JPH02166739A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02166739A
JPH02166739A JP32268088A JP32268088A JPH02166739A JP H02166739 A JPH02166739 A JP H02166739A JP 32268088 A JP32268088 A JP 32268088A JP 32268088 A JP32268088 A JP 32268088A JP H02166739 A JPH02166739 A JP H02166739A
Authority
JP
Japan
Prior art keywords
aluminum wiring
wiring
aluminum
interlayer insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32268088A
Other languages
Japanese (ja)
Inventor
Shinji Fujii
眞治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32268088A priority Critical patent/JPH02166739A/en
Publication of JPH02166739A publication Critical patent/JPH02166739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To round the corner part of an aluminum wiring and to improve the step coverage of a deposited interlayer insulating film by providing the aluminum wiring in a vacuum chamber after the formation by patterning, applying argon shock, and performing heat treatment under this state. CONSTITUTION:An aluminum wiring 12 is patterned on a semiconductor substrate 11. The device is provided in an argon atmosphere. Argon gas is ionized. The ions are made to hit on the aluminum wiring 12. As a result, defects are induced in the surface of the aluminum wiring. The surface of the aluminum wiring is made soft and fluid by heating, and the round part is formed. Then, an SiO2 film which is to serve as an interlayer insulating film is deposited. Then, a second aluminum wiring layer 14 is formed. Since the corner part of the aluminum wiring 12 which becomes the ground layer is made round, the step coverage of the SiO2 film 13 is not deteriorated, and voids are not formed between the aluminum wirings.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関するもので、特に
、多層配線の信頼性の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular to improving the reliability of multilayer wiring.

従来の技(111 従来、半導体装置の金属配線材料としては、安価で電気
抵抗の低いアルミニウム(At”)膜が用いられてきた
。このアルミニウム膜の形成には、近年、膜質・膜厚が
安定しており、高速堆積が可能な直流型マグネトロンス
パッタ法が用いられている。この方法によって堆積した
アルミニウム膜は、多結晶となっており、このときの結
晶粒径は、0.5μm 〜2.0μm(Ae−1% S
i)である。また、近年の線幅2.0μm以下のアルミ
配線の微細加工には、加工寸法精度と加工材料の選択性
の優れているドライエツチング技術が用いられている。
Conventional techniques (111) Conventionally, aluminum (At") films, which are inexpensive and have low electrical resistance, have been used as metal wiring materials for semiconductor devices. The aluminum film deposited by this method is polycrystalline, and the crystal grain size is 0.5 μm to 2.5 μm. 0 μm (Ae-1% S
i). Further, in recent years, dry etching technology, which has excellent processing dimensional accuracy and selectivity of processing materials, has been used for fine processing of aluminum wiring with a line width of 2.0 μm or less.

ドライエツチング技術によって、間隔が1.0μm以下
の配線形成後、プラズマCVD法によって5i02層間
絶縁膜を堆積し、コンタクトホールを開け、上層の配線
層を形成している。
After forming interconnections with a spacing of 1.0 μm or less using dry etching technology, a 5i02 interlayer insulating film is deposited using plasma CVD, contact holes are opened, and an upper interconnection layer is formed.

第2図は、従来の多層配線の工程を説明する図である。FIG. 2 is a diagram illustrating a conventional multilayer wiring process.

まず、第2図(A)に示すように、半導体基板21上に
Ae−1%Siを11000n堆積後、通常のホトリソ
グラフィー工程によって、アルミ配線22のパターンニ
ングを行う。この場合の最小配線間隔は、11000n
である。続いて、プラズマCVD法によって同図(B)
に示すように、5i02膜23を1200nm堆積しテ
いる。その後、同図(C)に示すように、上層のアルミ
配線24を形成した。この従来例の場合、アルミ配線2
2の間隔が1.0μm程度と微細であるため、眉間絶縁
膜である5iO211!a23が、アルミ配線220間
隔に入り込みに(くなり、薄(なったり、空洞部分が生
じている。
First, as shown in FIG. 2A, 11,000 nm of Ae-1% Si is deposited on a semiconductor substrate 21, and then aluminum wiring 22 is patterned by a normal photolithography process. The minimum wiring spacing in this case is 11000n
It is. Subsequently, the same figure (B) was obtained by plasma CVD method.
As shown in FIG. 2, a 5i02 film 23 is deposited to a thickness of 1200 nm. Thereafter, as shown in FIG. 3C, an upper layer of aluminum wiring 24 was formed. In this conventional example, aluminum wiring 2
2 is minute, about 1.0 μm, so the insulating film between the eyebrows, 5iO211! A23 is inserted into the space between the aluminum wiring lines 220 and becomes thin, and a hollow portion is formed.

また、この従来例の図では、半導体基板上のトランジス
タ等については、省略しである。
Further, in the diagram of this conventional example, transistors and the like on the semiconductor substrate are omitted.

発明が解決しようとする課題 上記したように、従来例の配線構造では、層間絶縁膜で
ある5i02膜23内に空洞が生じている。そのため、
上層と下層の配線間の層間絶縁膜の耐圧劣化が生じる。
Problems to be Solved by the Invention As described above, in the conventional wiring structure, a cavity is created in the 5i02 film 23, which is an interlayer insulating film. Therefore,
This causes deterioration in the withstand voltage of the interlayer insulating film between the upper and lower wiring layers.

また、配線間に5i02膜が入り込みにく(なるため、
層間絶縁膜が薄くなり耐圧劣化する部分がある。更に、
層間絶縁膜が平坦化されていない上へ、上層配線層を形
成するために、配線の段差被覆性が劣化し、上層配線が
くびれで細くなり、電流密度が高(なり断線に至るなど
の問題点を有していた。
In addition, it is difficult for the 5i02 film to enter between the wirings (because
There are parts where the interlayer insulating film becomes thinner and the breakdown voltage deteriorates. Furthermore,
Because the upper wiring layer is formed on top of an unplanarized interlayer insulating film, the step coverage of the wiring deteriorates, the upper wiring becomes thin due to constrictions, and problems such as high current density (leading to disconnection) occur. It had a point.

課題を解決するための手段 本発明の半導体装置の製造方法は、半導体基板上に形成
されたアルミ配線を不活性ガス中において、プラズマを
発生させ、不活性ガスイオン(例えば、アルゴンイオン
)を基板へ衝突させると同時に半導体基板の温度を上昇
させるものである。
Means for Solving the Problems In the method for manufacturing a semiconductor device of the present invention, plasma is generated in an aluminum wiring formed on a semiconductor substrate in an inert gas, and inert gas ions (for example, argon ions) are attached to the substrate. The temperature of the semiconductor substrate increases at the same time as the semiconductor substrate collides with the semiconductor substrate.

作用 本発明は、前記した半導体装置の製造方法により、パタ
ーンニング形成されたアルミ配線に、アルゴン衝撃を加
え、欠陥を誘発させると同時に、温度を上昇させ、アル
ミ配線表面を軟化・流動させ、該アルミ配線の角部を丸
める。その結果、アルミ配線上に堆積する層間絶縁膜の
段差被覆性を改善することができる。
Function The present invention applies argon bombardment to patterned aluminum wiring by the above-described semiconductor device manufacturing method to induce defects, and at the same time, increases temperature to soften and fluidize the aluminum wiring surface. Round the corners of the aluminum wiring. As a result, the step coverage of the interlayer insulating film deposited on the aluminum wiring can be improved.

実施例 第1図は本発明の実施例の工程説明図である。Example FIG. 1 is a process explanatory diagram of an embodiment of the present invention.

第1図において、11は半導体基板、12は厚さ0.8
μm、最小間隔0.8μmの第1層めのアルミ配線、1
3はプラズマCVD法によって形成された厚さ1.2μ
mの層間絶縁膜であるSiO2膜、14は厚さ0.8μ
mの第2層めのアルミ配線である。
In FIG. 1, 11 is a semiconductor substrate, 12 is a thickness of 0.8
μm, first layer aluminum wiring with minimum spacing of 0.8 μm, 1
3 has a thickness of 1.2μ formed by plasma CVD method.
The SiO2 film 14, which is an interlayer insulating film, has a thickness of 0.8μ.
This is the second layer of aluminum wiring.

まず、第1図(A)に示すように、半導体基板11上に
、Ae−1%Si膜を直流型マグネトロンスパッタ法を
用いて、800nm堆積後、通常のホトリソグラフィー
工程およびドライエツチング工程によって最小配線間隔
800nmとなるようにアルミ配線12のパターンニン
グを行った。
First, as shown in FIG. 1(A), an Ae-1% Si film is deposited to a thickness of 800 nm on a semiconductor substrate 11 using a DC magnetron sputtering method, and then a minimum thickness of 800 nm is deposited on a semiconductor substrate 11 using a normal photolithography process and a dry etching process. The aluminum wiring 12 was patterned so that the wiring spacing was 800 nm.

次に、前記半導体基板11をアルゴン雰囲気中に設置し
半導体基板11に負、対向電極(図示せず)に正の電位
を与え、アルゴンガスをイオン化させて、アルミ配線1
2へ衝突させる。具体的には、圧力1.0Pa、電力0
 、5 w / cat、基板温度300℃の条件を用
いた。この処理によって、同図(B)に示すように、ア
ルミ配線表面に欠陥を誘発し、加熱することによって、
アルミ配線表面を軟化・流動させて、丸みをつけること
ができる。
Next, the semiconductor substrate 11 is placed in an argon atmosphere, a negative potential is applied to the semiconductor substrate 11, and a positive potential is applied to the counter electrode (not shown) to ionize the argon gas, and the aluminum wiring 1
Collision into 2. Specifically, the pressure is 1.0 Pa, the power is 0
, 5 w/cat, and a substrate temperature of 300°C. As shown in the same figure (B), this treatment induces defects on the aluminum wiring surface, and by heating it,
The aluminum wiring surface can be softened and fluidized to give it a rounded shape.

続いて、同図(C)に示すように、プラズマCVD法に
よって層間絶縁膜となる5i02膜13を堆積する。こ
の場合、下地となるアルミ配線12の角部分が丸まって
いるため、5i02膜13は、段差被覆性が劣化せず、
アルミ配線間に空洞を生しることなく、また、薄い部分
も生じることなく形成することができる。
Subsequently, as shown in FIG. 3C, a 5i02 film 13, which will become an interlayer insulating film, is deposited by plasma CVD. In this case, since the corner portions of the underlying aluminum wiring 12 are rounded, the step coverage of the 5i02 film 13 does not deteriorate;
It can be formed without creating cavities between aluminum wirings or creating thin parts.

その後同図(D)に示すように、第2層めのアルミ配線
14を形成する。本実施例では、層間絶縁膜となる5i
02膜13が段差被覆性段(堆積されているため、空洞
部分、薄い部分がなく、耐圧、リーク電流等の信頼性が
向上できる。
Thereafter, as shown in FIG. 2D, a second layer of aluminum wiring 14 is formed. In this example, 5i, which becomes the interlayer insulating film,
Since the 02 film 13 is deposited in a step covering manner, there are no hollow parts or thin parts, and reliability in terms of withstand voltage, leakage current, etc. can be improved.

また、第2層めのアルミ配線も、くびれる部分が存在し
ないため、電流密度が高(なり、発熱断線する部分がな
(なり信頼性が向上する。
In addition, since the second layer of aluminum wiring does not have any constricted parts, the current density is high, and there are no parts that generate heat and are disconnected, improving reliability.

なお、本実施例では、配線材料をアルミニウム、不活性
ガスをアルゴンとしたが、他の材料でも同様の効果が期
待できる。また、アルミニウム表面を軟化流動させる手
段として、半導体基板加熱のみ、レーザー光による加熱
など他の手段を用いてもよい。
In this example, aluminum was used as the wiring material and argon was used as the inert gas, but similar effects can be expected with other materials. Further, as a means for softening and fluidizing the aluminum surface, other means such as only heating the semiconductor substrate or heating with laser light may be used.

また、本発明によって、アルミニウム膜が段差被覆性が
悪いために、コンタクトホールなと微小段差内へ付着し
ないという現象に対しても、アルミニウム膜の軟化・流
動によって、微小段差内へ埋め込めることは述べるまで
もない。
Furthermore, according to the present invention, it is possible to solve the problem of the aluminum film not adhering to a contact hole or a microscopic step due to its poor step coverage. Needless to say.

発明の詳細 な説明したように、本発明によれば、アルミ配線の角部
分を簡単な手法によっ・て丸めた後、層間絶縁膜を堆積
するため、空洞、薄い部分が発生ぜず、第2層めの配線
もくびれることなく形成されるため、配線の信頼性を著
しく向上させることができ、その産業上の実用的効果は
大きい。
As described in detail, according to the present invention, the interlayer insulating film is deposited after rounding the corner portions of the aluminum wiring using a simple method, so that no cavities or thin portions are generated, and the first Since the second layer wiring is also formed without being constricted, the reliability of the wiring can be significantly improved, which has great practical effects in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における実施例のアルミ配線の角部を丸
める工程を示す製造工程断面図、第2図は従来のアルミ
配線形成工程断面図である。 11・・・・・・半導体基板、12・・・・・・アルミ
配線、13・・・・・・5i02膜、14・・・・・・
アルミ配線。 代理人の氏名弁理士粟野重孝はか1名
FIG. 1 is a manufacturing process cross-sectional view showing the step of rounding the corners of an aluminum wiring according to an embodiment of the present invention, and FIG. 2 is a conventional aluminum wiring forming process cross-sectional view. 11...Semiconductor substrate, 12...Aluminum wiring, 13...5i02 film, 14...
aluminum wiring. Name of agent: Patent attorney Shigetaka Awano (1 person)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に形成された複数個の素子を電気的に接
続するアルミニウム配線の形成方法において、前記アル
ミニウム配線をパターニング形成後、真空槽内に設置し
、アルゴン衝撃を加えながら熱処理を行うことを特徴と
する半導体装置の製造方法。
A method for forming aluminum wiring that electrically connects a plurality of elements formed on the surface of a semiconductor substrate, characterized in that after patterning the aluminum wiring, it is placed in a vacuum chamber and heat treated while applying argon bombardment. A method for manufacturing a semiconductor device.
JP32268088A 1988-12-21 1988-12-21 Manufacture of semiconductor device Pending JPH02166739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32268088A JPH02166739A (en) 1988-12-21 1988-12-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32268088A JPH02166739A (en) 1988-12-21 1988-12-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02166739A true JPH02166739A (en) 1990-06-27

Family

ID=18146417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32268088A Pending JPH02166739A (en) 1988-12-21 1988-12-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02166739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547978B2 (en) 1997-08-13 2003-04-15 Applied Materials Inc. Method of heating a semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547978B2 (en) 1997-08-13 2003-04-15 Applied Materials Inc. Method of heating a semiconductor substrate

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JP3400918B2 (en) Method for manufacturing semiconductor device
JP2000183158A (en) Semiconductor integrated circuit device and its manufacture
JPH02166739A (en) Manufacture of semiconductor device
JPH09172079A (en) Semiconductor device and its manufacture
US20060128149A1 (en) Method for forming a metal wiring in a semiconductor device
JPS59104143A (en) Forming method for wiring
JPH05206285A (en) Formation of multilayer interconnection
JPH0319222A (en) Manufacture of semiconductor device
JPH0235731A (en) Manufacture of semiconductor device
JPH11265934A (en) Forming method of connecting part
JPH06177255A (en) Manufacture of semiconductor integrated circuit device
JP2000031278A (en) Semiconductor device and manufacture thereof
JPH0462855A (en) Semiconductor device and manufacture thereof
JPH01207949A (en) Method of forming electrode of integrated circuit device
JPH05109902A (en) Production of semiconductor device
JP2002009050A (en) Ashing method
JPH01196145A (en) Formation of wiring part
JP2003198007A (en) Method of forming tunnel junction and tunnel junction device
JPH0338825A (en) Dry etching
JPS62222658A (en) Formation of conductor wiring
JPH05206079A (en) Method of dry etching thin film
JPS6362255A (en) Method for flattening semiconductor device
JPH04155927A (en) Production of semiconductor device
JPH04130754A (en) Manufacture of semiconductor device