JPH0217214B2 - - Google Patents

Info

Publication number
JPH0217214B2
JPH0217214B2 JP62048765A JP4876587A JPH0217214B2 JP H0217214 B2 JPH0217214 B2 JP H0217214B2 JP 62048765 A JP62048765 A JP 62048765A JP 4876587 A JP4876587 A JP 4876587A JP H0217214 B2 JPH0217214 B2 JP H0217214B2
Authority
JP
Japan
Prior art keywords
gas
carbon monoxide
membrane
absorption liquid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62048765A
Other languages
Japanese (ja)
Other versions
JPS63218231A (en
Inventor
Junichi Matsura
Tatsuki Oguchi
Munehisa Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62048765A priority Critical patent/JPS63218231A/en
Publication of JPS63218231A publication Critical patent/JPS63218231A/en
Publication of JPH0217214B2 publication Critical patent/JPH0217214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は気体分離に有用な反応混合物に関す
る。詳しくは沃化第一銅とNメチルイミダゾー
ル、さらにフエノール類及び/又はアニリン類を
溶媒中で混合して得られる反応混合物からなる気
体選択吸収液もしくは該反応混合物を支持体膜に
保持して得られる気体選択透過膜に関する。 〔従来の技術〕 天然ガス、軽ナフサ、重質油などの炭化水素の
水蒸気改質又は部分酸化により生成するガスや転
炉ガス、高炉ガス、コークス炉ガスなどの製鉄副
生ガスからの一酸化炭素の除去又は濃縮精製に有
用な分離技術はアンモニア合成における原料ガス
の製精や各種化学工業製品の合成用原料の製造
等、化学工業において重要な技術となつている。 一酸化炭素を含有する気体混合物から、これを
分離濃縮する方法として深冷分離法、吸収液法、
吸着法、膜法などの方法が実施されているが、そ
れぞれ技術的問題点を有している。 深冷分離法は複雑な冷凍、熱回収システムから
構成されており、操作温度が低温であるため装置
材料として高級材質を使用する必要があり建設費
が高い。又低温操作のため動力消費量が大きくな
る。更に装置内の閉そく事故防止のためにガス中
の不純物を前処理設備を設置して完全に除く必要
がある。 吸収液法としては、古くから塩酸酸性塩化第一
銅水溶液やアンモニア性第一銅水溶液を一酸化炭
素の吸収液として使用する方法が実施されてきた
が、吸収液の強い腐蝕性や沈澱物の生成、更には
建設費が高いなどの難点があつた。近年
COSORBプロセスと呼ばれる銅アルミニウム塩
化物のトルエン溶液を一酸化炭素の吸収液として
使用する吸収液法が開発され実用化されている。
この方法はガス中の不純物、特に前記の方法で前
処理による除去が必要とされる炭酸ガスが吸収さ
れないために分離精製される一酸化炭素の純度が
高いという長所を有する。しかし逆に水、硫化水
素、アンモニアなどを含有する混合ガスと接触す
ると吸収液中の塩化銅・塩化アルミニウム錯体
が、これらの不純物と不可逆的に反応し吸収液の
一酸化炭素吸収能が阻害される。又一酸化炭素の
吸収液からの脱離に加熱が必要である。 吸着法について言えば、最近ゼオライトを吸着
剤とする吸着法が開発され転炉ガス等に対して実
用機の運転が開始されている。この方法は常温で
の操作及び小規模の装置が可能であり、又従来の
吸収液法と比べると溶剤蒸発の問題がなく、安定
した接触操作が得られる反面、種類の異なるガス
間の吸着特性の差が小さく、転炉ガスのようにガ
ス中の一酸化炭素の濃度が高い場合はよいが、一
酸化炭素濃度が低い場合には高純度の一酸化炭素
を一段で得ることが困難と考えられる。又ゼオラ
イトの場合、炭酸ガスの方が一酸化炭素より吸着
され易いので、これを前段で除去する必要があ
る。更に吸着は加圧下に脱着は減圧下に行う必要
があり動力費が大きい。 最後に膜法について言えば従来気体混合物の分
離膜として各種の高分子膜が検討されている。し
かしこれらの通常の高分子膜のみを用いる場合は
一酸化炭素は他のガス例えば水素と比べて透過性
が低い。従つて例えば水素を過剰に含有するガス
混合物から水素を膜透過させて分離し残存ガス中
の水素と一酸化炭素の混合割合を変化する目的に
用いる場合には実用的に有用な方法であるが高濃
度の一酸化炭素を得る目的には選択性が低く適用
不可能である。 高分子膜では気体の透過係数が小さいが、膜が
液状の場合には気体の溶解係数、拡散係数が大き
くなり従つて透過係数を大きくすることが出来
る。更にこの様な液状の膜の中に、ある気体との
み選択的に可逆的相互作用を有する物質が含まれ
る場合にはその気体の透過性を更に上げることが
可能である。一方、膜の選択性能は膜への気体相
互の溶解度の差、膜中での気体相互の拡散速度の
差によつて与えられるので上記の如き特定の気体
とのみ選択的に可逆的相互作用を有する物質を膜
中に含む場合には、その気体のみの溶解度が大き
くなり選択性能も飛躍的に大きくすることが可能
である。 この様なある気体とのみ選択的に可逆的相互作
用を有する物質を含有する膜については多くの例
が知られており、例えばアルカリ金属の重炭酸塩
の水溶液による炭酸ガスの分離(特公昭45−1176
号公報)、硝酸銀水溶液によるオレフインの分離
(特公昭53−31842号公報)、塩化第一鉄のホルム
アミド溶液による一酸化窒素の分離(A.I Ch E
Journal vol 16 No.3 405ページ 1970年)
などがありこれらの液体膜は支持体となる膜に保
持して使用される。又一酸化炭素の分離について
は塩化銅の塩酸水溶液が知られているが、この場
合には濃厚な塩酸水溶液を使用しなければならな
い難点であつた。又透過の二次側(流出側)を減
圧にする場合は水蒸気や、塩化水素ガスの透過が
おこり他のガスと混入するという難点があつた。 以上のように、これまで各種の一酸化炭素の分
離法が開発されているが、それぞれに長所と欠点
があり問題点についてはその改良が望まれて来
た。 〔発明が解決しようとする問題点〕 本発明者らは一酸化炭素に対する選択的吸収分
離性能にすぐれ、常温での吸収脱離が可能で、
水、酸素などの不純物に接触しても一酸化炭素の
吸収能力が低下せず、腐蝕性がなく化学的に温和
でしかも安価に入手できる試薬を用いた気体選択
吸収液として有用な物質及びその物質を用いた気
体選択透過膜の開発を狙いとして研究を進め、こ
こに新規の気体の分離材を開発するに至つた。 〔問題点を解決するための手段〕 次に本発明の内容を詳細に説明する。 本発明は気体分離に有用な反応混合物に関す
る。詳しくは沃化第一銅、N−メチルイミダゾー
ル、さらにフエノール類及び/又はアニリン類を
溶媒中で混合して得られる反応混合物からなる気
体選択吸収液もしくは該反応混合物を支持体膜に
保持して得られる気体選択透過膜に関する。 本発明の気体選択吸収液及び気体選択透過膜
は、気体の中で特に一酸化炭素の分離精製に有効
である。 はじめに本発明の気体選択吸収液及び気体選択
透過膜からなる気体の分離材の一成分として使用
する銅化合物は沃化第一銅である。 次に本発明で使用するフエノール類及びアニリ
ン類について述べる。本発明で使用するフエノー
ル類及びアニリン類としては酸化カツプリング反
応を起しうる化合物であればよい。酸化カツプリ
ング反応とは、酸化により分子間結合を起こす反
応であり、例えば2,6−ジメチルフエノールに
ついてピリジン中塩化第一銅の存在下酸素を吹き
込むことによつて生起する2,6−ジメチルフエ
ノールのポリフエニレンオキサイド(PPO)へ
の重合反応として知られている反応である。酸化
カツプリング反応を起し得るフエノール類又はア
ニリン類は仏国特許1437406号および米国特許
3637534号で示されている化合物があげられる。
例えば一般式
INDUSTRIAL APPLICATION This invention relates to reaction mixtures useful in gas separation. Specifically, a gas selective absorption liquid consisting of a reaction mixture obtained by mixing cuprous iodide, N-methylimidazole, and phenols and/or anilines in a solvent, or a gas selective absorption liquid obtained by holding the reaction mixture on a support membrane. The present invention relates to a gas selectively permeable membrane. [Prior art] Monoxidation from gases produced by steam reforming or partial oxidation of hydrocarbons such as natural gas, light naphtha, and heavy oil, and from steelmaking byproduct gases such as converter gas, blast furnace gas, and coke oven gas. Separation technology useful for carbon removal or concentration purification has become an important technology in the chemical industry, such as in the purification of raw material gas in ammonia synthesis and in the production of raw materials for synthesis of various chemical industry products. Methods for separating and concentrating carbon monoxide from a gas mixture containing carbon monoxide include cryogenic separation method, absorption liquid method,
Methods such as adsorption method and membrane method have been implemented, but each method has technical problems. The cryogenic separation method consists of a complicated refrigeration and heat recovery system, and because the operating temperature is low, it is necessary to use high-grade materials as equipment materials, and the construction cost is high. Furthermore, power consumption increases due to low temperature operation. Furthermore, in order to prevent blockage accidents within the equipment, it is necessary to install pretreatment equipment to completely remove impurities from the gas. The absorption liquid method has long been practiced using hydrochloric acid acidic cuprous chloride aqueous solution or ammoniacal cuprous chloride aqueous solution as an absorption liquid for carbon monoxide. There were drawbacks such as high generation and construction costs. recent years
An absorption liquid method called the COSORB process, which uses a toluene solution of copper aluminum chloride as an absorption liquid for carbon monoxide, has been developed and put into practical use.
This method has the advantage that the purity of the separated and purified carbon monoxide is high because impurities in the gas, especially carbon dioxide, which needs to be removed by pretreatment in the above method, are not absorbed. However, when it comes into contact with a mixed gas containing water, hydrogen sulfide, ammonia, etc., the copper chloride/aluminum chloride complex in the absorbent reacts irreversibly with these impurities, inhibiting the absorbent's ability to absorb carbon monoxide. Ru. Also, heating is required to remove carbon monoxide from the absorption liquid. Regarding adsorption methods, an adsorption method using zeolite as an adsorbent has recently been developed, and practical equipment has started operating for converter gas and the like. This method allows operation at room temperature and small-scale equipment, and compared to the conventional absorption liquid method, there is no problem of solvent evaporation and stable contact operation can be obtained. This is good when the difference in carbon monoxide is small and the concentration of carbon monoxide in the gas is high, such as in converter gas, but when the concentration of carbon monoxide is low, it is considered difficult to obtain high-purity carbon monoxide in one step. It will be done. In addition, in the case of zeolite, carbon dioxide gas is more easily adsorbed than carbon monoxide, so it is necessary to remove it in the first stage. Furthermore, adsorption must be performed under increased pressure and desorption must be performed under reduced pressure, resulting in high power costs. Finally, regarding membrane methods, various polymer membranes have been studied as separation membranes for gas mixtures. However, when only these ordinary polymer membranes are used, the permeability of carbon monoxide is lower than that of other gases such as hydrogen. Therefore, for example, it is a practically useful method when used for the purpose of separating hydrogen from a gas mixture containing excess hydrogen by permeating it through a membrane and changing the mixing ratio of hydrogen and carbon monoxide in the residual gas. The selectivity is low and it cannot be applied to the purpose of obtaining high concentration carbon monoxide. A polymer membrane has a small gas permeation coefficient, but when the membrane is liquid, the gas solubility coefficient and diffusion coefficient become large, and therefore the permeation coefficient can be increased. Furthermore, if such a liquid membrane contains a substance that selectively and reversibly interacts only with a certain gas, it is possible to further increase the permeability of that gas. On the other hand, the selective performance of a membrane is given by the difference in the solubility of gases in the membrane and the difference in the rate of diffusion of gases in the membrane. When the membrane contains a substance having the above-mentioned properties, the solubility of only that gas increases, and the selectivity can be dramatically increased. Many examples are known of such membranes containing substances that selectively and reversibly interact only with certain gases. −1176
Separation of olefin using silver nitrate aqueous solution (Japanese Patent Publication No. 53-31842), Separation of nitric oxide using formamide solution of ferrous chloride (AI Ch E
Journal vol 16 No. 3 405 pages 1970)
These liquid membranes are used by being held on a membrane that serves as a support. Furthermore, for the separation of carbon monoxide, an aqueous solution of copper chloride in hydrochloric acid is known, but in this case it is difficult to use a concentrated aqueous solution of hydrochloric acid. Furthermore, when reducing the pressure on the secondary side (outflow side) of permeation, there is a problem that water vapor and hydrogen chloride gas permeate and mix with other gases. As described above, various methods for separating carbon monoxide have been developed, but each has advantages and disadvantages, and improvements have been desired to address the problems. [Problems to be solved by the invention] The present inventors have developed a method that has excellent selective absorption and separation performance for carbon monoxide, and is capable of absorption and desorption at room temperature.
Substances useful as gas selective absorption liquids that do not reduce their carbon monoxide absorption capacity even when they come into contact with impurities such as water and oxygen, are non-corrosive, are chemically mild, and use inexpensively available reagents. We conducted research with the aim of developing gas selective permeation membranes using substances, and this led to the development of a new gas separation material. [Means for Solving the Problems] Next, the content of the present invention will be explained in detail. The present invention relates to reaction mixtures useful in gas separation. Specifically, a gas selective absorption liquid consisting of a reaction mixture obtained by mixing cuprous iodide, N-methylimidazole, and phenols and/or anilines in a solvent, or a gas selective absorption liquid obtained by holding the reaction mixture on a support membrane. The present invention relates to the gas selectively permeable membrane obtained. The gas selective absorption liquid and gas selective permeation membrane of the present invention are particularly effective in separating and purifying carbon monoxide among gases. First, the copper compound used as a component of the gas separation material comprising the gas selective absorption liquid and the gas selective permeation membrane of the present invention is cuprous iodide. Next, the phenols and anilines used in the present invention will be described. The phenols and anilines used in the present invention may be any compound that can cause an oxidative coupling reaction. The oxidative coupling reaction is a reaction that causes intermolecular bonding through oxidation. This reaction is known as the polymerization reaction to polyphenylene oxide (PPO). Phenols or anilines that can undergo oxidative coupling reactions are disclosed in French Patent No. 1437406 and US Patent No.
Examples include the compound shown in No. 3637534.
For example, general formula

【式】(R1,R2はアルキ ル基、フエニル基、ベンジル基、アルコキシ基、
ビニル基、アリル基、ハロゲン、水素原子を示
す)の化合物や一般式
[Formula] (R 1 and R 2 are alkyl group, phenyl group, benzyl group, alkoxy group,
(vinyl group, allyl group, halogen, hydrogen atom) compounds and general formulas

【式】及び[Formula] and

〔実施例〕〔Example〕

次に本発明を実施例により説明する。 参考例 1 二方コツク及び三方コツクを接続した二口のナ
ス型フラスコ(コツクで閉じた空間の内容積は49
ml)を用意し、二方コツクをガスビユーレツト
に、三方コツクを真空ポンプ及び窒素供給ライン
に接続した。又ガスビユーレツトには更に真空ポ
ンプ及び一酸化炭素供給ラインを接続した。 上記ナス型フラスコにテフロン回転子を入れ窒
素気流下に沃化第一銅2ミリモル及びN−メチル
イミダゾール2mlを添加して一時間撹拌下に混合
して後一夜放置した。かくして得られた均一溶液
を含むナス型フラスコ内を真空ポンプで脱気し撹
拌下にガスビユーレツトから一酸化炭素を導入し
20℃における一酸化炭素の吸収量を経時的に測定
した。この際フラスコ内の空間部分を埋めるに要
する一酸化炭素の容量をガスビユーレツトの変化
量から差し引いて実際の一酸化炭素の吸収量とし
て計算した。その結果、沃化第一銅1モル当り
0.56モルに相当する一酸化炭素吸収量が得られ
た。 比較例 1 参考例1と同様に沃化第一銅2ミリモル及びN
−メチルイミダゾール2mlを添加し、約一時間窒
素雰囲気下に撹拌混合した。次にフラスコ内を真
空ポンプで一旦脱気後、酸素を導入して復圧し常
圧とした。この状態で一時間撹拌後真空ポンプで
脱気し、参考例1と同じ装置及び方法を用いて一
酸化炭素の吸収量を測定した。その結果、沃化銅
1モル当り0.13モルに相当する一酸化炭素吸収量
しか得られなかつた。参考例1との比較から上記
沃化第一銅とN−メチルイミダゾールの反応混合
物は酸素との接触により一酸化炭素吸収能力が低
下することがわかる。 実施例 1 沃化第一銅2ミリモル、N−メチルイミダゾー
ル2mlのかわりに沃化第一銅2ミリモル、2,6
−ジメチルフエノール4ミリモル、N−メチルイ
ミダゾール2mlの反応混合物を一酸化炭素吸収液
として使用する以外は比較例1と同様に行い、一
酸化炭素の吸収量を測定した。その結果沃化銅1
モル当り0.42モルに相当する一酸化炭素吸収量を
得た。比較例1との比較から2,6−ジメチルフ
エノールを添加することにより酸素との接触によ
る一酸化炭素吸収能力の低下がかなり改善され
た。 実施例 2 沃化第一銅2ミリモル、N−メチルイミダゾー
ル2mlのかわりに沃化第一銅2ミリモル、アニリ
ン4ミリモル、N−メチルイミダゾール2mlの反
応混合物を一酸化炭素吸収液として使用する以外
は比較例1と同様に行い、一酸化炭素の吸収量を
測定した。その結果沃化銅1モル当り0.32モルに
相当する一酸化炭素吸収量を得た。比較例1との
比較からアニリンを添加することにより酸素との
接触による一酸化炭素吸収能力の低下が改善され
た。 〔発明の効果〕 かくして得られた気体分離に有用な反応混合物
は主として一酸化炭素の分離に有利に使用出来
る。例えば天然ガス、軽ナフサ、重質油などの炭
化水素の水蒸気改質又は部分酸化で得られる合成
ガス、石炭のガス化及び製鉄の副生ガスとして得
られる一酸化炭素を含む混合ガス等から主として
一酸化炭素を高収率で分離し、各種の化学反応に
原料として使用することが出来る。
Next, the present invention will be explained by examples. Reference example 1 A two-neck eggplant-shaped flask with a two-way kettle and a three-way kettle connected (the internal volume of the space closed by the kettle is 49
ml) was prepared, and the two-way pot was connected to the gas brewet, and the three-way pot was connected to the vacuum pump and nitrogen supply line. A vacuum pump and a carbon monoxide supply line were also connected to the gas brewet. A Teflon rotor was placed in the eggplant-shaped flask, and 2 mmol of cuprous iodide and 2 ml of N-methylimidazole were added under a nitrogen stream, mixed for one hour with stirring, and then left overnight. The inside of the eggplant-shaped flask containing the homogeneous solution thus obtained was degassed using a vacuum pump, and carbon monoxide was introduced from the gas bottle while stirring.
The amount of carbon monoxide absorbed at 20°C was measured over time. At this time, the actual amount of absorbed carbon monoxide was calculated by subtracting the amount of carbon monoxide required to fill the space inside the flask from the amount of change in the gas bottle. As a result, per mole of cuprous iodide
A carbon monoxide uptake corresponding to 0.56 mol was obtained. Comparative Example 1 Same as Reference Example 1, 2 mmol of cuprous iodide and N
- 2 ml of methylimidazole was added and mixed with stirring under nitrogen atmosphere for about 1 hour. Next, the inside of the flask was once degassed using a vacuum pump, and then oxygen was introduced to restore the pressure to normal pressure. After stirring in this state for one hour, the mixture was degassed using a vacuum pump, and the amount of carbon monoxide absorbed was measured using the same equipment and method as in Reference Example 1. As a result, only an amount of carbon monoxide absorbed corresponding to 0.13 mol per mol of copper iodide was obtained. A comparison with Reference Example 1 shows that the carbon monoxide absorption capacity of the reaction mixture of cuprous iodide and N-methylimidazole decreases when it comes into contact with oxygen. Example 1 2 mmol of cuprous iodide, 2 mmol of cuprous iodide instead of 2 ml of N-methylimidazole, 2,6
Comparative Example 1 was repeated, except that a reaction mixture of 4 mmol of -dimethylphenol and 2 ml of N-methylimidazole was used as the carbon monoxide absorption liquid, and the amount of carbon monoxide absorbed was measured. As a result, copper iodide 1
A carbon monoxide uptake corresponding to 0.42 moles per mole was obtained. In comparison with Comparative Example 1, the addition of 2,6-dimethylphenol significantly improved the decrease in carbon monoxide absorption capacity due to contact with oxygen. Example 2 Except that a reaction mixture of 2 mmol of cuprous iodide, 4 mmol of aniline, and 2 ml of N-methylimidazole was used as the carbon monoxide absorption liquid instead of 2 mmol of cuprous iodide and 2 ml of N-methylimidazole. The same procedure as in Comparative Example 1 was conducted to measure the amount of carbon monoxide absorbed. As a result, an amount of carbon monoxide absorbed corresponding to 0.32 mol per mol of copper iodide was obtained. In comparison with Comparative Example 1, the addition of aniline improved the reduction in carbon monoxide absorption capacity due to contact with oxygen. [Effects of the Invention] The thus obtained reaction mixture useful for gas separation can be advantageously used primarily for the separation of carbon monoxide. For example, it mainly consists of synthetic gas obtained by steam reforming or partial oxidation of hydrocarbons such as natural gas, light naphtha, and heavy oil, and mixed gas containing carbon monoxide obtained as a byproduct gas of coal gasification and steel manufacturing. Carbon monoxide can be separated in high yield and used as a raw material for various chemical reactions.

Claims (1)

【特許請求の範囲】[Claims] 1 沃化第一銅とN−メチルイミダゾール、さら
にフエノール類及び/又はアニリン類を混合して
得られる一酸化炭素の分離材。
1 A carbon monoxide separation material obtained by mixing cuprous iodide, N-methylimidazole, and further phenols and/or anilines.
JP62048765A 1987-03-05 1987-03-05 Separation material of gas Granted JPS63218231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048765A JPS63218231A (en) 1987-03-05 1987-03-05 Separation material of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048765A JPS63218231A (en) 1987-03-05 1987-03-05 Separation material of gas

Publications (2)

Publication Number Publication Date
JPS63218231A JPS63218231A (en) 1988-09-12
JPH0217214B2 true JPH0217214B2 (en) 1990-04-19

Family

ID=12812371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048765A Granted JPS63218231A (en) 1987-03-05 1987-03-05 Separation material of gas

Country Status (1)

Country Link
JP (1) JPS63218231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640353B2 (en) * 2009-11-09 2014-12-17 株式会社豊田中央研究所 Nitrogen oxide separation membrane, and nitrogen oxide separation device, nitrogen oxide separation method, nitrogen oxide purification device, and nitrogen oxide purification method using the same
EP2554243A4 (en) 2010-03-29 2015-06-03 Toshiba Kk Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
JP2014097498A (en) * 2013-12-26 2014-05-29 Toshiba Corp Acid gas absorbent, acid gas removal device and acid gas removal method
CN106232213B (en) 2014-05-01 2019-08-27 沙特基础工业全球技术有限公司 With composite membrane, manufacturing method and its separation assembly comprising poly- (phenylene ether) and the support of amphipathic polymer
KR20170002516A (en) 2014-05-01 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. Skinned asymmetric polyphenylene ether co-polymer membrane gas separation unit and preparation method thereof
KR20160147989A (en) 2014-05-01 2016-12-23 사빅 글로벌 테크놀러지스 비.브이. Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
KR20170005039A (en) 2014-05-01 2017-01-11 사빅 글로벌 테크놀러지스 비.브이. Amphiphilic block copolymercomposition membrane and separation module thereofand methods of making same
US10421046B2 (en) 2015-05-01 2019-09-24 Sabic Global Technologies B.V. Method for making porous asymmetric membranes and associated membranes and separation modules
US11077405B2 (en) 2016-03-04 2021-08-03 Asahi Kasei Kabushiki Kaisha Module for gas separation, and gas separation method
US10307717B2 (en) 2016-03-29 2019-06-04 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine

Also Published As

Publication number Publication date
JPS63218231A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
US10526260B2 (en) Method for adsorption separation of propylene and propyne
JP3411316B2 (en) Nitrogen adsorption and desorption composition and method for separating nitrogen
US20220096992A1 (en) Method for the adsorptive separation of ethylene and ethane using ultramicroporous metal-organic framework
CA2291388C (en) Purification of gases
JPH0217214B2 (en)
JP2764178B2 (en) Method for producing high-purity hydrogen by catalytic reforming of methanol
KR20200049768A (en) Method and apparatus for the production of hydrogen
US4818255A (en) Material for gas separation
JPH0218896B2 (en)
CA2261771C (en) Method for providing oxygen in gas process
JPH0218895B2 (en)
CN114682231B (en) Cyano MOFs adsorbent for selectively adsorbing acetylene, preparation method and application
US20220081397A1 (en) Hydrogen-bonded organic framework for separating alkenes from alkanes
JPH0384B2 (en)
CN116333331B (en) High-stability cage-based metal organic framework material and preparation method and application thereof
JPH0716604B2 (en) Carbon monoxide adsorbent
JPS634844A (en) Adsorbent for carbon monoxide
JP3009758B2 (en) Cobalt Schiff base complex and oxygen separation process using the same
JPS646812B2 (en)
JPH0149643B2 (en)
CN114230520A (en) Bimetallic composite N-amyl imidazole thiocyanate ionic liquid, preparation method thereof and application thereof in CO treatment
JPS62237942A (en) Preparation of carbon monoxide adsorbent
JPH0324403B2 (en)
JPH0386239A (en) Production of gas separating material
JPS62201622A (en) Separation of unsaturated hydrocarbon by absorption

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term