JPH02157155A - Production of dielectric ceramics composition of high permittivity - Google Patents

Production of dielectric ceramics composition of high permittivity

Info

Publication number
JPH02157155A
JPH02157155A JP63309509A JP30950988A JPH02157155A JP H02157155 A JPH02157155 A JP H02157155A JP 63309509 A JP63309509 A JP 63309509A JP 30950988 A JP30950988 A JP 30950988A JP H02157155 A JPH02157155 A JP H02157155A
Authority
JP
Japan
Prior art keywords
dielectric
powder
fired
composition
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63309509A
Other languages
Japanese (ja)
Other versions
JP2757402B2 (en
Inventor
Ryo Kimura
涼 木村
Koji Kawakita
晃司 川北
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63309509A priority Critical patent/JP2757402B2/en
Publication of JPH02157155A publication Critical patent/JPH02157155A/en
Application granted granted Critical
Publication of JP2757402B2 publication Critical patent/JP2757402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a ceramics capacitor which can be densely fired at a low temp. by coating the powder of a PbTiO3-Pb(Mg1/3Nb2/3)O3-Pb(Ni1/2W1/2)O3 system having a perovskite structure with lead oxide and using this powder as its component. CONSTITUTION:The powder of the main component dielectrics consisting of the compsns. in a pentagonal region peaking at the compsn. A, B, C, D, E in the triangular coordinates peaking at PbTiO3, PB(Mg1/3Nb2/3)O3, Pb(Ni1/2 W1/2)O3 of the ceramics compsn. expressed by the formula (where X+Y+Z=1) is prepd. The above-mentioned compsns. A to E are expressed by A(X; 2.5, Y; 9.5, Z; 30), B(X; 12.5, Y; 85, Z; 2.5), C(X; 60, Y; 10, Z;30), D(X; 40, Y; 10, Z; 50), E(X; 2.5, Y; 90, Z; 7.5). The powder obtd. by coating the above-mentioned powder with 1 to 25 lead oxide is molded and fired.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焼成温度が800〜1000°Cでかつ大気中
、中性雰囲気中まだは還元雰囲気中にて短時間で焼成し
得る。高誘電率系誘電体磁器組成物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can be fired in a short time at a firing temperature of 800 to 1000°C in air, a neutral atmosphere, or a reducing atmosphere. The present invention relates to a method for producing a high dielectric constant dielectric ceramic composition.

従来の技術 小型化、大容量化の進むセラミックコンデンサの高誘電
率材料としては、従来よりチタン酸バリウムを主成分と
する材料が用いられてきだが、この材料を焼結させるに
は大気中でかっ焼成温度として1300℃程度の高温が
必要であるだめ、積層型セラミックコンデンサを作成す
る場合に、電極材料としては高価な白金あるいはバラジ
ュウムなどの貴金属の使用が不可欠であり、特に大容量
化に伴い内部電極材料が原材料費を押し上げる要因とな
っていた。
Conventional technology A material with barium titanate as its main component has traditionally been used as a high dielectric constant material for ceramic capacitors, which are becoming smaller and larger in capacity, but it takes a long time to sinter this material in the atmosphere. Since a high firing temperature of approximately 1,300°C is required, it is essential to use expensive noble metals such as platinum or baladium as electrode materials when manufacturing multilayer ceramic capacitors. Electrode materials were a factor pushing up raw material costs.

これに対して、近年、チタン酸バリウム材料に耐還元性
を持たせ、電極材料として安価な卑金属を用いて酸素分
圧の低い雰囲気中で焼成する方法や、鉛系誘電体材料と
安価な銀を主体とする銀−パラジウム合金の電極材料と
を用いて、1000°C前後の低温で焼成する方法によ
り積層セラミックコンデンサの低コスト化が図られてい
る。
On the other hand, in recent years, methods have been developed to make barium titanate material more resistant to reduction, to use inexpensive base metals as electrode materials and to sinter them in an atmosphere with low oxygen partial pressure, and to use lead-based dielectric materials and inexpensive silver The cost of multilayer ceramic capacitors has been reduced by using a silver-palladium alloy electrode material mainly composed of silver and palladium and firing at a low temperature of around 1000°C.

一方、小型化や高信頼性が望まれる電子機器においては
、実装密度の高いハイグツリドIC化が進められておシ
、従来のチップコンデンサに変わって厚膜コンデンサに
対する要望が高まっている。
On the other hand, in electronic devices where miniaturization and high reliability are desired, the use of high-density hybrid ICs is progressing, and there is an increasing demand for thick film capacitors in place of conventional chip capacitors.

この厚膜コンデンサを作成するには、低温、短時間焼成
が可能な誘電体が必要であり、このための材料としては
主に鉛系誘電体が用いられる。
To create this thick film capacitor, a dielectric material that can be fired at low temperatures and for a short time is required, and lead-based dielectric materials are mainly used as the material for this purpose.

従って、積層チップコンデンサの大容量化あるいはコン
デンサの厚膜化のいずれにも対応できる材料として、鉛
系誘電体の開発が盛んに進められている。
Accordingly, lead-based dielectrics are being actively developed as a material that can be used to increase the capacity of multilayer chip capacitors and to increase the thickness of capacitors.

発明が解決しようとする課題 さて PbTiO3−Pb(Mg%Nb乞)03Pb(
Ni%W%)03系固溶体は、特開昭61−15524
9号公報で知られているように、1000°C以下の大
気中で焼成される高誘電率組成物であるが、誘電率を高
め、充分緻密な焼結体を得るためには、焼成温度にて数
時間保持する必要がある。一方、ハイブリッドIC用の
厚膜コンデンサを作成する場合、低温短時間焼成が不可
欠となり、このような条件化では前記誘電体材料は未焼
結となるだめ、所望の特性が得られないという問題が起
こる。さらに、長時間の中性あるいは還元雰囲気中にお
ける熱処理により誘電体磁器中に酸素欠陥が生じ易くな
り、誘電率の低下、絶縁抵抗の低下をきたし、実用上問
題であった。
Problems to be solved by the invention PbTiO3-Pb(Mg%Nb)03Pb(
Ni%W%)03-based solid solution is disclosed in JP-A-61-15524.
As known from Publication No. 9, it is a high dielectric constant composition that is fired in the atmosphere at temperatures below 1000°C, but in order to increase the dielectric constant and obtain a sufficiently dense sintered body, the firing temperature must be adjusted. It is necessary to hold it for several hours. On the other hand, when producing thick film capacitors for hybrid ICs, low-temperature, short-time firing is essential, and under such conditions the dielectric material becomes unsintered, resulting in the problem that desired characteristics cannot be obtained. happen. Furthermore, heat treatment in a neutral or reducing atmosphere for a long period of time tends to cause oxygen defects in the dielectric ceramic, resulting in a decrease in dielectric constant and insulation resistance, which is a practical problem.

本発明ではかかる問題に鑑み PbTiO3Pb (”
X Nb515)05−Pb(Ni%WH) O,系固
溶体の持つ高い誘電率を損なわず、大気中ならびに中性
雰囲気中あるいは還元雰囲気中にて800〜6へ−7 1000℃で短時間焼成が可能な高誘電率誘電体磁器組
成物の製造方法、およびそれを用いたセラミックコンデ
ンサまだは厚膜コンデンサを提供することを目的とする
ものである。
In view of this problem, the present invention uses PbTiO3Pb (”
X Nb515)05-Pb(Ni%WH) O, can be fired for a short time at 800-6 -7 1000°C in air, neutral atmosphere or reducing atmosphere without impairing the high dielectric constant of the O, system solid solution. The object of the present invention is to provide a method for producing a dielectric ceramic composition with a high dielectric constant, and a ceramic capacitor (or thick film capacitor) using the same.

課題を解決するだめの手段 前記問題点を解決するだめに本発明の高誘電率系誘電体
磁器組成物の製造方法は PbTix(MgHNb、H
)y(N’、Aw%)205 f表される磁器組成物(
ただし、x+y+z=1)において。
Means for Solving the Problems In order to solve the above problems, the method for producing a high dielectric constant dielectric ceramic composition of the present invention is as follows: PbTix (MgHNb, H
) y (N', Aw%) 205 f Porcelain composition represented by (
However, in x+y+z=1).

PbTiO3,Pb(Mg%Nb y、) 05および
Pb(NIHW、A)o5を頂点とする三角座標で、下
記〔〕内の数値で表される組成人、B、G、D、Eを頂
点とする五角形の領域内からなる主成分誘電体磁器組成
物の粉体に対して、副成分として酸化鉛1.0〜25.
0モルににて前記誘電体粉体を被覆した粉体を用い、そ
の後、成形、焼成するという構成を備えだものである。
PbTiO3, Pb(Mg%Nb y,) 05 and Pb(NIHW, A) In triangular coordinates with o5 as the apex, the composition person represented by the numbers in brackets below, B, G, D, E as the vertices. Lead oxide as a subcomponent is 1.0 to 25.
The structure is such that a powder coated with the dielectric powder at a concentration of 0 mol is used, and then molded and fired.

作用 すなわち、本発明の特許請求の範囲の組成物においては
、ペロブスカイト構造を有するPbT10゜−Pb(M
g%Nb3/3)03−Pb(Ni3AW%)03系の
粉体を酸化鉛にて被覆することによシ、酸化鉛の融点(
880’C)を利用して低温で前記誘電体粉体の表面に
均一な液相を発生させ、液用焼結することによって誘電
体への拡散を円滑に行え、添加物による粒界相の形成が
抑制されることによって誘電率の低下を防ぎ、1000
°C以下という低い焼成温度にて、短時間に緻密に焼成
し得る大容量の積層セラミックコンデンサあるいは厚膜
コンデンサ用の組成物が得られることとなる。
In other words, in the composition according to the claims of the present invention, PbT10°-Pb(M
g%Nb3/3)03-Pb(Ni3AW%)03 series powder is coated with lead oxide to lower the melting point of lead oxide (
880'C) to generate a uniform liquid phase on the surface of the dielectric powder at a low temperature, and by liquid sintering, diffusion into the dielectric can be performed smoothly, and the grain boundary phase caused by additives can be prevented. By suppressing the formation, a decrease in dielectric constant is prevented, and 1000
A composition for a large-capacity multilayer ceramic capacitor or a thick film capacitor that can be fired densely in a short time at a low firing temperature of 0.degree. C. or less can be obtained.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

〈実施例1〉 まず、出発原料としては化学的に高純度なPbO、Mg
O、Nb2O5,TiO2,NiO、WO3ヲ用いた。
<Example 1> First, chemically highly purified PbO, Mg
O, Nb2O5, TiO2, NiO, and WO3 were used.

これらを純度補正を行った土で所定量を秤量し、純水を
加えメノウ製玉石を用いてボールミル 分の大半を分離した後乾燥し,その後ライカイ機で充分
解砕した後,粉体量5Wtπの純水を加え。
A predetermined amount of these is weighed using soil that has been corrected for purity, pure water is added, most of the ball mill content is separated using agate cobblestones, and then dried. After that, it is thoroughly crushed using a Raikai machine, and the powder amount is 5Wtπ. Add pure water.

直径60朋,高さrsommの円柱状に成形圧力6o○
に! /crlで成形した。これをアルミナルツボ中に
入れ同質の蓋をし.760〜1000℃で2時間仮焼し
た。次に、前記仮焼物をアルミナ乳鉢で粗砕し,さらに
ボールミル 吸引濾過した後.乾燥した。以上の仮焼・粉砕・乾燥を
数回繰り返しだ。この粉末をX線回折法によす解析し、
ペロブスカイト相であることを確認した。この誘電体粉
末に酸化鉛の被覆を行う。
Molding pressure 6o○ into a cylindrical shape with a diameter of 60mm and a height of rsommm.
To! /crl. Place this in an aluminum pot and cover with a homogeneous lid. Calcining was performed at 760 to 1000°C for 2 hours. Next, the calcined product was coarsely crushed in an alumina mortar, and further filtered by suction in a ball mill. Dry. The above steps of calcination, crushing, and drying are repeated several times. This powder was analyzed using X-ray diffraction method,
It was confirmed that it was a perovskite phase. This dielectric powder is coated with lead oxide.

ここで、酸化鉛の被覆方法としては,乾式法・液相法・
気相法とがある。まず、乾式法ではメカノケミカル反応
を利用して,基体である誘電体粉末の表面を酸化鉛の微
粉が付着したような構造を有する。一方の液相法は湿式
法ともいわれ、化学9ヘー・ 反応を利用して誘電体粉末の表面に酸化鉛の被覆層を構
成させるものである。この方法はセラミック粉末を得る
だめの合成方法として知られているものであり、液相法
は沈澱法と溶媒蒸発法に大別されるが、沈澱法で合成さ
れることが圧倒的に多い。さらに、気相法による被覆方
法では蒸発−凝縮法と気相化学反応法があり、いずれも
被覆層を薄くすることができる。これらのいずれの方法
で被覆してもよいが,本実施例では液相法を用いて被覆
処理を行った。
Here, the lead oxide coating methods include dry method, liquid phase method,
There is a gas phase method. First, in the dry method, a mechanochemical reaction is used to create a structure in which fine lead oxide powder is attached to the surface of a dielectric powder that is a base. On the other hand, the liquid phase method, also called the wet method, uses a chemical reaction to form a coating layer of lead oxide on the surface of dielectric powder. This method is known as a synthesis method for obtaining ceramic powder, and the liquid phase method is broadly divided into precipitation method and solvent evaporation method, but precipitation method is overwhelmingly used for synthesis. Further, vapor phase coating methods include an evaporation-condensation method and a vapor phase chemical reaction method, both of which allow the coating layer to be made thin. Although the coating may be performed using any of these methods, in this example, the coating treatment was performed using a liquid phase method.

まず、誘電体粉末.純水.分散剤としてアンモニウム塩
を加えて分散処理する。その後、給水溶液,鉛沈澱剤と
を加えて鉛沈澱物を生成させる。
First, dielectric powder. Pure water. Dispersion treatment is performed by adding ammonium salt as a dispersant. Thereafter, a water supply solution and a lead precipitant are added to form a lead precipitate.

その後、濾過.乾燥をしだ後、500℃程度の低温にて
加熱することによって酸化鉛の被覆層を有した誘電体粉
末を得ることができる。この誘電体粉末をX線回折,K
SCA,電顕観察にて解析を行った結果,ペロプスカイ
ト単一相の誘電体粉末の表面を酸化鉛層が被覆している
ことを確認した。
Then filter. After drying, a dielectric powder having a lead oxide coating layer can be obtained by heating at a low temperature of about 500°C. X-ray diffraction of this dielectric powder, K
As a result of analysis using SCA and electron microscopy, it was confirmed that the surface of the perovskite single-phase dielectric powder was covered with a lead oxide layer.

さらに、第3成分としてN10.まだはWO.を下10
  、X−、、。
Furthermore, N10. Still WO. below 10
,X-,,.

記の表1に示すモ/I/cXにて添加・混合する。この
酸化鉛被覆誘電体粉末にポリビニルアルコール6wt%
水溶液を粉体量のewt%加え、32メソシユのふるい
をパスさせた後,造粒し成形圧力1 0 0 0Kf/
crjで直径13朋,高さ約5囮の円盤状に成形した。
Add and mix at the mo/I/cX shown in Table 1 below. This lead oxide-coated dielectric powder contains 6 wt% polyvinyl alcohol.
Add ewt% of the aqueous solution to the powder amount, pass through a 32 mesh sieve, and then granulate it at a molding pressure of 1000Kf/
It was formed into a disc shape with a crj machine, 13 mm in diameter and about 5 decoys in height.

次いで、この成形物を大気中600℃で,1時間保持し
て脱バインダーした後。
Next, this molded product was held in the atmosphere at 600° C. for 1 hour to remove the binder.

マグネシア磁器容器に入れて同質の蓋をし、大気中、中
性雰囲気中あるいは還元雰囲気中で所定温度まで240
0℃/時間で昇温し、最高温度で5〜3o分間保持後,
2400℃/時間で降温した。
Place in a magnesia porcelain container, cover with a homogeneous lid, and heat to a specified temperature in air, neutral atmosphere, or reducing atmosphere for 240 hrs.
After increasing the temperature at 0℃/hour and holding it at the maximum temperature for 5 to 3o minutes,
The temperature was lowered at a rate of 2400°C/hour.

以上のようにして得られた焼成物を厚さ1間の円盤状に
加工し,両面に電極としてOr−λgを蒸着し,誘電率
.誘電正接を1に±,1V/yttxの電界下で測定し
た。下記のく表1〉に本発明の材料組成と、大気中にて
焼成した焼成物の誘電特性を示す。また、焼成雰囲気を
中性界・囲気である窒素中とした場合、あるいは1 0
−8atm以上の酸素分圧を有する窒素−水素混合ガス
中とした場合の9 0 0 ℃焼成の結果をそれぞれ下
記のく表2〉および〈表3〉に示す。
The fired product obtained as described above was processed into a disk shape with a thickness of 1 mm, and Or-λg was vapor-deposited as an electrode on both sides to give a dielectric constant. The dielectric loss tangent was measured at ±1 and an electric field of 1 V/yttx. Table 1 below shows the material composition of the present invention and the dielectric properties of the fired product fired in the atmosphere. In addition, when the firing atmosphere is a neutral field/nitrogen surrounding, or 10
The results of firing at 900°C in a nitrogen-hydrogen mixed gas having an oxygen partial pressure of -8 atm or more are shown in Tables 2 and 3 below, respectively.

また、前記の実施例においては被覆する酸化鉛の形態と
してpboを用いているが、こればPb2o3Pb30
4.Pbo2ノいずれにおいても誘電特性の優れた焼結
体が得られた。
In addition, in the above embodiment, pbo is used as the form of lead oxide to be coated, but in this case, Pb2o3Pb30
4. In both cases of Pbo2, sintered bodies with excellent dielectric properties were obtained.

(以 下 余 白) 14へ 16 、X 19 へ−7 前記のく表1〉〜く表3〉に示すように、本発明の材料
組成にかかる焼成物は、900’C短時間焼成にもかか
わらず、またさまざまな雰囲気焼成においても高誘喧率
の緻密な焼結体が得られた。
(Margins below) 14 to 16, Regardless of the firing conditions, a dense sintered body with a high dielectric strength was obtained even in various firing atmospheres.

また、第1図には本発明の主成分の組成範囲をPbTi
O3,)’b(Mg、ANby )o3 、pb(ii
、w%)o3を主成分とする三角組成図中に示した。
In addition, FIG. 1 shows the composition range of the main component of the present invention.
O3,)'b(Mg,ANby)o3,pb(ii
, w%) o3 as the main component.

ここで、本発明において、特許請求の範囲をP bTl
x(Mg % N b 37. )、 (N1% W 
% )203  で表される磁器組成*(ただし、X+
Y+Z=1)において、PbTiO3,PO(Mg3A
Nb%)03 およびPb(Ni3A’W!A)03を
頂点とする三角座標で下記〔〕内の数値で表される組成
A、B、C,D。
Here, in the present invention, the scope of claims is defined as P bTl
x (Mg % N b 37.), (N1% W
% ) 203 *(However, X+
Y+Z=1), PbTiO3,PO(Mg3A
Compositions A, B, C, and D are represented by the values in brackets below in triangular coordinates with Nb%)03 and Pb(Ni3A'W!A)03 as vertices.

Eを頂点とする五角形の領域内からなる主成分誘電体磁
器組成物の粉体に対して、副成分として酸化鉛1.○〜
25.○モル%にて被覆すること、さらには、第3成分
としてNiOまたはWO2を1.0〜16、oモ/I/
%添加することを特徴とする誘電体磁器組成物〔AはX
 = 2.5 、 Y = 95.0 、 Z = 2
.5 。
Lead oxide 1. ○~
25. ○Coating with mol% of NiO or WO2 as the third component, 1.0 to 16%, omo/I/
A dielectric ceramic composition characterized by adding % [A is X]
= 2.5, Y = 95.0, Z = 2
.. 5.

Bばx−:12.5. y=85.0. Z:2.5.
 Cはx==60.0,7=1o、o、Z=30.0.
DはX=40.0.7=10.○、z=50.○、Eは
X=2.5.7=90.○、Z=7.5(単位はいずれ
もモルレイ)〕と具体的に限定した理由は、〈表1〉〈
表2〉く表3〉の比較例に示すように限定範囲外の組成
では、900’C焼成温度で焼結体の誘電率が4000
を下回ることとなり、焼結が不十分となるものである。
Bx-:12.5. y=85.0. Z:2.5.
C is x==60.0, 7=1o, o, Z=30.0.
D is X=40.0.7=10. ○, z=50. ○, E is X=2.5.7=90. ○, Z = 7.5 (all units are mollei)] The reason for the specific limitation is as shown in Table 1.
As shown in the comparative examples in Tables 2 and 3, for compositions outside the limited range, the dielectric constant of the sintered body was 4000 at a firing temperature of 900'C.
This results in insufficient sintering.

また、800℃よシ低い温度での焼成では、焼結が不十
分となり、1000℃よシ高い温度での焼成は誘電率の
低下などの問題を生じ、所望の特性は得られないためで
ある。
Furthermore, firing at a temperature lower than 800°C will result in insufficient sintering, while firing at a temperature higher than 1000°C will cause problems such as a decrease in dielectric constant, making it impossible to obtain the desired properties. .

〈実施例2〉 前記実施例1にて用いた酸化鉛被覆誘電体粉末。<Example 2> Lead oxide coated dielectric powder used in Example 1.

さらには第3成分としてNiO、WO2を添加してボー
ルミル セルローズを主成分とする樹脂を溶媒で溶かしたビヒク
ルを加え,三段ロールにて混練し誘電体ペーストを作成
した。一方、純度96cXのアルミナ基板上に2 X 
2 my2の形状を有する厚膜コンデンサを形成するた
めに、下部電極として銅電極を印21 7、−。
Furthermore, NiO and WO2 were added as a third component, and a vehicle in which a resin containing ball-milled cellulose as a main component was dissolved in a solvent was added, and the mixture was kneaded with a three-stage roll to prepare a dielectric paste. On the other hand, 2X
Mark a copper electrode as the bottom electrode to form a thick film capacitor with a shape of 217,-.

刷し,乾燥させた。次に、誘准体層として前記誘電体ペ
ーストを厚み50〜60μmになるように2度印刷・乾
燥することにより、電極−誘電体電極の3層構造の印刷
厚膜を形成し.ベルト炉を用いて最高温度800〜1o
Oo5CI保持時間5〜30分間,窒素中で焼成した。
Printed and dried. Next, by printing and drying the dielectric paste twice to a thickness of 50 to 60 μm as a dielectric layer, a printed thick film having a three-layer structure of electrodes and dielectric electrodes was formed. Maximum temperature 800~1o using belt furnace
Calcined in nitrogen with an Oo5CI holding time of 5-30 minutes.

このようにして得られた厚膜コンデンサの誘電率.誘電
正接を1KI士,1v/朋の電界下で測定した。下記の
く表4〉に本発明の材料組成と,窒素中900℃で焼成
した焼成物の誘電特性を示す。
The dielectric constant of the thick film capacitor obtained in this way. The dielectric loss tangent was measured under an electric field of 1 KI and 1 V/home. Table 4 below shows the material composition of the present invention and the dielectric properties of the fired product fired at 900°C in nitrogen.

(以下余 白) 前記〈表4〉に示すように1本発明の材料組成にかかる
焼成物は、短時間低温焼成にもかか−bらず、緻密な焼
結体からなる高誘電率の厚膜コンデンサが得られた。
(The following is a blank space) As shown in Table 4 above, the fired product of the material composition of the present invention is a dense sintered body with a high dielectric constant, despite being fired at a low temperature for a short time. A thick film capacitor was obtained.

また、特許請求の範囲を限定した理由は、実施例1と同
様に、〈表4〉の比較例に示すように、限定範囲外の組
成物では、900’Cの焼成温度で焼結の誘電率が50
00以下となシ、A結が不十分となるためである。
In addition, the reason for limiting the scope of the claims is that, as in Example 1, as shown in the comparative example in Table 4, in the case of a composition outside the limited range, the dielectric material is sintered at a firing temperature of 900'C. rate is 50
This is because if it is less than 00, the A connection will be insufficient.

本実施例では窒素中にて焼成が可能であることを示した
が、アルゴン、ヘリウムなどの中性雰囲気中でも焼成が
可能であることは容易に推測される。
Although this example showed that firing is possible in nitrogen, it is easily assumed that firing is also possible in a neutral atmosphere such as argon or helium.

尚、本発明で用いられる成極としては、大気中。Note that the polarization used in the present invention is in the atmosphere.

中性雰囲気中、あるいは還元雰囲気中にて800〜10
00℃で焼成可能な電極が適宜選択され。
800-10 in neutral or reducing atmosphere
An electrode that can be fired at 00°C is appropriately selected.

使用されるものである。It is used.

発明の効果 以上述べてきたように、本発明はPbTix(Mgy 
N b 2A) y (N l ’7’2 ”fl y
 ) z O3で表される磁器25”−/ 組成物(ただし X−4−y+z=1 )において、P
bTiO3,Pb(Mg、HNb y)03オJ:びP
b(Ni%W%)03を頂点とする三角座環で、下記〔
〕内の数値で表される組成A、B、C,D。
Effects of the Invention As described above, the present invention provides PbTix (Mgy
N b 2A) y (N l '7'2 ”fl y
) In the porcelain 25"-/ composition represented by z O3 (X-4-y+z=1), P
bTiO3,Pb(Mg,HNb y)03OJ:BiP
b (Ni%W%) A triangular ring with 03 as the vertex, as shown below [
] Compositions A, B, C, D expressed by numerical values.

Eを頂点とする五角形の領域内からなる主成分誘電本磁
器組成物の粉体に対して、副成分として酸化鉛1.0〜
26.oモ)I/Kにて前記誘電体粉体を被覆しだ粉体
を用い、その後、成形、焼成するという構成を備えたも
のである〔AはX=2.6.7−95.0.Z=30.
OIBはx = 12.5 、 y=85.○。
1.0 to 10% of lead oxide is added as a subcomponent to the powder of the main dielectric porcelain composition consisting of a pentagonal area with E as the apex.
26. oMo) It has a structure in which the dielectric powder is coated with the dielectric powder in I/K, and then molded and fired [A is X=2.6.7-95.0 .. Z=30.
OIB is x = 12.5, y = 85. ○.

Z=2.5.Cばx=60.0,7==1o、o、Z=
30.0.DはX=40.0. y=10.0. z=
50.0Eはx=2.6.7=90.0.z−7,5(
単位はいずれもモ)vに)〕。このような構成とするこ
とにより、800〜1000℃の温度にて短時間でかつ
大気中または中性雰囲気中あるいは還元雰囲気中におい
ても焼成可能なセラミックコンデンサおよび厚膜コンデ
ンサを提供し得るという優れた効果を発揮するものであ
る。
Z=2.5. Cbx=60.0,7==1o,o,Z=
30.0. D is X=40.0. y=10.0. z=
50.0E is x=2.6.7=90.0. z-7,5(
All units are m)v)]. With such a configuration, it is possible to provide ceramic capacitors and thick film capacitors that can be fired at a temperature of 800 to 1000°C in a short time and in the air, a neutral atmosphere, or a reducing atmosphere. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

26  A、。 第1図は本発明の組成範囲を示す、 PbTi0. 。 P b 、(Mg%N b 37s )os オヨびP
b (NIHWH) 03  を主成分とする三角組成
図である。
26 A. FIG. 1 shows the composition range of the present invention, PbTi0. . P b , (Mg%N b 37s)os OyobiP
b It is a triangular composition diagram with (NIHWH) 03 as the main component.

Claims (7)

【特許請求の範囲】[Claims] (1)PbTi_x(Mg_1_/_3Nb_2_/_
3)_y(Ni_1_/_2W_1_/_2)O_3で
表される磁器組成物(ただし、X+Y+Z=1)におい
て、PbTiO_3,Pb(Mg_1_/_3Nb_2
_/_3)O_3およびPb(Ni_1/_2W_1_
/_2)O_3を頂点とする三角座標で、下記〔〕内の
数値で表される組成A,B,C,D,Eを頂点とする五
角形の領域内組成からなる主成分誘電体の粉体に対して
、副成分として酸化鉛1.0〜26.0モル%にて前記
誘電体粉体を被覆した粉体を用い、その後、成形,焼成
することを特徴とする高誘電率系誘電体磁器組成物の製
造方法。 〔Aはx=2.5,y=95.0,z=30.0,Bは
x=12.5,y=85.0,z=2.5,Cはx=6
0.0,y=10.0,z=30.0,Dはx=40.
0,y=10.0,z=50.0,Eはx=2.5,y
=90.0,z=7.5(単位はいずれもモル%)。〕
(1) PbTi_x(Mg_1_/_3Nb_2_/_
3) In the ceramic composition represented by_y(Ni_1_/_2W_1_/_2)O_3 (where X+Y+Z=1), PbTiO_3, Pb(Mg_1_/_3Nb_2
_/_3) O_3 and Pb(Ni_1/_2W_1_
/_2) Powder of main component dielectric material consisting of a composition within a pentagonal area with compositions A, B, C, D, and E as vertices represented by the numerical values in brackets below in triangular coordinates with O_3 as the apex. A high dielectric constant dielectric material characterized in that the above dielectric powder is coated with 1.0 to 26.0 mol% of lead oxide as a subcomponent, and then molded and fired. A method for producing a porcelain composition. [A is x=2.5, y=95.0, z=30.0, B is x=12.5, y=85.0, z=2.5, C is x=6
0.0, y=10.0, z=30.0, D is x=40.
0, y=10.0, z=50.0, E is x=2.5, y
=90.0, z=7.5 (all units are mol%). ]
(2)請求項1記載の酸化鉛として、PbO,Pb_2
O_3,Pb_3O_4,PbO_2のうち少なくとも
一種を含んだことを特徴とする高誘電率系誘電体磁器組
成物の製造方法。
(2) As the lead oxide according to claim 1, PbO, Pb_2
A method for producing a high dielectric constant dielectric ceramic composition, characterized in that it contains at least one of O_3, Pb_3O_4, and PbO_2.
(3)請求項1,2記載の組成に対して、NiOを1.
0〜15.0モル%添加することを特徴とする高誘電率
系誘電体磁器組成物の製造方法。
(3) Regarding the compositions according to claims 1 and 2, 1.
A method for producing a high dielectric constant dielectric ceramic composition, characterized in that 0 to 15.0 mol% is added.
(4)請求項1,2記載の組成に対してWO_3を1.
0〜15.0モル%添加することを特徴とする高誘電率
系誘電体磁器組成物の製造方法。
(4) WO_3 is added to 1.
A method for producing a high dielectric constant dielectric ceramic composition, characterized in that 0 to 15.0 mol% is added.
(5)請求項1,2,3または4記載の誘電体磁器組成
物を用い、大気中にて800〜1000℃で焼成可能な
電極とで構成されたことを特徴とするセラミックコンデ
ンサ。
(5) A ceramic capacitor comprising the dielectric ceramic composition according to claim 1, 2, 3, or 4, and an electrode that can be fired at 800 to 1000°C in the atmosphere.
(6)請求項1,2,3または4記載の誘電体磁器組成
物を用い、中性雰囲気中あるいは還元雰囲気中にて80
0〜1000℃で焼成可能な電極とで構成されたことを
特徴とするセラミックコンデンサ。
(6) Using the dielectric ceramic composition according to claim 1, 2, 3 or 4, in a neutral atmosphere or a reducing atmosphere.
A ceramic capacitor comprising an electrode that can be fired at a temperature of 0 to 1000°C.
(7)セラミック基板上に、請求項1,2,3または4
記載の誘電体磁器組成物からなる誘電体層と800〜1
000℃で焼成可能な電極とを設けて構成されたことを
特徴とする厚膜コンデンサ。
(7) Claim 1, 2, 3 or 4 on the ceramic substrate
A dielectric layer made of the dielectric ceramic composition described above and 800-1
1. A thick film capacitor comprising an electrode that can be fired at 000°C.
JP63309509A 1988-12-07 1988-12-07 Method for producing high-permittivity dielectric ceramic composition Expired - Fee Related JP2757402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63309509A JP2757402B2 (en) 1988-12-07 1988-12-07 Method for producing high-permittivity dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309509A JP2757402B2 (en) 1988-12-07 1988-12-07 Method for producing high-permittivity dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH02157155A true JPH02157155A (en) 1990-06-15
JP2757402B2 JP2757402B2 (en) 1998-05-25

Family

ID=17993855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309509A Expired - Fee Related JP2757402B2 (en) 1988-12-07 1988-12-07 Method for producing high-permittivity dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2757402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351804A (en) * 1991-05-29 1992-12-07 Matsushita Electric Ind Co Ltd Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite
US5680291A (en) * 1994-12-23 1997-10-21 Korea Institute Of Science And Technology Low-temperature sinterable dielectric composition with high dielectric constant and multi-layered ceramic capacitor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351804A (en) * 1991-05-29 1992-12-07 Matsushita Electric Ind Co Ltd Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite
US5680291A (en) * 1994-12-23 1997-10-21 Korea Institute Of Science And Technology Low-temperature sinterable dielectric composition with high dielectric constant and multi-layered ceramic capacitor using the same

Also Published As

Publication number Publication date
JP2757402B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JPH02157155A (en) Production of dielectric ceramics composition of high permittivity
JPS5939723A (en) Manufacture of dielectric powder for thick film
JPS623771B2 (en)
JPH04188504A (en) Dielectric porcelain composition
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
JP2523834B2 (en) High dielectric constant dielectric ceramic composition
CN108530068B (en) Barium-calcium co-doped substituted La2NiO4Giant dielectric ceramic and preparation method thereof
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JPH02157156A (en) Production of dielectric porcelain composition having high permittivity
JPH02208911A (en) High permittivity dielectric porcelain composition
JPH03238708A (en) Dielectric porcelain composition and condenser
JPH02210709A (en) Dielectric magnetic component
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JP2906529B2 (en) Dielectric porcelain composition and capacitor
JPH04351804A (en) Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite
JPH029754A (en) Ceramic composition having high dielectric constant
JPH03238707A (en) Dielectric porcelain composition and condenser
JPH02139804A (en) Highly dielectric ceramic compound
JPS6317251A (en) Dielectric ceramic composition
JPS61155258A (en) High dielectric constant dielectric ceramic composition
JPS61155248A (en) High dielectric constant dielectric ceramic composition
JPS6296357A (en) Dielectric ceramic composition
JPH02116108A (en) Ceramic laminated capacitor element and manufacture thereof
JPH0324427B2 (en)
JPS6283351A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees