JPH02170331A - X-ray image tube - Google Patents
X-ray image tubeInfo
- Publication number
- JPH02170331A JPH02170331A JP32492488A JP32492488A JPH02170331A JP H02170331 A JPH02170331 A JP H02170331A JP 32492488 A JP32492488 A JP 32492488A JP 32492488 A JP32492488 A JP 32492488A JP H02170331 A JPH02170331 A JP H02170331A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescent layer
- input
- continued
- thin film
- photocathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 abstract description 21
- 239000002184 metal Substances 0.000 abstract description 21
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 15
- 239000012528 membrane Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 239000004809 Teflon Substances 0.000 abstract 1
- 229920006362 Teflon® Polymers 0.000 abstract 1
- 239000004744 fabric Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 82
- 239000011241 protective layer Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000007517 polishing process Methods 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005498 polishing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- HFGHRUCCKVYFKL-UHFFFAOYSA-N 4-ethoxy-2-piperazin-1-yl-7-pyridin-4-yl-5h-pyrimido[5,4-b]indole Chemical compound C1=C2NC=3C(OCC)=NC(N4CCNCC4)=NC=3C2=CC=C1C1=CC=NC=C1 HFGHRUCCKVYFKL-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明はX線イメージ管に係り、特にその人力面の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) This invention relates to an X-ray image tube, and particularly to improvements in its human power.
(従来の技術)
一般にX線イメージ管は、真空外囲器内の入力側に入力
面が設けられ、出力側に陽極及び出力面が設けられてい
る。更に、真空外囲器内の側壁に沿い入力側から出力側
にかけて、集束電極が配設されている。(Prior Art) Generally, an X-ray image tube is provided with an input surface on the input side within a vacuum envelope, and an anode and an output surface on the output side. Further, a focusing electrode is disposed along the side wall inside the vacuum envelope from the input side to the output side.
ところで、従来の入力面は第10図及び第11図に示す
ように構成され、第11図は第10図の人力面の周辺部
110を拡大模式化したものである。By the way, the conventional input surface is constructed as shown in FIGS. 10 and 11, and FIG. 11 is an enlarged schematic diagram of the peripheral portion 110 of the human input surface in FIG. 10.
即ち、入力面は、表面が平滑な入力基板101と、この
人力基板101上に低真空度の下に蒸着法で形成されN
aで活性化されたCslを母体とする第1蛍光層102
と、この第1蛍光層102上に高真空度の下に蒸着法で
形成された第2蛍光層103と、これら第1蛍光層10
2、第2蛍光層103及び人力基板101のそれぞれ各
周縁部を覆うように形成された環状金属薄膜104と、
第2蛍光層103上に直接又は他の薄層を介して間接的
に形成された光電面(図示せず)とからなっている。That is, the input surface is formed by an input substrate 101 with a smooth surface and an evaporation method on this human-powered substrate 101 under a low degree of vacuum.
A first fluorescent layer 102 whose base material is Csl activated by a.
A second fluorescent layer 103 is formed on the first fluorescent layer 102 by vapor deposition under a high degree of vacuum, and these first fluorescent layers 10
2. An annular metal thin film 104 formed to cover each peripheral edge of the second fluorescent layer 103 and the human-powered board 101;
It consists of a photocathode (not shown) formed directly on the second fluorescent layer 103 or indirectly through another thin layer.
そして、第1蛍光層102と第2蛍光層103とにより
、いわゆる入力蛍光層105が構成されている。The first fluorescent layer 102 and the second fluorescent layer 103 constitute a so-called input fluorescent layer 105.
環状金属薄膜104は、第2蛍光層103上の光電面と
、入力面を保持する例えば金属薄板電極との間を電気的
に接続するための機能を有している。又、環状金属薄膜
104の内径は、はぼ入力面の有効径の値に設定される
。環状金属薄膜104の他の機能として、入力蛍光層1
05の有効径外の部分からの蛍光による電子放出を遮断
する機能も有している。The annular metal thin film 104 has a function of electrically connecting the photocathode on the second fluorescent layer 103 and, for example, a metal thin plate electrode holding the input surface. Further, the inner diameter of the annular metal thin film 104 is set to the value of the effective diameter of the input surface. As another function of the annular metal thin film 104, the input fluorescent layer 1
It also has the function of blocking electron emission due to fluorescence from a portion outside the effective diameter of 05.
第1蛍光層102は5μm〜50μmの平均直径を有し
且つ入力基板101に対しほぼ垂直に成長したCslの
柱状結晶の集合体であり、代表的な膜厚は約400μm
である。このように、隣接し合ったCslの柱状結晶は
、互いに微細な隙間によって分離しているため、高い解
像特性を有する半面その表面に直接光電面が形成された
場合には、光電面も同様に分離した微小島状に区画され
てしまい、光電面の面に平行な方向の電気的な導通が得
られない。The first fluorescent layer 102 is an aggregate of Csl columnar crystals having an average diameter of 5 μm to 50 μm and grown almost perpendicular to the input substrate 101, and has a typical film thickness of about 400 μm.
It is. In this way, adjacent columnar crystals of Csl are separated from each other by minute gaps, so they have high resolution characteristics, but if a photocathode is formed directly on the surface, the photocathode will also be similar. The photocathode is divided into micro-islands, and electrical continuity in the direction parallel to the photocathode cannot be obtained.
その結果、光電面から放出される光電子の数の増加に伴
い、光電面の電位を一定に保つことが出来なくなり、X
線イメージ管の電子光学的な均一性が著しく損なわれ、
出力像の歪みや解像特性の劣化が引起こされる。As a result, as the number of photoelectrons emitted from the photocathode increases, it becomes impossible to keep the potential of the photocathode constant, and
The electron-optical uniformity of the line image tube is significantly impaired,
This causes distortion of the output image and deterioration of resolution characteristics.
そのため、第1蛍光層102の表面には、10μm〜3
0μmの膜厚の第2蛍光層103が形成される。この第
2蛍光層103は、比較的連続した表面を有しているた
め、この表面に形成される光電面の面に平行な方向の電
気的導通を確保することが出来る。Therefore, the surface of the first fluorescent layer 102 has a thickness of 10 μm to 3 μm.
A second fluorescent layer 103 with a thickness of 0 μm is formed. Since this second fluorescent layer 103 has a relatively continuous surface, it is possible to ensure electrical continuity in a direction parallel to the plane of the photocathode formed on this surface.
従来、入力基板101の上に第1蛍光層102と第2蛍
光層103を蒸着するために、第12図に示されるよう
な蒸着装置が使用され、入力基板101は蒸着槽109
内の自転可能な基板ホルダ106に固定される。そして
、入力基板10】を自転させながら蒸発源108から蛍
光体を低真空度の下で蒸発させ、人力基板101上に第
1蛍光層102を成膜する。基板ホルダー106の入力
基板101が直接載る部分の開口部の内径(以下、開口
径と呼ぶ)は、X線イメージ管の人力−有効径よりもや
や大きめの値に設定されている。Conventionally, in order to deposit a first fluorescent layer 102 and a second fluorescent layer 103 on an input substrate 101, a vapor deposition apparatus as shown in FIG.
It is fixed to a rotatable substrate holder 106 inside. Then, while rotating the input substrate 10, the phosphor is evaporated from the evaporation source 108 under a low degree of vacuum, and the first phosphor layer 102 is formed on the manual substrate 101. The inner diameter of the opening of the substrate holder 106 on which the input substrate 101 is directly placed (hereinafter referred to as the opening diameter) is set to a value slightly larger than the manual effective diameter of the X-ray image tube.
第1蛍光層102に続いてi2蛍光層103を成膜する
に当たって、蒸着槽109を大気圧に戻さず、又、入力
基板101を基板ホルダー106より取外すことなく、
高真空状態にて蒸着を再開させることは、原理上は全く
問題なく可能である。When forming the i2 phosphor layer 103 following the first phosphor layer 102, the deposition tank 109 is not returned to atmospheric pressure, and the input substrate 101 is not removed from the substrate holder 106.
In principle, it is possible to restart vapor deposition in a high vacuum state without any problem.
しかしながら、同一の基板ホルダー106にて、第2蛍
光層103の蒸着を引き続き行った場合、環状金属薄膜
104が部分的に不連続となり、実用化出来ないことが
判った。However, it has been found that when the second fluorescent layer 103 is successively deposited using the same substrate holder 106, the annular metal thin film 104 becomes partially discontinuous, making it impossible to put it into practical use.
以下、第10図に示される入力面の周辺部110を拡大
模式化した第11図を参照しながら、詳しく説明する。Hereinafter, a detailed explanation will be given with reference to FIG. 11, which is an enlarged schematic diagram of the peripheral portion 110 of the input surface shown in FIG. 10.
即ち、第11図でAと示した領域は基板ホルダー106
でマスクされた部分であり、Bと示した領域は基板ホル
ダー106でマスクされない部分、即ち、基板ホルダー
106の開口部に対応する部分である。第1蛍光層10
2は、低真空中で蒸着されるため、A領域にも一部回り
込んで成膜されている。一方、第2蛍光層103は、高
真空の下で蒸着されるため、A領域には殆ど成膜されな
い。That is, the area marked A in FIG.
The area marked B is the part that is not masked by the substrate holder 106, that is, the part corresponding to the opening of the substrate holder 106. First fluorescent layer 10
Since the film No. 2 is deposited in a low vacuum, the film partially wraps around the A region as well. On the other hand, since the second fluorescent layer 103 is deposited under high vacuum, almost no film is formed in the A region.
従って、第1蛍光層102の表面は、B領域では、第2
蛍光層103により連続性が高められているが、A領域
では、柱状結晶111間の隙間112が第2蛍光層10
3により埋められず、不連続な表面状態となっている。Therefore, the surface of the first fluorescent layer 102 is
Continuity is enhanced by the fluorescent layer 103, but in area A, the gaps 112 between the columnar crystals 111 are connected to the second fluorescent layer 10.
3, which results in a discontinuous surface condition.
この蛍光層の表面に成膜される環状金属薄膜104は、
例えばANを材料とし、0.1μm乃至10μmの厚み
に形成されるが、A領域に回り込んで成膜されている蛍
光層上では、柱状結晶111の表面に島状に成膜されて
、実質的に導通不能な状態となる。The annular metal thin film 104 formed on the surface of this fluorescent layer is
For example, the phosphor layer is made of AN and has a thickness of 0.1 μm to 10 μm. On the fluorescent layer that is formed around the A region, the film is formed in an island shape on the surface of the columnar crystal 111, and is substantially electrical conduction becomes impossible.
以上、説明したような問題が生じるため、従来は、第1
蛍光層102を成膜後、−U、蒸着装置から人力基板1
01を取出し、より大きい開口径を有する基板ホルダー
106に固定し直した後、蒸着工程を再開する必要があ
った。ここで、第1蛍光層102を成膜する場合の基板
ホルダー106の開口径をDI、第2蛍光層103を成
膜する場合の基板ホルダー106の開口径をD2、A領
域に回り込んで成膜された第1蛍光層102の長さをg
とするとき、Dl、D2、gの間には、D2≧D、−I
J
の関係が満たされる必要がある。上記のような2段階の
蛍光層の蒸着工程を踏んで第1蛍光層102と第2蛍光
層103を成膜した後、環状金属薄膜104を蒸着して
得られる入力面の周辺部を拡大模式化したものが第13
図である。Because of the problems explained above, conventionally, the first
After forming the fluorescent layer 102, -U, the manual substrate 1 is removed from the vapor deposition apparatus.
After removing 01 and fixing it again in the substrate holder 106 with a larger opening diameter, it was necessary to restart the deposition process. Here, the opening diameter of the substrate holder 106 when forming the first fluorescent layer 102 is DI, the opening diameter of the substrate holder 106 when forming the second fluorescent layer 103 is D2, and the opening diameter of the substrate holder 106 when forming the second fluorescent layer 103 is set as D2. The length of the first fluorescent layer 102 is g
Then, between Dl, D2, and g, D2≧D, -I
The relationship J needs to be satisfied. After forming the first fluorescent layer 102 and the second fluorescent layer 103 through the two-step fluorescent layer deposition process described above, an enlarged schematic view of the peripheral area of the input surface obtained by depositing the annular metal thin film 104 is shown. The one that became the 13th
It is a diagram.
第1蛍光層102のうちA領域に回り込んだ部分の表面
も第2蛍光層103で連続化されるため、環状金属薄膜
104が不連続となる部分は全く存在しなかった。Since the surface of the portion of the first fluorescent layer 102 that wrapped around the A region was also made continuous by the second fluorescent layer 103, there was no discontinuous portion of the annular metal thin film 104.
尚、第11図で説明した問題点は、光電面の下地として
導電性の中間層、例えば酸化インジウム膜や酸化インジ
ウムすず膜を使用した場合でも、全く改良することは出
来なかった。Incidentally, the problem explained in FIG. 11 could not be improved at all even when a conductive intermediate layer, such as an indium oxide film or an indium tin oxide film, was used as a base for the photocathode.
更に、第11図で説明した問題点を解消するために、環
状金属薄111104の厚みを増大させることも試みた
が、第11図のA領域に回り込んだ第1蛍光層102の
表面で連続膜を得るためには、数10μm以上の膜厚が
必要であり、その場合には、環状金属薄膜104の剥離
が生じ易く、この試みを採用することは出来なかった。Furthermore, in order to solve the problem explained in FIG. 11, an attempt was made to increase the thickness of the annular metal thin layer 111104, but it was not continuous on the surface of the first fluorescent layer 102 that wrapped around the area A in FIG. In order to obtain a film, a film thickness of several tens of μm or more is required, and in that case, peeling of the annular metal thin film 104 is likely to occur, so this attempt could not be adopted.
(発明が解決しようとする課[1)
従来の技術では、入力蛍光層の周辺部での表面の連続性
を確保するために、入力蛍光層の成膜に時間がかかり過
ぎ、高解像度のX線イメージ管を安価に製造するための
大きな妨げとなっていた。(Issue [1] to be solved by the invention) In the conventional technology, it takes too much time to form the input phosphor layer in order to ensure the continuity of the surface in the peripheral area of the input phosphor layer. This has been a major hindrance to manufacturing line image tubes at low cost.
この発明は、上記問題点を解消し、高解像度にして比較
的製作容易なX線イメージ管を提供することを目的とす
る。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an X-ray image tube that has high resolution and is relatively easy to manufacture.
[発明の構成]
(課題を解決するための手段)
この発明は、入力蛍光層における柱状結晶のうち、入力
面の有効径外に位置する柱状結晶の表面が機械的変形加
工により平坦化・連続化され、この平坦化・連続化され
た部分上に上記光電面に電気的につながる導電性薄膜が
被着されてなるX線イメージ管である。[Structure of the Invention] (Means for Solving the Problems) This invention provides a method in which the surfaces of the columnar crystals located outside the effective diameter of the input surface, among the columnar crystals in the input fluorescent layer, are flattened and made continuous by mechanical deformation processing. This is an X-ray image tube in which a conductive thin film electrically connected to the photocathode is deposited on the flattened and continuous portion.
(作用)
この発明によれば、有効径外の蛍光層の周辺部の光電面
と電極との電気的接続を確実に得ることが出来る。(Function) According to the present invention, electrical connection between the photocathode and the electrode at the peripheral portion of the fluorescent layer outside the effective diameter can be reliably obtained.
(実施例)
以下、図面を参照して、この発明の実施例(7例)を詳
細に説明する。(Examples) Hereinafter, embodiments (seven examples) of the present invention will be described in detail with reference to the drawings.
尚、この発明は上記の課題を解決するために入力面の入
力蛍光層を改良したもので、入力蛍光層についてのみ、
製造方法的に述べることにする。In order to solve the above problems, this invention improves the input fluorescent layer on the input surface, and only the input fluorescent layer has the following features:
I will explain the manufacturing method.
[実施例−1]
先ず、第12図に示されるような蒸着装置にて、基板ホ
ルダー106に第1図(a)、(b)及び第2図(a)
、(b)に示す人力基板201を固定し、自転させなが
ら低真空度の下でCsl蛍光体を蒸発させ、人力基板2
01上に第1蛍光層202を約400μmの膜厚で成膜
する。[Example-1] First, in a vapor deposition apparatus as shown in FIG. 12, the substrate holder 106 was coated with the materials shown in FIGS. 1(a), (b) and 2(a).
, the human-powered board 201 shown in (b) is fixed, and the Csl phosphor is evaporated under low vacuum while rotating.
A first fluorescent layer 202 is formed on 01 to a thickness of about 400 μm.
その後、蒸着槽109を大気圧に戻さず、高真空度の下
でCsl蛍光体を蒸発させ、第1蛍光層202上に5〜
20μmの膜厚で、第2蛍光層203を成膜させる。従
来例で既に説明したように、このままでは環状の導電性
薄膜204を成膜しても、第11図に示すように部分的
に導通不良となり、実用化出来ない。Thereafter, the Csl phosphor is evaporated under high vacuum without returning the vapor deposition tank 109 to atmospheric pressure, and the Csl phosphor is deposited on the first phosphor layer 202.
A second fluorescent layer 203 is formed to have a thickness of 20 μm. As already explained in the conventional example, even if the annular conductive thin film 204 is formed as it is, as shown in FIG. 11, there will be a partial conduction failure and it cannot be put to practical use.
そこで、第1図(b)に斜線で示した入力蛍光層の有効
径外の表面の一部分210を、ガーゼ等の布又はテフロ
ンのような比較的摩擦係数の小さい材料で出来たブロッ
クにて押圧しながら擦動させる。押圧力は2〜20g重
/ c m 2程度、擦動速度は2〜4cm/sec程
度である。Therefore, a part 210 of the surface outside the effective diameter of the input phosphor layer shown by diagonal lines in FIG. Rub it while doing so. The pressing force is about 2 to 20 g/cm 2 and the rubbing speed is about 2 to 4 cm/sec.
このような研磨工程を行なった部分を、導電性薄膜20
4として0.1μmの膜厚でAfIを蒸着した。その断
面を拡大、模式化したものが第2図である。A conductive thin film 20 is formed on the area where such polishing process has been performed.
As No. 4, AfI was deposited to a film thickness of 0.1 μm. FIG. 2 is an enlarged and schematic cross-sectional view.
上記の研出工程により、A領域(第11図参照)に回り
込んで成膜された第1蛍光層202の表面は、柱状結晶
の先端部分のみが塑性変形され、隣り同士が連結されて
平坦化・連続化される。その結果、その上に形成される
導電性薄膜204も連続化されて、十分低い表面抵抗値
が確保出来る。Through the above-mentioned polishing process, the surface of the first fluorescent layer 202 that is formed around the A area (see FIG. 11) is plastically deformed only at the tips of the columnar crystals, and the adjacent ones are connected to each other to make the surface flat. It becomes continuous. As a result, the conductive thin film 204 formed thereon is also made continuous, and a sufficiently low surface resistance value can be ensured.
第2図中の211は柱状結晶、212は隙間である。In FIG. 2, 211 is a columnar crystal, and 212 is a gap.
[実施例−2]
先ず、第3図(a)、(b)に示すように、蛍光層の周
辺部分をの2箇所を部分的に突出させた部分311を形
成し、この突出部分311の端部を研磨する。それによ
り、この実施例−2の方法では、上記研磨工程で有効径
内まで不所望に研磨されてしまう恐れが少ない。[Example 2] First, as shown in FIGS. 3(a) and 3(b), a portion 311 is formed by partially protruding two parts of the peripheral portion of the fluorescent layer, and the protruding portion 311 is Polish the edges. Therefore, in the method of Example-2, there is less possibility that the inside of the effective diameter will be undesirably polished in the polishing step.
そして、蛍光層の周辺部分に突出部分311を形成する
ためには、第12図に示したような基板ホルダー106
の開口径の円周上の一部を切り欠くことによって、容易
に実現することが出来る。In order to form the protruding portion 311 in the peripheral portion of the fluorescent layer, a substrate holder 106 as shown in FIG.
This can be easily achieved by cutting out a part of the circumference of the opening diameter.
尚、図中の301は入力基板、302は第1蛍光層、3
03は第2蛍光層、304は導電性薄膜である。In addition, 301 in the figure is an input board, 302 is a first fluorescent layer, and 3
03 is a second fluorescent layer, and 304 is a conductive thin film.
[実施例−3]
上記実施例−1、実施例−2では、光電面の下地となる
保護層を形成させない場合についてのべたが、第4図に
示すように研磨工程直後に保護層405を形成した後、
環状の導電性薄膜404を形成しても同様の作用効果が
得られる。[Example-3] In the above-mentioned Examples-1 and -2, the cases were described in which the protective layer serving as the base of the photocathode was not formed, but as shown in FIG. 4, the protective layer 405 was formed immediately after the polishing process. After forming,
Similar effects can be obtained by forming an annular conductive thin film 404.
特に、保護層405が導電性を有する場合には、導電性
薄膜404に代わって、不透明の非金属材料を用いた環
状薄膜を使用することも可能である。In particular, when the protective layer 405 is electrically conductive, it is also possible to use an annular thin film made of an opaque non-metallic material in place of the electrically conductive thin film 404.
尚、図中の401は人力基板、402は第1蛍光層、4
03は第2蛍光層である。In addition, 401 in the figure is a manual board, 402 is a first fluorescent layer, 4
03 is a second fluorescent layer.
[実施例−4]
上記実施例−3では、保護層405を研磨工程直後に成
膜させたが、第5図に示すように、保護層505を研磨
工程直前に成膜させても良い。[Example 4] In the above Example 3, the protective layer 405 was formed immediately after the polishing process, but as shown in FIG. 5, the protective layer 505 may be formed immediately before the polishing process.
研磨工程により、第1蛍光層502のみならず保護層5
05も機械的変形を受ける。保護層505として酸化シ
リコン、酸化インジウム、酸化インジウムすず等の酸化
物を材料とした場合、上記研磨により保護層505はク
ラック506が入ったり、一部剥離したりする(507
が剥離部分)が、一般に保護層505の膜厚は0.01
〜0.5μmと薄いため、その上に0.1〜10μmの
膜厚で形成される環状の導電性薄膜504の連続性を損
なうことはなく、上記実施例と同様の作用効果が得られ
る。By the polishing process, not only the first fluorescent layer 502 but also the protective layer 5
05 also undergoes mechanical deformation. When the protective layer 505 is made of an oxide such as silicon oxide, indium oxide, or indium tin oxide, the protective layer 505 may develop cracks 506 or be partially peeled off due to the above polishing (507).
is the peeled part), but the thickness of the protective layer 505 is generally 0.01
Since it is as thin as ~0.5 μm, the continuity of the annular conductive thin film 504 formed thereon with a thickness of 0.1 to 10 μm is not impaired, and the same effects as in the above embodiment can be obtained.
尚、図中の501は人力基板、503は第2蛍光層であ
る。Note that 501 in the figure is a human-powered board, and 503 is a second fluorescent layer.
[実施例−5]
光電面の下地層として保護層を使用する場合で、特に保
3層が導電性を有する場合には、第6図に示すように環
状の導電性薄膜604の成膜後に、保護層605を成膜
しても、上記実施例と同様の作用効果が得られる。[Example 5] When a protective layer is used as the underlayer of the photocathode, especially when the protective layer has conductivity, after forming the annular conductive thin film 604 as shown in FIG. Even if the protective layer 605 is formed, the same effects as in the above embodiment can be obtained.
尚、図中の601は入力基板、602は第1蛍光層、6
03は第2蛍光層である。In addition, 601 in the figure is an input board, 602 is a first fluorescent layer, and 6
03 is a second fluorescent layer.
[実施例−6]
以上、環状薄膜の成膜前に入力蛍光層の表面を研磨する
場合の実施例について述べたが、次に薄膜形成後、その
表面を研磨する例について述べる。[Example 6] Above, an example in which the surface of the input fluorescent layer is polished before the formation of the annular thin film has been described. Next, an example in which the surface is polished after the formation of the thin film will be described.
先ず、第11図と同様の人力蛍光層を形成する。First, a manual fluorescent layer similar to that shown in FIG. 11 is formed.
既に説明したように、第11図に示す人力蛍光層は、環
状の導電性薄膜の一部が電気的に導通が不能であり、実
現出来ない。As already explained, the artificial fluorescent layer shown in FIG. 11 cannot be realized because a part of the annular conductive thin film is not electrically conductive.
第7図は環状金属薄11i704の電気的導通不能領域
の一部表面をAI等の比較的硬い材質からなるブロック
にて押圧しながら擦動させて、環状金属薄膜704を塑
性変形させることにより連続性を高めた人力面を示す。In FIG. 7, a part of the surface of the non-electrically conductive region of the annular metal thin film 11i704 is pressed and rubbed with a block made of a relatively hard material such as AI, and the annular metal thin film 704 is plastically deformed. Demonstrates a highly developed human resource side.
環状金属薄膜704の電気的導通不能領域は、上記研磨
工程により電気的導通を確保出来ることが確かめられた
この環状金属薄11% 704の材料としては、比較的
塑性変形し易いANやSr又はInやTJ等の単体金属
やその他の合金を使用することが望ましい。The electrically non-conductive region of the annular metal thin film 704 is made of 11% annular metal thin film 704, which has been confirmed to be able to ensure electrical conduction through the polishing process described above. It is desirable to use single metals such as or TJ or other alloys.
環状金属薄膜704として、約5μm l!1厚のAg
膜を使用した場合、上記研磨条件は、押圧力約50/c
m2、擦動速度的4cm/seeで良好な結果を得た。The annular metal thin film 704 has a thickness of about 5 μm l! 1 thickness of Ag
When using a membrane, the above polishing conditions are a pressing force of approximately 50/c
Good results were obtained at a rubbing speed of 4 cm/see.
第7図に示した入力面をX線イメージ管に適用したとこ
ろ、光電面と外部電極との電気的導通を確保出来ること
が確かめられた。When the input surface shown in FIG. 7 was applied to an X-ray image tube, it was confirmed that electrical continuity between the photocathode and the external electrode could be ensured.
尚、図中の701は入力基板、702は第1蛍光層、7
03は第2蛍光層である。In the figure, 701 is an input board, 702 is a first fluorescent layer, and 702 is a first fluorescent layer.
03 is a second fluorescent layer.
[実施例−7]
上記実施例では、環状金属薄膜又は環状非金属薄膜を使
用した場合について述べたが、これら有効径外の蛍光層
からの蛍光が光電面に達するのを遮断する機能を存する
膜を全く使用しない実施例について述べる。[Example-7] In the above example, a case was described in which an annular metal thin film or an annular non-metal thin film was used, but these have the function of blocking fluorescence from the fluorescent layer outside the effective diameter from reaching the photocathode. An example will be described in which no membrane is used at all.
第8図は、上記実施例−3と同様に、第1蛍光層802
の表面を研磨後、導電性の保護層805を成膜した入力
蛍光層の部分断面図である。この入力蛍光層の上に光電
面を形成する場合、外部電極と光電面の間の電気的な接
続は、導電性保護層805によって確保される。FIG. 8 shows a first fluorescent layer 802 similar to Example-3 above.
FIG. 3 is a partial cross-sectional view of the input fluorescent layer in which a conductive protective layer 805 is formed after polishing the surface of the input fluorescent layer. When forming a photocathode on this input fluorescent layer, electrical connection between the external electrode and the photocathode is ensured by the conductive protective layer 805.
尚、図中の801は人力基板、803は第2蛍光層であ
る。Note that 801 in the figure is a human-powered board, and 803 is a second fluorescent layer.
この実施例−7の入力面を使用したX線イメージ管を第
9図に示す。即ち、人力面901は、人力面901の有
効径外の蛍光層からの発光は全く遮断されないため、有
効径外の蛍光層表面に形成された光電面からも光電子9
06が出力面902へと加速集束される。そこで、出力
面902近傍に、上記入力面有効径外の蛍光層からの光
電子906を出力面902に入射させないマスク903
を配置することによって、出力面902に入射する光電
子906を入力面の有効径内からの光電子907のみに
制限することが可能である。FIG. 9 shows an X-ray image tube using the input surface of Example 7. That is, since the human power surface 901 does not block light emission from the fluorescent layer outside the effective diameter of the human power surface 901 at all, photoelectrons 9 are also emitted from the photocathode formed on the surface of the fluorescent layer outside the effective diameter.
06 is accelerated and focused onto the output surface 902. Therefore, a mask 903 is installed near the output surface 902 to prevent photoelectrons 906 from the fluorescent layer outside the effective diameter of the input surface from entering the output surface 902.
By arranging this, it is possible to limit the photoelectrons 906 incident on the output surface 902 to only the photoelectrons 907 from within the effective diameter of the input surface.
尚、図中の904は陽極、905は集束電極である。In the figure, 904 is an anode, and 905 is a focusing electrode.
尚、マスク903の代りに、出力面902の光出射側に
、出力面の発光の透過を遮断するような光学的マスクを
配置しても良い。Note that instead of the mask 903, an optical mask may be placed on the light output side of the output surface 902 to block transmission of light emitted from the output surface.
以上、述べたようにこの実施例−7においても、他の実
施例と同様の効果が得られる。As described above, the same effects as in the other embodiments can be obtained in this embodiment-7 as well.
[発明の効果]
この発明によれば、人力蛍光層における柱状結晶のうち
、人力面の有効径外に位置する柱状結晶の表面が機械的
変形加工により平坦化・連続化され、この平坦化・連続
化された部分上に光電面に電気的につながる環状導電性
薄膜が被着されているので、金属薄膜は薄(ても光電面
との電気的接続が確実に得られ、剥がれ難い。[Effects of the Invention] According to the present invention, among the columnar crystals in the human-powered fluorescent layer, the surfaces of the columnar crystals located outside the effective diameter of the human-powered surface are flattened and made continuous by mechanical deformation processing, and this flattening and Since the annular conductive thin film electrically connected to the photocathode is deposited on the continuous portion, even if the metal thin film is thin, the electrical connection with the photocathode is reliably obtained and it is difficult to peel off.
尚、主として有効画面のCsl柱状結晶の先端を切削で
平坦にする公知例として、特開昭63−88732号公
報に記載されたものがあるが、これは周辺部のことは考
慮に入れられていないと認められる。又、切削しても、
隙間が残るので、この発明の効果が得られない。A known example of flattening the tips of the Csl columnar crystals of the effective screen by cutting is described in Japanese Patent Application Laid-Open No. 63-88732, but this method does not take the surrounding areas into consideration. It is recognized that there is no Also, even if you cut it,
Since a gap remains, the effects of the present invention cannot be obtained.
第1図(a)、(b)はこの発明の一実施例に係るX線
イメージ管の入力面を示す断面図と底面図、第2図は第
1図(a)の要部Aを拡大して示す断面図、第3図(a
)、(b)はこの発明の他の実施例に係る入力面を示す
断面図と底面図、第4図乃至第8図はこの発明の別の他
の実施例に係る人力面の要部を拡大して示す断面図、第
9図は第8図の他の実施例に係る入力面を使用したX線
イメージ管の全体を示す断面図、第1O図は従来のX線
イメージ管の入力面を示す断面図、第11図は第10図
の要部を拡大して示す断面図、第12図は蒸着装置を示
す断面図、第13図は従来の他のX線イメージ管の入力
面を示す断面図である。
201・・・入力基板、202・・・第1蛍光層、20
3・・・第2蛍光層、204・・・環状金属薄膜。
出願人代理人 弁理士 鈴江武彦
第
図
第
図
第
図
第6
図
第10図FIGS. 1(a) and (b) are a sectional view and a bottom view showing the input surface of an X-ray image tube according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the main part A of FIG. 1(a). 3 (a)
) and (b) are cross-sectional views and bottom views showing an input surface according to another embodiment of the present invention, and FIGS. 4 to 8 show the main parts of the human power surface according to another embodiment of the present invention. FIG. 9 is an enlarged cross-sectional view showing the entire X-ray image tube using the input surface according to another embodiment of FIG. 8, and FIG. 1O is the input surface of the conventional X-ray image tube. FIG. 11 is an enlarged cross-sectional view of the main part of FIG. 10, FIG. 12 is a cross-sectional view of the vapor deposition apparatus, and FIG. 13 is an input surface of another conventional X-ray image tube. FIG. 201... Input substrate, 202... First fluorescent layer, 20
3... Second fluorescent layer, 204... Annular metal thin film. Applicant's agent Patent attorney Takehiko Suzue Figure 6 Figure 10
Claims (1)
面とが積層されてなる入力面を備えたX線イメージ管に
おいて、 上記柱状結晶のうち入力面の有効径外に位置する柱状結
晶の表面が機械的変形加工により平坦化・連続化され、
この平坦化・連続化された部分上に上記光電面に電気的
につながる導電性薄膜が被着されてなることを特徴とす
るX線イメージ管。[Scope of Claim] An X-ray image tube comprising an input surface in which at least a fluorescent layer made of columnar crystals and a photocathode are laminated on an input substrate, wherein the columnar crystals are located outside the effective diameter of the input surface. The surface of the columnar crystal is made flat and continuous by mechanical deformation processing,
An X-ray image tube characterized in that a conductive thin film electrically connected to the photocathode is deposited on the flattened and continuous portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324924A JP2809657B2 (en) | 1988-12-23 | 1988-12-23 | X-ray image tube and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324924A JP2809657B2 (en) | 1988-12-23 | 1988-12-23 | X-ray image tube and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02170331A true JPH02170331A (en) | 1990-07-02 |
JP2809657B2 JP2809657B2 (en) | 1998-10-15 |
Family
ID=18171131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63324924A Expired - Lifetime JP2809657B2 (en) | 1988-12-23 | 1988-12-23 | X-ray image tube and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2809657B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7067789B2 (en) | 2001-08-29 | 2006-06-27 | Kabushiki Kaisha Toshiba | Method and device for producing X-ray image detector, and X-ray image detector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52136560A (en) * | 1976-05-11 | 1977-11-15 | Toshiba Corp | X ray fluorescence multiple tube and its preparation |
JPS5571446U (en) * | 1978-11-09 | 1980-05-16 |
-
1988
- 1988-12-23 JP JP63324924A patent/JP2809657B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52136560A (en) * | 1976-05-11 | 1977-11-15 | Toshiba Corp | X ray fluorescence multiple tube and its preparation |
JPS5571446U (en) * | 1978-11-09 | 1980-05-16 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7067789B2 (en) | 2001-08-29 | 2006-06-27 | Kabushiki Kaisha Toshiba | Method and device for producing X-ray image detector, and X-ray image detector |
Also Published As
Publication number | Publication date |
---|---|
JP2809657B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3468789B2 (en) | Image intensifier | |
JP2902612B2 (en) | Sample for transmission electron microscope analysis and method for producing the same | |
EP0559550B1 (en) | Microchannel plate type intensifier tube, especially for radiological images | |
EP0325500B1 (en) | Input screen scintillator for a radiological image intensifier tube and its manufacturing method | |
EP0331019B1 (en) | X-ray image intensifier and method of manufacturing the same | |
JPH02170331A (en) | X-ray image tube | |
JPS6238818B2 (en) | ||
US4362933A (en) | Multistage vacuum x-ray image intensifier | |
JPH04154030A (en) | X-ray image tube and manufacture thereof | |
JPS5871536A (en) | Input surface of x-ray-image amplifier tube and its manufacture | |
EP0608168B1 (en) | Image conversion tube and method of producing such a tube | |
US5038072A (en) | Contact device for the photocathode of photoelectric tubes and manufacturing method | |
US1841033A (en) | Photo-electric tube | |
US5780961A (en) | Ground plane insulating coating for proximity focused devices | |
JPH041987B2 (en) | ||
JPH07202229A (en) | Selective film-forming method | |
US4661742A (en) | Luminescent screen and a method of fabrication of said screen | |
US4684994A (en) | Television camera tube with honeycomb grid electrode | |
JP2543895B2 (en) | X-ray image tube and method of manufacturing the same | |
JP2848389B2 (en) | Cathode ray tube | |
JPS63287037A (en) | Manufacture of semiconductor device | |
JP2607543B2 (en) | Cathode ray tube with antistatic plate glass | |
JPH0126037Y2 (en) | ||
JPH0541157A (en) | Manufacture of x-ray image tube | |
JP2006091174A (en) | Manufacturing method for liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |