JPH02156124A - Light wavelength analyzing/measuring apparatus - Google Patents
Light wavelength analyzing/measuring apparatusInfo
- Publication number
- JPH02156124A JPH02156124A JP31116788A JP31116788A JPH02156124A JP H02156124 A JPH02156124 A JP H02156124A JP 31116788 A JP31116788 A JP 31116788A JP 31116788 A JP31116788 A JP 31116788A JP H02156124 A JPH02156124 A JP H02156124A
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- light
- diffraction grating
- control means
- diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 58
- 238000005259 measurement Methods 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 239000013307 optical fiber Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 241001164593 Merica Species 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体レーザ等の発光スペクトル測定および
分光測定を行なう測定装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measurement device for measuring the emission spectrum and spectrometry of semiconductor lasers and the like.
従来の光波長分解測定装置においては、入力光を回折格
子を用いて波長分解し、この光を光検出器で測定して光
波長分解測定を行なうことが一般に行なわれている。こ
の様な光波長分解測定装置においては、回折格子の回折
効率が波長依存性および偏光依存性(回折格子に対して
のTE光、TM光で回折効率が異なる)があるため出力
光レベルが変化してしまう(M、G、Moharam
et al、 ”Rig。In conventional optical wavelength-resolved measurement devices, input light is generally wavelength-resolved using a diffraction grating, and this light is measured with a photodetector to perform optical wavelength-resolved measurement. In such an optical wavelength resolution measuring device, the output light level changes because the diffraction efficiency of the diffraction grating is wavelength dependent and polarization dependent (the diffraction efficiency is different for TE light and TM light with respect to the diffraction grating). (M, G, Moharam
et al, “Rig.
rous coupled−wave analy
sis of metallic 5urfac
e−relief gretings” Journa
l of 0ptical 5ocieLy of A
merica、vol、3.No、11.PP1780
−1787.1986)回折効率の波長依存性に関して
は測定波長が分っていれば簡単に校正できる。しかし、
偏光依存性に関しては入力光の偏光状態が不明な場合が
多い。特に入力光がシングルモード光ファイバを通過し
てきた場合はその偏光状態は測定しない限り不明と言え
る。このたy)入力光の偏光状態に対しての校正をする
ために回折格子の出力光を偏光ビームスプリッタで偏光
分離し、これらを個別の光検出器で検出した後に補正演
算を行なう形の偏光依存性のない光波長分解測定装置が
製作されている〈例えば、アンリツ製 光スペクトラム
アナライザ MS9001B1 )。rous coupled-wave analysis
sis of metallic 5urfac
e-relief greetings” Journa
l of 0ptical 5ocieLy of A
merica, vol, 3. No, 11. PP1780
-1787.1986) The wavelength dependence of diffraction efficiency can be easily calibrated if the measurement wavelength is known. but,
Regarding polarization dependence, the polarization state of input light is often unknown. In particular, when input light passes through a single mode optical fiber, its polarization state is unknown unless it is measured. In this case, in order to calibrate the polarization state of the input light, the output light of the diffraction grating is polarized by a polarization beam splitter, which is detected by a separate photodetector, and then a correction calculation is performed. Optical wavelength resolving measurement devices without dependence have been manufactured (for example, Anritsu Optical Spectrum Analyzer MS9001B1).
上述した光波長分解測定装置においては、回折格子によ
って波長分解された後に偏光分離するため光検出器が複
数必要となり装置が大きくなる欠点があった。The above-mentioned optical wavelength-resolving measuring device has the disadvantage that a plurality of photodetectors are required to separate the polarized light after the wavelength is resolved by the diffraction grating, resulting in a large device.
本発明の目的は、上記の様な欠点を除去し、光検出器1
つでコンパクトな構成で入力光の偏光に依存しない光波
長分解測定装置を提供することにある。The purpose of the present invention is to eliminate the above-mentioned drawbacks and to
An object of the present invention is to provide an optical wavelength resolving measurement device that has a compact configuration and does not depend on the polarization of input light.
本発明の光波長分解測定装置は、入力光を空間的に直交
する2偏光状態に分離する偏光分離素子と、前記2偏光
状態に分離された一方の光をもう一方の偏光状態と一致
させる偏光制御手段と、前記偏光制御手段の出力光と偏
光制御手段を通過していない一方の光とを同時に波長分
解を行なう回折格子と、前記回折格子の回折光パワーを
検波する検出器を備えた構成となっており、回折格子へ
の入力偏光を一定とすることで回折格子の回折効率を補
正できることを特徴とする光波長分解測定装置である。The optical wavelength resolving measurement device of the present invention includes a polarization separation element that separates input light into two spatially orthogonal polarization states, and a polarization splitter that makes one of the two polarization states match the other polarization state. A configuration comprising: a control means; a diffraction grating that simultaneously performs wavelength decomposition of the output light of the polarization control means and one of the lights that has not passed through the polarization control means; and a detector that detects the power of the diffracted light of the diffraction grating. This is an optical wavelength resolving measurement device characterized by being able to correct the diffraction efficiency of the diffraction grating by keeping the input polarization to the diffraction grating constant.
本発明の光波長分解測定装置では、まず入力光を偏光ビ
ームスプリッタで直交2偏光状態に分離する。この2偏
光状態に分離された光の一方を偏光制御手段である偏光
制御器で偏光変換して分離されたもう一方の偏光状態の
光に変換する。このことによりこれら2つの偏光分離さ
れた光は同一偏光状態となる。この後これら2つの光を
同時に回折格子で波長分解する。このような測定におい
ては回折格子への入力光の偏光状態が一定となっている
ため光波長分解測定装置への入力光の偏光が任意であっ
ても回折格子の入力偏光依存性が出力レベルに生じない
測定ができる。In the optical wavelength resolving measurement device of the present invention, input light is first separated into two orthogonal polarization states by a polarization beam splitter. One of the lights separated into two polarization states is polarized by a polarization controller, which is a polarization control means, and converted into light in the other separated polarization state. As a result, these two polarization-separated lights have the same polarization state. Thereafter, these two lights are simultaneously wavelength-separated by a diffraction grating. In such measurements, the polarization state of the input light to the diffraction grating is constant, so even if the polarization of the input light to the optical wavelength resolution measurement device is arbitrary, the input polarization dependence of the diffraction grating will not affect the output level. Measurements can be made that do not occur.
第1図は本発明の一実施例の構成図を示す。本実施例で
は入力光200は偏光ビームスプリッタ100で2直交
直線偏光酸分に分離される。FIG. 1 shows a configuration diagram of an embodiment of the present invention. In this embodiment, input light 200 is split into two orthogonal linearly polarized components by a polarizing beam splitter 100.
その後それぞれの偏光成分が偏光保持ファイバ101.
102に結合される。一方の偏光保持ファイバ102は
偏光制御手段400として、偏光保持ファイバ101と
同一の直線偏光を出力するように空間的に90度捩られ
る。この偏光保持ファイバ101.102を回折格子に
対してTE偏光となる方向に並べて設置し、光ファイバ
からの出力光を回折格子に対してTE偏光になるように
する。この場合、回折格子の回折効率ηは、ηTEとな
りこの値で校正する事で入力光パワーを回折格子の偏光
依存性の影響を受ける事無く測定できる。またこの際、
回折格子の出力光300がスリット103の長手方向に
干渉縞を生じるが、出力光300を直線的に広がったス
リット103で切りわけ、この出力光300のパワーを
すべて光検出器4を用いて受光するとにより、偏光依存
性およびこの干渉縞の影響も受けずに波長分解測定がで
きる。Each polarized light component is then transferred to polarization maintaining fiber 101.
102. One polarization-maintaining fiber 102 is spatially twisted by 90 degrees as a polarization control means 400 so as to output the same linearly polarized light as that of the polarization-maintaining fiber 101. These polarization-maintaining fibers 101 and 102 are arranged in the direction of TE polarization with respect to the diffraction grating, so that the output light from the optical fibers becomes TE polarization with respect to the diffraction grating. In this case, the diffraction efficiency η of the diffraction grating becomes ηTE, and by calibrating with this value, the input optical power can be measured without being affected by the polarization dependence of the diffraction grating. Also at this time,
The output light 300 of the diffraction grating produces interference fringes in the longitudinal direction of the slit 103, but the output light 300 is cut by the linearly spread slit 103, and all the power of this output light 300 is received using the photodetector 4. As a result, wavelength-resolved measurements can be performed without being influenced by polarization dependence or interference fringes.
本実施例には様々な変形例がある。一方の偏光をもう一
方の偏光に変換する偏光制御手段としてファラデーロテ
ータを用いることもLiNb09の結晶を用いた偏光制
御素子を用いる事もできる。また回折格子への入射偏光
状態はどの様な偏光状態でも良<、TE偏光に限らず、
7M偏光あるいは他の直線偏光でも良いし、円偏光でも
良い、ただしこの際にはその偏光状態に対する回折効率
によって出力パワーを校正する必要がある。This embodiment has various modifications. As a polarization control means for converting one polarized light into the other polarized light, a Faraday rotator can be used, or a polarization control element using a LiNb09 crystal can be used. Furthermore, the incident polarization state to the diffraction grating can be any polarization state, and is not limited to TE polarization.
It may be 7M polarized light or other linearly polarized light, or it may be circularly polarized light, but in this case, it is necessary to calibrate the output power based on the diffraction efficiency for that polarization state.
また偏光状態を一致させた光を合波する方法も光ファイ
バ端を空間的に並べるだけでなく、各光ファイバから出
射した光分ハーフミラ−等の合波器で混合し、その光を
回折格子に入力することもできる。この際にはスリット
上に干渉縞は生じない。In addition, the method of combining light with the same polarization state is not only by arranging the ends of optical fibers spatially, but also by mixing the light emitted from each optical fiber with a multiplexer such as a half mirror, and then combining the light with a diffraction grating. You can also enter . At this time, no interference fringes are generated on the slit.
〔発明の効果〕
以上説明した様に本発明によれば、入力光の偏光状態を
一定として測定することで、回折格子の回折効率の(肩
波依存性を簡単に補償することができ、光波長分解した
後に光検出器−個のみの簡単な構成で、容易に回折格子
の回折効率の偏光依存性を校正できる。[Effects of the Invention] As explained above, according to the present invention, by measuring the polarization state of input light as a constant, it is possible to easily compensate for the shoulder wave dependence of the diffraction efficiency of the diffraction grating, and to After wavelength decomposition, the polarization dependence of the diffraction efficiency of the diffraction grating can be easily calibrated with a simple configuration of only one photodetector.
尤弤
第1図は、本発明の典型的な実施例である光波長分解測
定装置の図である。
図中、
2・・・回折格子、103・・・スリット、4・・・光
検出器、100・・・偏光ビームスプリッタ、101,
102・・・偏光保持ファイバ、200・・・入力光、
300・・出力光、400・・・偏光制御手段である。FIG. 1 is a diagram of an optical wavelength-resolving measurement device that is a typical embodiment of the present invention. In the figure, 2... Diffraction grating, 103... Slit, 4... Photodetector, 100... Polarizing beam splitter, 101,
102...Polarization maintaining fiber, 200...Input light,
300: Output light; 400: Polarization control means.
Claims (1)
分離素子と、前記2偏光状態に分離された一方の光をも
う一方の偏光状態と一致させる偏光制御手段と、前記偏
光制御手段の出力光と偏光制御手段を通過していない一
方の光とを同時に波長分解を行なう回折格子と、前記回
折格子の回折光パワーを検波する検出器とを備えたこと
を特徴とする光波長分解測定装置。a polarization separation element that separates input light into two spatially orthogonal polarization states; a polarization control device that makes one of the light separated into the two polarization states match the other polarization state; and an output of the polarization control device. An optical wavelength resolution measurement device comprising: a diffraction grating that simultaneously performs wavelength resolution of light and one of the lights that has not passed through the polarization control means; and a detector that detects the power of the diffracted light of the diffraction grating. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63311167A JP2605385B2 (en) | 1988-12-08 | 1988-12-08 | Optical wavelength resolution measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63311167A JP2605385B2 (en) | 1988-12-08 | 1988-12-08 | Optical wavelength resolution measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02156124A true JPH02156124A (en) | 1990-06-15 |
JP2605385B2 JP2605385B2 (en) | 1997-04-30 |
Family
ID=18013897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63311167A Expired - Fee Related JP2605385B2 (en) | 1988-12-08 | 1988-12-08 | Optical wavelength resolution measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2605385B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1529204A1 (en) * | 2002-07-12 | 2005-05-11 | River Diagnostics B.V. | Optical spectrometer |
JP2006153587A (en) * | 2004-11-26 | 2006-06-15 | Nikon Corp | Spectroscope and microspectroscope equipped therewith |
JP2006242876A (en) * | 2005-03-07 | 2006-09-14 | Namiki Precision Jewel Co Ltd | Wavelength monitor unit |
JP2007240228A (en) * | 2006-03-07 | 2007-09-20 | Fujifilm Corp | Optical tomographic imaging apparatus |
JP2008164630A (en) * | 2001-09-20 | 2008-07-17 | Capella Photonics Inc | Free-space optical system for wavelength switching and spectrum monitoring application |
JP2012167936A (en) * | 2011-02-10 | 2012-09-06 | Anritsu Corp | Optical spectrum measurement device and optical spectrum measurement method |
JP2013152179A (en) * | 2012-01-26 | 2013-08-08 | Nikon Corp | Spectroscope and microspectroscopy system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284431A (en) * | 1987-05-15 | 1988-11-21 | Iwatsu Electric Co Ltd | Spectro-photometer |
JPS63284432A (en) * | 1987-05-15 | 1988-11-21 | Iwatsu Electric Co Ltd | Spectrophotometer |
-
1988
- 1988-12-08 JP JP63311167A patent/JP2605385B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284431A (en) * | 1987-05-15 | 1988-11-21 | Iwatsu Electric Co Ltd | Spectro-photometer |
JPS63284432A (en) * | 1987-05-15 | 1988-11-21 | Iwatsu Electric Co Ltd | Spectrophotometer |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008164630A (en) * | 2001-09-20 | 2008-07-17 | Capella Photonics Inc | Free-space optical system for wavelength switching and spectrum monitoring application |
EP1529204A1 (en) * | 2002-07-12 | 2005-05-11 | River Diagnostics B.V. | Optical spectrometer |
JP2006153587A (en) * | 2004-11-26 | 2006-06-15 | Nikon Corp | Spectroscope and microspectroscope equipped therewith |
JP4645173B2 (en) * | 2004-11-26 | 2011-03-09 | 株式会社ニコン | Spectroscope and microspectroscopic device provided with the same |
JP2006242876A (en) * | 2005-03-07 | 2006-09-14 | Namiki Precision Jewel Co Ltd | Wavelength monitor unit |
JP2007240228A (en) * | 2006-03-07 | 2007-09-20 | Fujifilm Corp | Optical tomographic imaging apparatus |
JP2012167936A (en) * | 2011-02-10 | 2012-09-06 | Anritsu Corp | Optical spectrum measurement device and optical spectrum measurement method |
JP2013152179A (en) * | 2012-01-26 | 2013-08-08 | Nikon Corp | Spectroscope and microspectroscopy system |
Also Published As
Publication number | Publication date |
---|---|
JP2605385B2 (en) | 1997-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Azzam et al. | Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements | |
US7898656B2 (en) | Apparatus and method for cross axis parallel spectroscopy | |
US7436569B2 (en) | Polarization measurement and self-calibration based on multiple tunable optical polarization rotators | |
JP4728027B2 (en) | Light measuring device | |
JPH02196930A (en) | Polarization measurement method and apparatus | |
US6738140B2 (en) | Wavelength detector and method of detecting wavelength of an optical signal | |
US6856398B2 (en) | Method of and apparatus for making wavelength-resolved polarimetric measurements | |
Thompson et al. | Beamcon III, a linearity measurement instrument for optical detectors | |
RU2135983C1 (en) | Process measuring transmission, circular dichroism and optical rotation of optically active substances and dichrograph for its realization | |
JPH02156124A (en) | Light wavelength analyzing/measuring apparatus | |
JPS6228623A (en) | Photometer | |
JP2003083810A (en) | Spectroscopic device and light measuring device | |
JP2015075329A (en) | Method and apparatus for measuring circular dichroism | |
Taniguchi et al. | Stabilized channeled spectropolarimeter using integrated calcite prisms | |
Dai et al. | Polarization-multiplexed Fibre spectrometer based on radiant tilted Fibre grating | |
SU1173325A1 (en) | Device for high-voltage measurement | |
JPH03218424A (en) | Spectrophotometer | |
JPS62500321A (en) | Measuring device for analyzing electromagnetic radiation | |
JPH01113626A (en) | Measuring method for optical wavelength | |
JP2013160651A (en) | Line spectrometric measurement apparatus | |
Acher et al. | Snapshot spectropolarimeter based on a six-fold separating prism operating from 360 nm to 1 µm | |
Mueller et al. | Performance of a fiber optic ring depolarizer in fiber sensing applications | |
SU1525489A1 (en) | Method of investigating harmonic stresses in specimen | |
JPS62159025A (en) | Automatic measuring method for coupling length of polarization plane maintaining optical fiber | |
JPH073367B2 (en) | Fluorescence polarization measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |