a solar cell of this design by a method wherein a paste-like disperser is printed on a part of a substrate where a photodetective plane electrode is formed, and a deep first diffusion layer formed of a second conductivity type impurity is provided. CONSTITUTION:A paste-like diffusion agent 10 containing impurity of a second conductivity type opposite to that of a semiconductor substrate 1 is printed on a part of the semiconductor substrate 1 where a photodetective plane electrode 5 is formed, the substrate 1 is thermally treated to enable the second conductivity type to diffuse into the surface of the substrate 1, and a first diffusion layer 8 formed of a second conductivity type impurity is formed on the primary face of the substrate 1 located just under a part where the photodetective plane electrode 5 is formed. By this setup, a process can be simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は太陽電池の製造方法に関するものであり、特
に、短波長側の光起電力を向上させた太陽電池の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a solar cell, and particularly to a method for manufacturing a solar cell with improved photovoltaic force on the short wavelength side.

[従来の技術] 太陽電池はPN接合を利用したエネルギ変換器であり、
たとえばn型St基板に1〜3μmのp型拡散層を形成
して、表面より光がPN接合に到達するようにして、そ
の光起電力効果を利用するものである。このような太陽
電池において、上記拡散層を薄くすると、短波長側の分
光感度が向上し、エネルギ変換効率が改善されることは
一般に知られている。しかし、拡散層を薄くすると、そ
の上に形成される受光面電極の材料が限定きれ、かつそ
の形成方法も制限を受ける。すなわち、拡散層を薄くす
るならば、リーク電流が増加してPN接合が破壊するこ
とがないような電極材料を選ばなければならないし、ま
た、その形成方法にも細心の注意を払わなければならな
い。市販の太陽電池のうち、宇宙用太陽電池のように、
費用の問題が比較的少ない場合には、Ti、Pd、Ag
等の蒸着電極が多用される。しかしながら、このような
材料を地上用太陽電池に使用すると、材料費のみならず
、プロセスの複雑さの面から、コスト高となり、実用的
でない。そこで、費用が安く、かつ工程が複雑でない、
地上用太陽電池の受光面電極の形成方法として、導電性
銀(Ag)ペーストの印刷焼成法が提案されている。し
かしながら、この導電性銀ペーストの印刷焼成法におい
ては、銀ペースト材料が600〜750℃の温度範囲で
焼成されることが多く、このような温度の下では、ペー
スト中に含まれるガラスフリットが拡散層内へ浸透し、
たとえば、深さが0.2μm以下の浅い接合では、素子
のリーク電流が増加し、曲線因子の低下により、変換効
率が著しく損なわれるという問題点があった。したがっ
て、この導電性銀ペーストの印刷焼成法においては、拡
散層の接合深さを0.3μm以上、シート抵抗値で40
〜50Ω/口程度にしなければならなかった。これより
浅い拡散層の場合、換言すれば、高いシート抵抗値のと
きは、上述のとおり、ペースト中に含まれるガラスフリ
ットが拡散層内へ浸透し、ひいては、素子のリーク電流
が増加し、曲線因子の低下により変換効率が著しく損な
われる。それゆえに、導電性銀ペーストの印刷焼成法に
おいては、短波長側感度を向上させた素子の製作は実際
上困難であると考えられた。
[Conventional technology] A solar cell is an energy converter that uses a PN junction.
For example, a p-type diffusion layer with a thickness of 1 to 3 μm is formed on an n-type St substrate so that light reaches the PN junction from the surface, and the photovoltaic effect is utilized. In such a solar cell, it is generally known that when the diffusion layer is made thinner, the spectral sensitivity on the short wavelength side improves, and the energy conversion efficiency improves. However, when the diffusion layer is thinned, the material for the light-receiving surface electrode formed thereon is limited, and the method for forming the same is also limited. In other words, if the diffusion layer is to be thinned, an electrode material must be selected that will not increase leakage current and destroy the PN junction, and careful attention must be paid to the method of forming it. . Among commercially available solar cells, like space solar cells,
Ti, Pd, Ag
Vapor-deposited electrodes such as these are often used. However, if such materials are used in terrestrial solar cells, the cost will be high not only in terms of material costs but also in terms of process complexity, making it impractical. Therefore, the cost is low and the process is not complicated.
As a method for forming a light-receiving surface electrode of a terrestrial solar cell, a method of printing and firing a conductive silver (Ag) paste has been proposed. However, in this printing and firing method of conductive silver paste, the silver paste material is often fired at a temperature range of 600 to 750°C, and at such temperatures, the glass frit contained in the paste will diffuse. Penetrates into the layer,
For example, in a shallow junction with a depth of 0.2 μm or less, the leakage current of the device increases and the fill factor decreases, resulting in a significant loss of conversion efficiency. Therefore, in this printing and firing method of conductive silver paste, the bonding depth of the diffusion layer is set to 0.3 μm or more, and the sheet resistance value is 40 μm.
It had to be about ~50Ω/mouth. If the diffusion layer is shallower than this, in other words, if the sheet resistance is high, the glass frit contained in the paste will penetrate into the diffusion layer, as described above, and the leakage current of the device will increase, causing the curve The conversion efficiency is significantly impaired due to the reduction of the factor. Therefore, in the printing and firing method of conductive silver paste, it was thought that it would be practically difficult to manufacture an element with improved sensitivity on the short wavelength side.

そこで、上述のような問題点を解決するための方法が、
従来より種々提案されている。
Therefore, the method to solve the above problems is as follows.
Various proposals have been made in the past.

第4A図〜第4E図は、短波長側感度を改善した太陽電
池の従来の製造方法の工程を断面図で表わしたものであ
る。
FIGS. 4A to 4E are cross-sectional views showing the steps of a conventional manufacturing method for a solar cell with improved sensitivity on the short wavelength side.

第4A図を参照して、たとえばp型シリコン基板1を準
備する。次に、第4B図を参照して、シリコン基板1の
主表面に、シリコン基板1とは反対の導電型のn型不純
物からなる深い拡散層2を形成する。続いて、第4C図
を参照して、受光面電極を設ける予定の部分に、耐酸性
のレジスト3を印刷する。続いて、j@4D図を参照し
て、このレジスト3をマスクにして、希フッ酸−硝酸系
のエツチング液で、拡散層2をエツチングする。すると
、レジスト3の直下の拡散層以外の部分はエツチング除
去されて薄くなり、浅い拡散層4が形成される。その後
、レジスト3を除去する。
Referring to FIG. 4A, for example, a p-type silicon substrate 1 is prepared. Next, referring to FIG. 4B, a deep diffusion layer 2 made of an n-type impurity of a conductivity type opposite to that of silicon substrate 1 is formed on the main surface of silicon substrate 1. Next, referring to FIG. Next, referring to FIG. 4C, an acid-resistant resist 3 is printed on the portion where the light-receiving surface electrode is to be provided. Subsequently, referring to FIG. J@4D, the diffusion layer 2 is etched with a dilute hydrofluoric acid-nitric acid based etching solution using the resist 3 as a mask. Then, the portion of the resist 3 other than the diffusion layer immediately below is etched away and becomes thinner, and a shallow diffusion layer 4 is formed. After that, the resist 3 is removed.

次に、第4E図を参照して、導電性銀ペーストの印刷焼
成法を用いて、深い拡散層2の上に受光面電極5を形成
し、A1−Agペースト焼成によりシリコン基板1の背
面に背面電極6を形成する。
Next, referring to FIG. 4E, a light-receiving surface electrode 5 is formed on the deep diffusion layer 2 using a conductive silver paste printing and baking method, and a light-receiving surface electrode 5 is formed on the back surface of the silicon substrate 1 by baking the A1-Ag paste. A back electrode 6 is formed.

この方法では、受光面電極の下には深い拡散層が形成さ
れているので、銀ペースト中に含まれるガラスフリット
が拡散層内へ浸透しても、接合が深い0て、素子のリー
ク電流は増加しない。また、光が通過する部分は薄い拡
散層4となっているので、短波長側の分光感度は向上す
る。
In this method, a deep diffusion layer is formed under the light-receiving surface electrode, so even if the glass frit contained in the silver paste penetrates into the diffusion layer, the junction is deep and the leakage current of the device is reduced. Does not increase. Furthermore, since the portion through which light passes is the thin diffusion layer 4, the spectral sensitivity on the short wavelength side is improved.

第5A図〜第5E図は、短波長側感度を改善した太陽電
池の従来の製造方法の他の例を断面図で示したものであ
る。
FIGS. 5A to 5E are cross-sectional views of another example of a conventional manufacturing method for a solar cell with improved sensitivity on the short wavelength side.

第5AIEを参照して、たとえばp型半導体基板1を準
備する。次に、第5B図を参照して、シリコン基板1を
酸素雰囲気中で加熱し、シリコン基板1の表面および裏
面に二酸化珪素膜(S i 02膜)7を形成する。続
いて、第5C図を参照して、通常の写真製版技術および
エツチングにより、受光面電極を形成する部分の二酸化
珪素膜7を除去する。続いて、第5D図を参照して、シ
リコン基板1とは反対の導電型の不純物であるpocu
Referring to the fifth AIE, for example, a p-type semiconductor substrate 1 is prepared. Next, referring to FIG. 5B, silicon substrate 1 is heated in an oxygen atmosphere to form silicon dioxide film (S i 02 film) 7 on the front and back surfaces of silicon substrate 1 . Subsequently, referring to FIG. 5C, the silicon dioxide film 7 in the portion where the light-receiving surface electrode will be formed is removed by ordinary photolithography and etching. Next, referring to FIG. 5D, pocu, which is an impurity of the opposite conductivity type to the silicon substrate 1,
.

を拡散させて、受光面電極が形成される部分の直下に深
い拡散層2を形成する。次に、二酸化珪素膜7をフッ酸
で除去する。次に、第5E図を参照して、シリコン基板
1の主表面に、シリコン基板1と反対の導電型の不純物
を拡散させて、浅い拡散層4を形成する。最後に、導電
性銀ペーストの印刷焼成法によって、深い拡散層2の上
に受光面電極を形成し、AfL−Agペーストの焼成に
よりシリコン基板1の背面に背面電極6を形成すると、
太陽電池が作製される。このように作製された太陽電池
では、受光面電極5が深い拡散層2の上に形成されてい
るので、導電性銀ペーストの印刷焼成法において、ペー
スト中に含まれるガラスフリットが深い拡散層2内に浸
透しても、接合が深いので素子のリーク電流は増加せず
、変換効率が損なわれるということはない。一方、光が
通過する部分が浅い拡散層4となっているので、短波長
側の分光感度は向上する。
A deep diffusion layer 2 is formed directly below the portion where the light-receiving surface electrode is formed. Next, silicon dioxide film 7 is removed with hydrofluoric acid. Next, referring to FIG. 5E, an impurity of a conductivity type opposite to that of silicon substrate 1 is diffused into the main surface of silicon substrate 1 to form shallow diffusion layer 4. Finally, a light-receiving surface electrode is formed on the deep diffusion layer 2 by printing and baking a conductive silver paste, and a back electrode 6 is formed on the back surface of the silicon substrate 1 by baking the AfL-Ag paste.
A solar cell is produced. In the solar cell manufactured in this manner, the light-receiving surface electrode 5 is formed on the deep diffusion layer 2. Therefore, in the printing and firing method of conductive silver paste, the glass frit contained in the paste is formed on the deep diffusion layer 2. Even if it penetrates into the interior, the leakage current of the element will not increase because the junction is deep, and the conversion efficiency will not be impaired. On the other hand, since the portion through which light passes is the shallow diffusion layer 4, the spectral sensitivity on the short wavelength side is improved.

[発明が解決しようとする課題] 短波長側感度を改善した太陽電池の従来の製造方法は以
上のように構成されている。
[Problems to be Solved by the Invention] A conventional method for manufacturing a solar cell with improved short wavelength sensitivity is configured as described above.

しかしながら、第4A図〜第4E図に示す従来方法では
、第4C図を参照して、レジスト3の印刷およびその除
去の工程が増加するという問題点があった。さらに、第
4D図を参照して、拡散層2の厚さを0.4〜0.5μ
m程度にした場合、0.2μm程度の浅い拡散層4を再
現性良く形成することは、前述したようなエツチング液
では極めて困難であるという問題点があった。
However, the conventional method shown in FIGS. 4A to 4E has a problem in that the steps of printing the resist 3 and removing it are increased, as shown in FIG. 4C. Furthermore, referring to FIG. 4D, the thickness of the diffusion layer 2 is set to 0.4 to 0.5 μm.
When the etching depth is approximately 0.2 μm, there is a problem in that it is extremely difficult to form a shallow diffusion layer 4 of approximately 0.2 μm with good reproducibility using the above-mentioned etching solution.

msA図〜第5E図に示す従来技術においても、レジス
トの塗布およびその除去の工程が増加するという問題点
の他に、次のような問題点があった。
The conventional techniques shown in Figures msA to 5E also have the following problems in addition to the problem of increasing the number of resist coating and resist removal steps.

すなわち、第5D図を参照して、拡散層2を約0゜6μ
mとするためには、POC1s雰囲気中、950℃、3
0分の拡散処理をしなければならないが、この際、二酸
化珪素膜7の膜厚が薄いと、不純物のリンが二酸化珪素
JII7の直下の部分にまで拡散されるということがあ
った。つまり、二酸化珪素膜7がマスクとして十分に作
用していないためであり、この二酸化珪素膜7をマスク
として十分に作用させるためには、二酸化珪素膜7の膜
厚を1500A以上にする必要があった。このように厚
い二酸化珪素膜を得るためには、乾燥酸素中、1100
℃、60分の熱処理を施す必要があった。
That is, referring to FIG. 5D, the diffusion layer 2 has a thickness of approximately 0°6μ.
m, at 950°C in POC1s atmosphere.
It is necessary to perform a diffusion process for 0 minutes, but at this time, if the silicon dioxide film 7 is thin, the impurity phosphorus may be diffused to the part immediately below the silicon dioxide JII 7. In other words, this is because the silicon dioxide film 7 does not function sufficiently as a mask, and in order for the silicon dioxide film 7 to function sufficiently as a mask, the thickness of the silicon dioxide film 7 must be 1500A or more. Ta. In order to obtain such a thick silicon dioxide film, 1100
It was necessary to perform heat treatment at ℃ for 60 minutes.

しかしながら、このような熱処理を施して形成された太
陽電池の特性を測定すると、拡散層の深さが一定である
従来素子と比較して、長波長側感度が大幅に低下してい
ることがわかった。これは、二酸化珪素膜7の形成温度
が1100℃と高いために、バルクの少数キャリアのラ
イフタイムが低下しているからであると考えられた。そ
こで、二酸化珪素膜7の形成温度を下げる実験を行なっ
たが、1500Aの二酸化珪素H7を乾燥酸素中で形成
する場合、1000℃で3時間を要し、920℃では8
時間もの時間を要し、製造工程上実用的ではなかった。
However, when measuring the characteristics of solar cells formed through such heat treatment, it was found that the long-wavelength sensitivity was significantly reduced compared to conventional elements in which the depth of the diffusion layer was constant. Ta. This was considered to be because the formation temperature of the silicon dioxide film 7 was as high as 1100° C., so that the lifetime of bulk minority carriers was reduced. Therefore, we conducted an experiment to lower the formation temperature of the silicon dioxide film 7, but when forming 1500A silicon dioxide H7 in dry oxygen, it took 3 hours at 1000℃, and 8 hours at 920℃.
This was time consuming and impractical in terms of manufacturing process.

この発明は上記のような問題点を解決するためになされ
たもので、低コストの簡単なプロセスで、短波長側感度
を改善した太陽電池を作製できる、太陽電池の製造方法
を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a method for manufacturing a solar cell that can produce a solar cell with improved sensitivity on the short wavelength side using a simple process at low cost. purpose.

[課題を解決するための手段] この発明は、半導体基板の主表面上に受光面電極が形成
された太陽電池の製造方法に係るものである。そして、
上記問題点を解決するために、第1の導電型の前記半導
体基板を準備する工程と、上記半導体基板の主表面上で
あって、上記受光面電極を形成する部分に、上記半導体
基板とは反対の導電型である第2の導電型の不純物を含
むペースト状拡散剤を印刷する工程と、上記ペースト状
拡散剤が印刷された上記半導体基板に熱処理を施して、
上記第2の導電型の不純物を上記半導体基板の主表面に
拡散させ、上記受光面電極を形成する部分の直下に位置
する上記半導体基板の主表面に該第2の導電型の不純物
で形成される第1の拡散層を形成する工程と、上記深い
第1の拡散層を形成した後、上記半導体基板の主表面に
第2の導電型の不純物で形成される浅い第2の拡散層を
形成する工程とを含んでいる。
[Means for Solving the Problems] The present invention relates to a method of manufacturing a solar cell in which a light-receiving surface electrode is formed on the main surface of a semiconductor substrate. and,
In order to solve the above-mentioned problems, a step of preparing the semiconductor substrate of a first conductivity type, and a step of preparing the semiconductor substrate of the first conductivity type; printing a paste-like diffusing agent containing impurities of a second conductivity type that is an opposite conductivity type; and performing heat treatment on the semiconductor substrate on which the paste-like diffusing agent is printed;
The impurity of the second conductivity type is diffused into the main surface of the semiconductor substrate, and the impurity of the second conductivity type is formed on the main surface of the semiconductor substrate located directly below the portion where the light-receiving surface electrode is formed. After forming the deep first diffusion layer, forming a shallow second diffusion layer made of impurities of a second conductivity type on the main surface of the semiconductor substrate. It includes a step of.

[作用] 半導体基板の主表面上であって、受光面電極を形成する
部分に、半導体基板とは反対の導電型である第2の導電
型の不純物を含むペースト状拡散剤を印刷して、受光面
電極を形成する部分の直下に位置する半導体基板の主表
面に該第2の導電型の不純物で形成される深い第1の拡
散層を形成するという工程は、従来の方法(第4A図〜
第4E図および第5A図〜第5E図)に比べて、極めて
簡単なプロセスである。
[Operation] A paste-like diffusing agent containing an impurity of a second conductivity type, which is the opposite conductivity type to that of the semiconductor substrate, is printed on the main surface of the semiconductor substrate on the part where the light-receiving surface electrode is to be formed. The step of forming a deep first diffusion layer made of impurities of the second conductivity type on the main surface of the semiconductor substrate located directly below the portion where the light-receiving surface electrode is to be formed is performed using a conventional method (see FIG. 4A). ~
This is a very simple process compared to FIGS. 4E and 5A to 5E).

[実施例] 以下、この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1A図〜第1D図は、この発明の一実施例の工程を断
面図で示したものである。
FIGS. 1A to 1D are cross-sectional views showing the steps of an embodiment of the present invention.

第1A図を参照して、半導体基板またとえば、p型で、
1Ω・cmの比抵抗値を有する100mmφのシリコン
単結晶基板を準備する。次に、第1B図を参照して、半
導体基板1の主表面上であって、受光面電極を形成する
部分に、上記半導体基板1とは反対の導電型であるn型
の不純物を含むペースト状拡散剤10をスクリーン印刷
法により塗布する。
Referring to FIG. 1A, the semiconductor substrate is, for example, p-type,
A 100 mmφ silicon single crystal substrate having a specific resistance value of 1 Ω·cm is prepared. Next, referring to FIG. 1B, paste containing an n-type impurity, which is the opposite conductivity type to that of the semiconductor substrate 1, is applied to the main surface of the semiconductor substrate 1 in a portion where the light-receiving surface electrode is to be formed. The diffuser 10 is applied by screen printing.

このペースト状拡散剤は次のように作製された。This paste-like diffusing agent was produced as follows.

ビーカーにエチルアルコール80CCを加え、次に、不
純物となるP2O,5gと、珪酸エチル10ccと酢酸
5ccをさらに加え、攪拌し、これらを溶解させた。3
時間後、この混合物を温度150℃で加熱して、溶媒を
気化させて、リン(P)を含むガラス物質にした。一方
、別のビーカーを準備し、このビーカー内で、α−テレ
ピネオールとブチルカルピトールアセテートを70℃に
加熱混合し、エチルセルロース樹脂を加え、十分混合し
、その後、室温まで冷却した。このものに、前述のリン
を含むガラス物質を加え、混合して、ペースト状拡散剤
を得た。
80 cc of ethyl alcohol was added to the beaker, and then 5 g of P2O as impurities, 10 cc of ethyl silicate, and 5 cc of acetic acid were further added and stirred to dissolve them. 3
After an hour, the mixture was heated at a temperature of 150° C. to vaporize the solvent into a glass material containing phosphorus (P). On the other hand, another beaker was prepared, and in this beaker, α-terpineol and butylcarpitol acetate were heated and mixed at 70° C., ethyl cellulose resin was added, and the mixture was sufficiently mixed, and then cooled to room temperature. The above-mentioned glass substance containing phosphorus was added to this and mixed to obtain a paste-like diffusing agent.

次に、第1C図を参照して、ペースト状拡散剤10が印
刷された半導体基板1を200℃で10分間加熱し、乾
燥させた後、酸素と窒素の雰囲気中、950℃、30分
の熱処理を行なって、約0゜6μmの深さの深い拡散層
8を形成した。その後、表面をフッ酸液で洗浄し、半導
体基板1の主表面からペースト状拡散剤10を除去した
Next, referring to FIG. 1C, the semiconductor substrate 1 on which the pasty diffusing agent 10 is printed is heated at 200° C. for 10 minutes, dried, and then heated at 950° C. for 30 minutes in an atmosphere of oxygen and nitrogen. Heat treatment was performed to form a deep diffusion layer 8 with a depth of approximately 0.6 μm. Thereafter, the surface was cleaned with a hydrofluoric acid solution to remove the paste-like diffusing agent 10 from the main surface of the semiconductor substrate 1.

次に、第1D図を参照して、半導体基板1の主表面をP
 OCIL s雰囲気にさらし、850℃で15分間拡
散処理を行なった。すると、半導体基板1の主面に、約
0.2μmの浅い拡散層9が形成された。続いて、CV
D法でTiO2反射防止膜11を半導体基板1の主表面
上に形成した。次に、半導体基板1の裏面に、Allペ
ーストの焼成により、高濃度P+層13を形成し、焼成
AfLペーストを背面電極12として用いた。最後に、
TiO2反射防止膜11の上に直接導電性銀ベーストを
印刷し、600℃で焼成して、TiO□膜を貫通させて
、受光面電極5設け、太陽電池を作製した。
Next, referring to FIG. 1D, the main surface of semiconductor substrate 1 is
It was exposed to an OCIL s atmosphere and subjected to diffusion treatment at 850° C. for 15 minutes. As a result, a shallow diffusion layer 9 of about 0.2 μm was formed on the main surface of the semiconductor substrate 1. Next, CV
A TiO2 antireflection film 11 was formed on the main surface of the semiconductor substrate 1 by method D. Next, a high concentration P+ layer 13 was formed on the back surface of the semiconductor substrate 1 by baking the All paste, and the baked AfL paste was used as the back electrode 12. lastly,
A conductive silver base plate was directly printed on the TiO2 antireflection film 11 and fired at 600°C to penetrate the TiO□ film to provide a light-receiving surface electrode 5, thereby producing a solar cell.

このようにして作製された太陽電池は、受光面電極5の
直下の部分が深い拡散層8となっているので、接合が深
く、リーク電流が少ない。また、受光電極5の直下部分
以外の部分は、浅い拡散層9で形成されているので、短
波長側の分光感度が向上し、変換効率が向上する。
In the solar cell manufactured in this manner, the portion directly below the light-receiving surface electrode 5 is a deep diffusion layer 8, so the junction is deep and leakage current is small. Furthermore, since the portion other than the portion immediately below the light-receiving electrode 5 is formed by the shallow diffusion layer 9, the spectral sensitivity on the short wavelength side is improved and the conversion efficiency is improved.

第2図は、上述のようにして形成された太陽電池の電圧
−電流特性を調べたものである。図中、Aで示す曲線は
、本発明の製造方法によって作製された太陽電池の特性
図である。Bで示す曲線は、拡散層全面が浅い接合深さ
(約0.2μm)を有する素子の特性図である。Cは、
第5E図に示す、浅い接合深さ(0,2μm)と深い接
合深さを有する素子の特性図である。第2図より明らか
なように、本発明の素子A(接合深さ約0.2μm)で
は、リーク電流が少なく、従来素子Cと比較して、短絡
電流密度が約1.2mA/cm2向上していることがわ
かった。また変換効率では従来素子Cの15゜696よ
り0. 5%高い16.1%の値が得られた。
FIG. 2 shows an investigation of the voltage-current characteristics of the solar cell formed as described above. In the figure, the curve indicated by A is a characteristic diagram of a solar cell manufactured by the manufacturing method of the present invention. The curve indicated by B is a characteristic diagram of a device in which the entire surface of the diffusion layer has a shallow junction depth (approximately 0.2 μm). C is
5E is a characteristic diagram of a device having a shallow junction depth (0.2 μm) and a deep junction depth; FIG. As is clear from FIG. 2, element A of the present invention (junction depth of about 0.2 μm) has a small leakage current, and compared to conventional element C, the short circuit current density has improved by about 1.2 mA/cm2. I found out that In addition, the conversion efficiency is 0.0% compared to the conventional element C's 15°696. A value of 16.1%, which is 5% higher, was obtained.

第3図は、本発明の素子Aと第5E図に示す従来素子C
および拡散層全面が従来接合深さ(0゜3μm)の素子
りの分光感度特性を比較して示したものである。第3図
より明らかなように、本発明素子Aでは、約500nm
以下の短波長側の感度が改善されていることがわかった
。なお、素子Cの長波長側での分光感度低下は、第5B
図で示す二酸化ケイ素膜7を1000℃の高温で形成し
たためと考えられる。
FIG. 3 shows a device A of the present invention and a conventional device C shown in FIG. 5E.
This figure shows a comparison of the spectral sensitivity characteristics of a device in which the entire surface of the diffusion layer has a conventional junction depth (0.degree. 3 .mu.m). As is clear from FIG. 3, in the device A of the present invention, approximately 500 nm
It was found that the following sensitivity on the short wavelength side was improved. Note that the decrease in spectral sensitivity on the long wavelength side of element C is due to the 5B
This is probably because the silicon dioxide film 7 shown in the figure was formed at a high temperature of 1000°C.

なお、上記実施例では、半導体基板として単結晶シリコ
ン基板を使用した場合を例示したが、本発明はこのもの
に限られるものでなく、多結晶シリコン基板を用いても
実施例と同様の効果を実現する。
In the above embodiment, a single crystal silicon substrate is used as the semiconductor substrate, but the present invention is not limited to this, and even if a polycrystalline silicon substrate is used, the same effects as in the embodiment can be obtained. Realize.

また、上記実施例では、シリコン基板にP型シリコン基
板を用いた場合を例示したが、n型シリコン基板を用い
て、p型不純物を拡散させるようにしても、実施例と同
様の効果を実現する。
Further, in the above embodiment, a case where a P-type silicon substrate is used as the silicon substrate is exemplified, but even if an n-type silicon substrate is used and p-type impurities are diffused, the same effect as in the embodiment can be achieved. do.

さらに、上記実施例ではN型不純物となる原料としてP
2O,を例示したが、この発明はこれに限定されない。
Furthermore, in the above example, P is used as a raw material to become an N-type impurity.
2O, is shown as an example, but the present invention is not limited thereto.

以上、具体的な実施例を上げてこの発明を説明したが、
本明細書に記載した好ましい実施例は例示的なものであ
り、限定的なものでない。本発明の範囲は特許請求の範
囲によって示されており、その特許請求の範囲の意味の
中に含まれるすべての変形は本願発明に含まれるもので
ある。
This invention has been described above with reference to specific examples, but
The preferred embodiments described herein are illustrative and not restrictive. The scope of the present invention is indicated by the claims, and all modifications that come within the meaning of the claims are intended to be included in the present invention.

[発明の効果] 以上説明したとおり、この発明によれば、半導体基板の
主表面上であって、受光面電極を形成する部分に、半導
体基板とは反対の導電型である第2の導電型の不純物を
含むペースト状拡散剤を印刷し、その後、該ペースト状
拡散剤が印刷された半導体基板に熱処理を施して、上記
第2の導電型の不純物を半導体基板の主表面に拡散させ
、上記受光面電極を形成する部分の直下に位置する半導
体基板の主表面に該m2の導電型不純物で形成される深
い第1の拡散層を形成する。このような工程は簡単なプ
ロセスであり、コストがあまりかからず、リーク電流の
少ない素子が得られる。そして、深い第1の拡散層を形
成した後、半導体基板の主表面に第2の導電型の不純物
で形成される浅い第2の拡散層を形成すると、短波長側
の分光感度が向上した太陽電池が得られる。
[Effects of the Invention] As explained above, according to the present invention, a second conductivity type that is the opposite conductivity type to that of the semiconductor substrate is formed on the main surface of the semiconductor substrate in the portion where the light-receiving surface electrode is formed. A paste-like diffusing agent containing an impurity is printed, and then the semiconductor substrate on which the paste-like diffusing agent is printed is subjected to heat treatment to diffuse the impurity of the second conductivity type to the main surface of the semiconductor substrate, and the above-mentioned A deep first diffusion layer made of m2 conductivity type impurities is formed on the main surface of the semiconductor substrate located directly below a portion where a light-receiving surface electrode is to be formed. Such a process is a simple process, does not require much cost, and provides an element with low leakage current. After forming the deep first diffusion layer, a shallow second diffusion layer made of impurities of the second conductivity type is formed on the main surface of the semiconductor substrate. A battery is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A図〜第1D図は、この発明の一実施例の工程を
断面図で示したものである。第2図は本発明の素子と従
来素子との電圧−電流特性を比較した図である。第3図
は本発明の素子と従来素子との分光感度特性の比較図で
ある。第4A図〜第4E図は太陽電池の製造方法の従来
の工程図である。第5A図〜第5E図は、従来の太陽電
池の製造方法の他の例の工程図である。 図において、1は半導体基板、5は受光面電極、8は深
い拡散層、9は浅い拡散層、10はペースト状拡散剤で
ある。 なお、各図中、同一部分は同一または相当部分を示す。 第1A図 第1B図 第1C図 第3図 第1D図 城 長 800 1αη (ηvi) 第4A図 第4B図 第5A図 第58図
FIGS. 1A to 1D are cross-sectional views showing the steps of an embodiment of the present invention. FIG. 2 is a diagram comparing voltage-current characteristics between the device of the present invention and a conventional device. FIG. 3 is a comparison diagram of spectral sensitivity characteristics between the device of the present invention and a conventional device. FIGS. 4A to 4E are process diagrams of a conventional method for manufacturing a solar cell. FIGS. 5A to 5E are process diagrams of other examples of the conventional solar cell manufacturing method. In the figure, 1 is a semiconductor substrate, 5 is a light-receiving surface electrode, 8 is a deep diffusion layer, 9 is a shallow diffusion layer, and 10 is a paste-like diffusion agent. Note that in each figure, the same parts indicate the same or equivalent parts. Figure 1A Figure 1B Figure 1C Figure 3 Figure 1D Castle length 800 1αη (ηvi) Figure 4A Figure 4B Figure 5A Figure 58

Claims (1)

【特許請求の範囲】 半導体基板の主表面上に受光面電極が形成された太陽電
池の製造方法であって、 第1の導電型の前記半導体基板を準備する工程と、 前記半導体基板の主表面上であって、前記受光面電極を
形成する部分に、前記半導体基板とは反対の導電型であ
る第2の導電型の不純物を含むペースト状拡散剤を印刷
する工程と、 前記ペースト状拡散剤が印刷された前記半導体基板に熱
処理を施して、前記第2の導電型の不純物を前記半導体
基板の主表面に拡散させ、前記受光面電極を形成する部
分の直下に位置する前記半導体基板の主表面上に該第2
の導電型の不純物で形成される深い第1の拡散層を形成
する工程と、前記深い第1の拡散層を形成した後、前記
半導体基板の主表面に第2の導電型の不純物で形成され
る浅い第2の拡散層を形成する工程と、 を含む太陽電池の製造方法。
[Claims] A method for manufacturing a solar cell in which a light-receiving surface electrode is formed on the main surface of a semiconductor substrate, comprising: preparing the semiconductor substrate of a first conductivity type; and the main surface of the semiconductor substrate. printing a paste-like diffusing agent containing an impurity of a second conductivity type, which is an opposite conductivity type to that of the semiconductor substrate, on a portion where the light-receiving surface electrode is to be formed; is printed on the semiconductor substrate to diffuse the impurity of the second conductivity type into the main surface of the semiconductor substrate, and to diffuse impurities of the second conductivity type into the main surface of the semiconductor substrate located directly below the portion where the light-receiving surface electrode is to be formed. the second on the surface
a step of forming a deep first diffusion layer formed with an impurity of a conductivity type; and after forming the deep first diffusion layer, forming an impurity of a second conductivity type on the main surface of the semiconductor substrate; a step of forming a shallow second diffusion layer; and a method of manufacturing a solar cell.
JP63334675A 1988-12-28 1988-12-28 Manufacture of solar cell Pending JPH02177569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63334675A JPH02177569A (en) 1988-12-28 1988-12-28 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63334675A JPH02177569A (en) 1988-12-28 1988-12-28 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH02177569A true JPH02177569A (en) 1990-07-10

Family

ID=18279989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63334675A Pending JPH02177569A (en) 1988-12-28 1988-12-28 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH02177569A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420030B1 (en) * 2001-04-23 2004-02-25 삼성에스디아이 주식회사 Method for manufacturing solar cell
JP2008078665A (en) * 2006-09-22 2008-04-03 Commiss Energ Atom Method for producing doped region in substrate, and photovoltaic cell
WO2009037955A1 (en) * 2007-09-19 2009-03-26 Sharp Kabushiki Kaisha Method for manufacturing solar cell
KR100989322B1 (en) * 2009-02-05 2010-10-25 에스에스씨피 주식회사 Manufacturing Method of Solar Cell's Substrate Having Selective Emitter Structure And Solar Cell
JP2010534927A (en) * 2007-07-26 2010-11-11 ウニベルジテーツ コンスタンツ Silicon solar cell having emitter with back-etching and method of forming similar solar cell
JP2011124486A (en) * 2009-12-14 2011-06-23 Sharp Corp Method of manufacturing solar cell, and solar cell
JP2012231012A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2012231013A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd N-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar cell element
JP2012234989A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd N-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2012234990A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd P-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2014099660A (en) * 2010-04-23 2014-05-29 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
JP2014146808A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146813A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2014146811A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014150261A (en) * 2010-04-23 2014-08-21 Hitachi Chemical Co Ltd p-TYPE DIFFUSION LAYER FORMATION COMPOSITION, p-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2014170939A (en) * 2010-04-23 2014-09-18 Hitachi Chemical Co Ltd N-type diffusion layer-forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar battery element
JP2016006893A (en) * 2015-08-03 2016-01-14 日立化成株式会社 n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2016021589A (en) * 2015-09-14 2016-02-04 日立化成株式会社 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420030B1 (en) * 2001-04-23 2004-02-25 삼성에스디아이 주식회사 Method for manufacturing solar cell
JP2008078665A (en) * 2006-09-22 2008-04-03 Commiss Energ Atom Method for producing doped region in substrate, and photovoltaic cell
JP2013080954A (en) * 2007-07-26 2013-05-02 Universitat Konstanz Method for forming silicon solar cell having emitter subject to back etching and similar solar cell
JP2010534927A (en) * 2007-07-26 2010-11-11 ウニベルジテーツ コンスタンツ Silicon solar cell having emitter with back-etching and method of forming similar solar cell
EP2171762B1 (en) * 2007-07-26 2014-06-25 Universität Konstanz Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
US8586396B2 (en) 2007-07-26 2013-11-19 Universität Konstanz Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
WO2009037955A1 (en) * 2007-09-19 2009-03-26 Sharp Kabushiki Kaisha Method for manufacturing solar cell
KR100989322B1 (en) * 2009-02-05 2010-10-25 에스에스씨피 주식회사 Manufacturing Method of Solar Cell's Substrate Having Selective Emitter Structure And Solar Cell
JP2011124486A (en) * 2009-12-14 2011-06-23 Sharp Corp Method of manufacturing solar cell, and solar cell
JP2014170939A (en) * 2010-04-23 2014-09-18 Hitachi Chemical Co Ltd N-type diffusion layer-forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar battery element
CN104916531A (en) * 2010-04-23 2015-09-16 日立化成工业株式会社 Composition that forms n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
US9608143B2 (en) 2010-04-23 2017-03-28 Hitachi Chemical Co., Ltd. Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell
JP2014099660A (en) * 2010-04-23 2014-05-29 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
US9520529B2 (en) 2010-04-23 2016-12-13 Hitachi Chemical Co., Ltd. Composition for forming P-type diffusion layer, method of forming P-type diffusion layer, and method of producing photovoltaic cell
JP2014146808A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146813A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2014146811A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014150261A (en) * 2010-04-23 2014-08-21 Hitachi Chemical Co Ltd p-TYPE DIFFUSION LAYER FORMATION COMPOSITION, p-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2012231012A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2012231013A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd N-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar cell element
JP2012234990A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd P-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2012234989A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd N-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2016006893A (en) * 2015-08-03 2016-01-14 日立化成株式会社 n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2016021589A (en) * 2015-09-14 2016-02-04 日立化成株式会社 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Similar Documents

Publication Publication Date Title
JPH02177569A (en) Manufacture of solar cell
JP3032422B2 (en) Solar cell and method of manufacturing the same
TWI443162B (en) Paste and manufacturing method of solar cell using the same
RU2626053C2 (en) Solar battery and method of its manufacture
JP2000183379A (en) Method for manufacturing solar cell
JP4947654B2 (en) Dielectric film patterning method
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
KR101383940B1 (en) Silicon solar cell and Method thereof
US20130220414A1 (en) Back electrode type solar cell
JP2951061B2 (en) Solar cell manufacturing method
JPH114008A (en) Manufacture of thin film solar battery
JP3073833B2 (en) Solar cell manufacturing method
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JP3676954B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2004281569A (en) Method for producing solar cell element
JPS59178778A (en) Solar battery and manufacture thereof
JP3585391B2 (en) Solar cell manufacturing method
JP3368145B2 (en) Method of manufacturing solar cell
JPH1197726A (en) Manufacture of solar battery
JPS59117276A (en) Manufacture of solar battery
JPH0233980A (en) Manufacture of solar cell
JPS5979580A (en) Manufacture of solar battery
JP2835415B2 (en) Photoelectric conversion element
JPH0945945A (en) Solar cell element and fabrication thereof
JPH11214723A (en) Manufacture of solar battery element