JPH0215222B2 - - Google Patents

Info

Publication number
JPH0215222B2
JPH0215222B2 JP56112919A JP11291981A JPH0215222B2 JP H0215222 B2 JPH0215222 B2 JP H0215222B2 JP 56112919 A JP56112919 A JP 56112919A JP 11291981 A JP11291981 A JP 11291981A JP H0215222 B2 JPH0215222 B2 JP H0215222B2
Authority
JP
Japan
Prior art keywords
compound
carrier
adsorption
vinyl
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56112919A
Other languages
Japanese (ja)
Other versions
JPS5815924A (en
Inventor
Naokuni Yamawaki
Shozo Suzuki
Tadaaki Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56112919A priority Critical patent/JPS5815924A/en
Priority to US06/339,368 priority patent/US4432871A/en
Priority to AT82100371T priority patent/ATE13014T1/en
Priority to DE8282100371T priority patent/DE3263327D1/en
Priority to EP82100371A priority patent/EP0056977B1/en
Publication of JPS5815924A publication Critical patent/JPS5815924A/en
Publication of JPH0215222B2 publication Critical patent/JPH0215222B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、生体免疫機能に起因する各種疾患と
密接な関係をもつと考えられているイムノグロブ
リンおよび/またはイムノグロブリン複合体を特
異的に吸着除去するグロブリン系化合物の吸着材
に関する。 周知の如く、血液中に発現するイムノグロブリ
ンおよび/またはイムノグロブリン複合体は、
癌、免疫増殖性症候群、慢性関節リウマチ、全身
性エリテマトーデス等の自己免疫疾患、あるいは
アレルギー、臓器移植時の拒絶反応等の生体免疫
機能に関係した疾患および現象の原因あるいは進
行と密接な関係をもつていると考えられている。 そこで、血液、血漿等の体液成分から、上記イ
ムノグロブリンおよび/またはイムノグロブリン
複合体を特異的に吸着除去することによつて、上
記の如き疾患の進行を防止し、症状を軽減せしめ
さらには治癒を早めることが期待されていた。 本発明者らは、上記要請に沿つて鋭意研究した
結果、実に驚くべきことには、不溶性担体に結合
した疎水性化合物および/または疎水性化合物を
含むオリゴマーが極めて高活性にイムノグロブリ
ンを吸着すること、特に自己抗体、免疫複合体を
特異的に吸着することを見い出し、先に特許出願
した(特願昭56−7152号)。 本発明は、先の発明に関して担体についてより
詳細に検討した結果なされたものであり、担体の
改良に関する。 従来、本目的を対象として特別に設計された担
体は知られていない。したがつて、通常アフイニ
テイクロマトグラフイ用として公知の担体を転用
する他はなかつた。公知の担体としては、アガロ
ース系担体、デキストラン系担体、セルロース系
担体等の天然高分子系担体、ポリアクリルアミド
系担体、ガラス系担体等が知られている。 しかしながら、天然高分子系担体は治療用に用
いる時、以下の欠点を有する。 (1) 機械的強度が不十分なために操作上の制約が
多い。たとえば活性化、固定化等の吸着体の調
製時に破壊されたり、輸送、使用時に担体のカ
ケ、クダケが生じる。 (2) 軟質ゲルであるため、カラムに充填し体外循
環に用いる場合に、除去すべき物質を含む体液
を高流速で流すことができない。体液のような
高粘度、高溶質濃度液を高流速で流すと、軟質
ゲルであるため、充填体積が減少し、目づまり
と流量低下をおこし、ついには流れなくなる場
合もある。 (3) 軟質ゲルでありパーマネントボアーではない
ため、体外循環治療用吸着材の必須要件である
滅菌操作も容易に行えない。例えばエチレンオ
キサイトガス滅菌のように薬剤滅菌の場合、凍
結乾燥して滅菌されるが、凍結乾燥によつて細
孔が破壊され、再び水系媒体に分散しても元に
もどらない。凍結乾燥時その体積は約半量まで
減少し、再び水系媒体に分散しても元の体積の
たかだか80%程度にしかもどらず、吸着能力も
減少するのが常である。凍結乾燥時細孔を保護
するため、添加剤を混入して行う方法もある
が、添加剤が体液に入るのを防ぐため、使用前
に徹底的な洗浄を施さなければならない。また
高圧蒸気滅菌のような熱滅菌も細孔を破壊する
ので用いることができない。同様に放射線滅菌
もその骨格および細孔を破壊するので用いるこ
とができない。 (4) さらには天然高分子系担体は体外循環治療用
に用いる時、補体系の活性化、凝固系の活性化
がおこり、ロイコペニア、スロンボサイトペニ
ア等を生来するといわれ、あまり好ましくな
い。 ポリアクリルアミド系担体は、物理的、化学的
に比較的安定であるという長所を有するものの、
血漿タンパクの特異的吸着が生じ、またアクリル
アミドの残留毒性も無視し得ない。ガラス系担体
は物理的、化学的に安定であるが、血漿タンパク
の非特異的吸着が著しく、また全血に用いる場合
には血栓形成を起こし、用いられない。 本発明の目的は、上記の如き従来技術に基づく
担体の問題点に鑑み、一般的に普及可能であり、
イムノグロブリンおよび/またはイムノグロブリ
ン複合体を高活性かつ特異的に吸着し、安定な活
性を保持し、安全性があり、滅菌操作も簡易に行
なうことができ、体液浄化あるいは再生用に適し
た吸着材を提供せんとするものである。 本発明者らは、上記目的に沿つて研究を進め、
各種の担体に疎水性化合物および/または疎水性
化合物を含む重合体を結合し、イムノグロブリン
およびイムノグロブリン複合体に対する結合活性
および血漿タンパクの非特異吸着と全血に対する
使用可否等を評価したところ、実に驚くべきこと
には、ビニルアルコール単位を主構成成分とし、
イソシアヌレート環を有するビニル化合物により
架橋した共重合体が担体として極めて好結果を与
えることを見い出し、本発明を完成するに至つ
た。 すなわち、本発明は、ビニルアルコール単位を
主構成成分とし、イソシアヌレート環を有するビ
ニル化合物により架橋した共重合体からなる担体
に、疎水性化合物および/または疎水性化合物を
含む重合体が結合されていることを特徴とするイ
ムノグロブリンおよび/またはイムノグロブリン
複合体の吸着材に係る。 本目的に用いる担体としては、血漿タンパク
の非特異吸着が少ない、補体系、凝固系を活性
化しない等の血漿タンパクとの相互作用特性およ
び吸着特性が要求される。また安全性の面では、
滅菌可能であること、物理的強度があり、担
体のカケやクダケが発生しないこと、担体より
溶出物がないことが要求される。さらに全血用吸
着材として用いる場合には、血球成分との相互作
用、すなわち、血栓形成や血球成分の非特異粘着
残血等が問題になる。デキストラン、アガロー
ス、セルロース等の糖を含む天然高分子系担体
は、血球、血漿成分と相互作用し、補体系の活性
化、凝固系の活性化を起こす。一方、合成高分子
系担体は、比較的これらの問題を起こさないとさ
れている。本発明者らは、合成高分子担体につい
て検討した結果、ビニルアルコール単位を主構成
成分とし、イソシアヌレート環を有するビニル化
合物により架橋した共重合体からなる担体は、以
上の未解決の問題をみごとに解決することを見い
出した。 ビニルアルコール単位を主構成成分とし、イソ
シアヌレート環を有するビニル化合物により架橋
した共重合体からなる担体は、その親水性のた
め、血漿中のタンパク質等溶質との相互作用が小
さく、非特異吸着を最小限に低下させる。また血
漿中の補体系、凝固系と相互作用しない等の極め
て優れた特性を有する。物理的特性の面でも、耐
熱性を有し、熱滅菌を可能ならしめ、さらには合
成高分子の特性である物理的機械的強度に優れて
いる。全血用吸着材の担体として用いる場合に
も、血球成分との相互作用が少なく、血栓形成や
血球成分の非特異粘着、残血等を最少限におさえ
る等の極めて優れた特性を併せ持つている。 本発明の架橋共重合体の水酸基の密度は、高く
なればなるほどその親水性が増加し、血液成分と
の相互作用を最小にする上では好都合であり、ま
た活性化試薬で活性化した場合の活性基密度も高
水準に保持でき好ましいが、一方、架橋密度(架
橋剤含量)との関係で、物理的、機械的強度が低
下する。したがつて、水酸基密度としては5〜17
meq/gが好ましく、より好ましくは6〜15meq/
gである。 水酸基密度は、担体をピリジン溶媒
中で無水酢酸と反応させて、水酸基と反応して消
費した無水酢酸の量または担体の重量変化を測定
し、これから求めることができる。乾燥担体1g
が1mmolの無水酢酸と反応したときの水酸基密
度が1meq/gである。 ビニルアルコール単位を主構成成分とし、イソ
シアヌレート環を有するビニル化合物により架橋
した共重合体は、ビニル系モノマーとアリル系架
橋剤との共重合により作ることができる。この場
合のビニル系モノマーとしては、酢酸ビニル、プ
ロピオン酸ビニル等のカルボン酸のビニルエステ
ル類、メチルビニルエーテル、エチルビニルエー
テル等のビニルエーテル類を例示することができ
る。 アリル系架橋剤としては、トリアリルイソシア
ヌレート、トリアリルシアヌレート等を用いるこ
とができる。また必要に応じて、他のコモノマー
を共重合したものも用いることができる。 ビニルアルコール単位を主構成成分とし、イソ
シアヌレート環を有するビニル化合物により架橋
した共重合体として、カルボン酸のビニルエステ
ルとイソシアヌレート環を有するビニル化合物
(アリル化合物)を共重合し、共重合体を加水分
解して得られるポリビニルアルコールのトリアリ
ルイソシアヌレート架橋体が、強度、化学的安定
性の面で特に良好な担体を与える。 本発明で用いるビニルアルコール単位を主構成
成分とし、イソシアヌレート環を有するビニル化
合物により架橋した共重合体の製造方法の例は、
特開昭57−190003号公報にも記載されている。 本担体の形状としては、球状、粒状、糸状、中
空糸状、平膜状等いずれも有効に用いられるが、
その担体表面積(吸着材としての吸着能力)およ
び体外循環時の体液の流通面より、球状または粒
状が特に好ましく用いられる。したがつて、担体
の合成法としては、公知の懸濁重合法が特に有効
に用いられる。 球状または粒子状担体の平均粒径は25〜2500μ
mのものを利用できるが、その比表面積(吸着材
としての吸着能力)と体液の流通面より、150〜
1500μmのものが特に好ましい。 本発明においては、架橋共重合体の比表面積が
少なくとも5m2/gを保持するものを用いる。 比表面積とは、乾燥架橋共重合体単位重量当り
に吸着した窒素ガスが占有する表面でもつて表示
したものである。つまり比表面積は単位重量の架
橋共重合体を構成する物質が乾燥状態でいかに有
効に表面を形成しているかを表示している。 一般に架橋共重合体は、その架橋共重合体と親
和性のある媒体中で膨潤し、乾燥すると収縮す
る。膨潤時に媒体が満たされているボアーが架橋
の網目のみで維持されている軟質ゲルの場合は、
乾燥すると網目がつぶれてしまい、ボアーはほと
んど消失する。この場合の比表面積は、ほとんど
粒子の外側だけの値になるため、一般に1m2/g
以下の低い値を示す従来アフイニテイクロマトグ
ラフイ用として知られているアガロースは軟質ゲ
ルであるため、乾燥によつてボアーが消失してし
まう。したがつて、滅菌操作も容易に行えず、さ
らにはつぶれやすい軟質の網目を持つているた
め、カラムに充填し体外循環に用いる場合にも、
体液を長時間、高流速で流すことができない。 一方、ボアーがしつかりした構造をもち、凍結
乾燥や熱滅菌に耐える硬質ゲル(架橋共重合体)
の場合には、乾燥した際にボアーは多少収縮する
ものの、膨潤時の状態をほとんど維持する。つま
りパーマネントボアーを有し、比表面積は軟質ゲ
ルより高い値を示し、少なくとも5m2/g以上の
値を示した。 本発明の比表面積の測定は、最も一般的な窒素
ガスによるベツト法(BET法)で求めた。また
比表面積測定に用いるサンプルは、十分乾燥して
おかなければならないが、本発明の架橋共重合体
は乾燥しにくいこともあり、水にぬれた担体をア
セトンで平衡にした後、60℃以下で減圧乾燥して
測定に供した。 本発明に用いる架橋共重合体の保水量(以下
WRという)は0.5〜16g/gの範囲にあるのが適
当であり、好ましくは1.0〜15.0g/gの範囲であ
る。 WRとは、架橋共重合体を生理食塩水と平衡に
した時、粒子内に含みうる生理食塩水の量を架橋
共重合体乾燥重量あたりの値として表示したもの
である。つまりWRは架橋共重合体内の孔量の目
安になる。WRが大きくなると、水中において架
橋共重合体単位体積あたりの骨格を形成する部
分、つまり架橋共重合体そのものの重量が相対的
に低下し、そのため生理食塩水中さらには体液中
において、架橋共重合体の機械的強度が低下す
る。またWRが小さくなると、吸着に有効な単位
重量(または単位体積)あたりの孔量が少なくな
るので吸着能力が低下する。したがつて、WR
適当な範囲にあることが本目的の担体にとつて好
ましい。 WRは予め十分に乾燥した架橋共重合体の重量
(W2)を測定した後に、生理食塩水と十分平衡に
した架橋共重合体を遠心分離器にかけて架橋共重
合体表面に付着している生理食塩水を除去した
後、その重量(W1)を測定し、次式によつて求
めることができる。 WR=W1−W2/W2(g/g) 担体の排除限界分子量(タンパク質)として
は、本発明の目的吸着物質の分子量が15万
(IgG)より免疫複合体特にIgM免疫複合体の場
合には1000万に達するので、15〜1000万が好まし
い。本発明の目的に最も汎用的な排除限界分子量
は100〜500万である。 本発明で対象とする吸着物質は、イムノグロブ
リンおよび/またはイムノグロブリン複合体であ
るが、より詳細に説明すると、通常のイムノグロ
ブリン、リウマチ因子、抗核抗体、抗DNA抗体、
抗リンパ球抗体、抗赤血球抗体、抗血小板抗体、
アセチルコリンレセプター抗体、血清脱随抗体、
抗サイログロブリン抗体、抗マイクロゾーム抗
体、抗大腸抗体等の自己抗体を含むイムノグロブ
リン、イムノグロブリンの還元生成物、化学修飾
生成物等のイムノグロブリン誘導体、イムノグロ
ブリン間またはイムノグロブリンと他の物質、特
に抗原および抗原様物質との複合体等である(以
下、グロブリン系化合物と総称する)。これらの
中でも特に本発明の対象とする吸着物質として好
ましいものは、自己免疫疾患の原因および進行と
深い係わりをもつ自己抗体および免疫複合体であ
る。 本発明に用いる疎水性化合物とは、対生理食塩
水溶解度100ミリモル/dl以下(25℃)、より好ま
しくは30ミリモル/dl以下の化合物をいう。対生
理食塩水溶解度が100ミリモル/dlより大きい化
合物は、親水性が高くなりすぎ、グロブリン系化
合物に対する親和力が低下する結果、吸着能が低
下する。また、より親水的なアルブミンに対する
親和力が生じて、アルブミンをも非特異的に吸着
するようになり好ましくない。疎水性化合物の中
では、少なくとも一つの芳香族環を有する化合物
が、特に好ましい結果を与える。芳香族環とは、
芳香族性を持つた環状化合物を意味し、いずれも
有用に用い得るが、ベンゼン、ナフタレン、フエ
ナントレン等のベンゼン系芳香族環、ピリジン、
キノリン、アクリジン、イソキノリン、フエナン
トリジン等の含窒素6員環、インドール、カルバ
ゾール、イソインドール、インドリジン、ポルフ
イリン、2,3,2′,3′−ピロロピロール等の含
窒素5員環、ピリダジン、ピリミジン、sym−ト
リアジン、sym−テトラジン、キナゾリン、1,
5−ナフチリジン、プテリジン、フエナジン等の
多価含窒素6員環、ピラゾール、イミナゾール、
1,2,4−トリアゾール、1,2,3−トリア
ゾール、テトラゾール、ベンズイミナゾール、イ
ミダゾール、プリン等の多価含窒素5員環、ノル
ハルマン環、ペリミジン環、ベンゾフラン、イソ
ベンゾフラン、ジベンドフラン等の含酸素芳香族
環、ベンドチオフエン、チエノチオフエン、チエ
ビン等の含イオウ芳香族環、オキサゾール、イソ
オキサゾール、1,2,5−オキサダイアゾー
ル、ベンズオキサゾール等の含酸素複素芳香環、
チアゾール、イソチアゾール、1,3,4−チア
ダイアゾール、ベンゾチアゾール等の含イオウ複
素芳香環などの芳香族環およびその誘導体を少な
くとも一つ有する疎水性低分子有機化合物が好ま
しい結果を与える。中でもトリプタミン等のイン
ドール環を含む化合物は、特に好ましい結果を与
える。これはグロブリン系化合物と該化合物の結
合において、該化合物の疎水性、立体構造と分子
剛直性が有効に作用している結果と解釈できるも
のである。 また、本発明者らは、より安全に実用に供する
ことができ、安価な疎水性化合物を求めて鋭意研
究の結果、疎水性アミノ酸およびその誘導体が極
めて高率かつ特異的にグロブリン系化合物を吸
着、除去することを見い出した。 疎水性アミノ酸およびその誘導体とは、
Tanford、Nozaki(J.Am.Chem.Soc.、184 4240
(1962)、J.Biol.Chqm.246 2211(1971))〔タンフ
オードノザキ(ジヤーナル・オブ・アメリカン・
ケミカル・ソサエテイ、184、4240(1962)、ジヤ
ーナル・オブ・バイオロジカル・ケミストリイ
246、2211(1971)〕により定義された疎水性尺度
でみて、1500cal/mol以上のアミノ酸およびその
誘導体で、対生理食塩水溶解度100ミリモル/dl
以下の化合物を意味する。例えば、リジン、バリ
ン、ロイシン、チロシン、フエニルアラニン、イ
ソロイシン、トリプトフアンおよびその誘導体等
である。これらの疎水性アミノ酸およびその誘導
体の中では、トリプトフアンおよびそ誘導体が特
に良好な結果を与える。また、アミノ酸はl、d
の立体配座を特に限定することなく使用すること
ができる。 また、本発明者らは、鋭意研究の結果、実に驚
くべきことには、疎水性化合物のうち、前記担体
に結合した状態で非解離性、両イオン性、カチオ
ン性の化合物が、グロブリン系化合物をより選択
的に吸着することを見い出した。すなわち、アニ
オン性の化合物は、アルブミン分子がグロブリン
分子より電気的に陰性であることより当然予想さ
れる結果に反して、アルブミンに親和性であり、
グロブリン系化合物の吸着量が低下した。例え
ば、フエニルアラニンメチルエステル、フエニル
アラニン、チロシンは、その疎水性に大きな相違
がないが、そのアミノ基で担体に共有結合し、イ
ムノグロブリン吸着能を評価した時、フエニルア
ラニンメチルエステル>フエニルアラニンチロ
シンの序列になり、フエニルアラニン、チロシン
は、吸着能が低下することにその実例をみること
ができる。また、非芳香環化合物も同様の結果を
示した。特にアニオン性基として、スルフオン酸
基を有し、より親水化した化合物は、グロブリン
系化合物よりアルブミンに親和的であり、アルブ
ミン吸着材として作用した。これは化合物の電荷
とアルブミン、分子内のミクロな環境の電荷との
相互作用によるものと推定される。 以上の実験結果によりみて、本発明の作用メカ
ニズムは、担体に結合した疎水性化合物とグロブ
リン系化合物の疎水性相互作用力(Van der
Waals力)に基づくものと考えられる。また、遠
達力としての電荷間相互作用力(クーロン力)が
二次的に作用しているものと推定される。 本発明の疎水性化合物を含む重合体は、分子量
1万以下の重合体、より好ましくは分子量1000以
下の重合体である。これによりプロテインA(分
子量42000)のような天然高分子に比較して固定
化時の取扱い、固定化後の保存も容易に行えるも
のである。また、当該物質が担体から溶出した場
合にも、分子量1万以下の重合体は、生体に対す
る抗原性が無視できるほど小さく安全であり、滅
菌操作も容易に行えるものである。該重合体は、
疎水性化合物モノマー単独または他の化合物との
共重合により得られる。疎水性化合物モノマーと
しては、例えばトリブタミン等のインドール環を
含む化合物のビニル誘導体、トリプトフアン等の
疎水性アミノ酸を用いることができる。 疎水性化合物または/および疎水性化合物を含
む重合体を、ビニルアルコール単位を主構成成分
とする架橋共重合体からなる担体に結合する方法
は、共有結合、イオン結合、物理吸着、包埋ある
いは重合体表面への沈殿不溶化等あらゆる公知の
方法を用いることができるが、結合物の溶出性よ
りみて、共有結合により固定、不溶化して用いる
ことが好ましい。そのため通常固定化酵素、アク
イニテイクロマトグラフイで用いられる公知の担
体の活性化方法を用いることができる。 活性化方法を例示すると、ハロゲン化シアン
法、エピクロルヒドリン法、ビスエポキシド法、
ハロゲン化トリアジン法、ブロモアセチルブロミ
ド法、エチルクロロホルマート法、1,1′−カル
ボニルジイミダゾール法等をあげることができ
る。本発明の活性化方法は、結合物のアミノ基、
水酸基、カルボキシル基、チオール基等の活性水
素を有する求核反応基と置換および/または付加
反応できればよく、上記の例示に限定されるもの
ではない。 また必要に応じて、架橋共重合体(担体)と疎
水性化合物または/および疎水性化合物を含む重
合体の間に、任意の長さの分子(スペーサー)を
導入して使用することもできる。例えば担体の水
酸基とヘキサメチレンジイソシアナートの片側の
イソシアナート基を反応、結合させ、残つたイソ
シアナート基と結合物のアミノ基、ヒドロキシル
基、チオール基、カルボキシル基等を反応、結合
させるごとく実施することができる。スペーサー
長さとしては、スペーサーのないものから、その
中に含まれる原子数で20までが特に好ましい結果
を与える。 また本発明において、必要に応じて、担体に2
種以上の疎水性化合物または/および疎水性化合
物を含む重合体を結合させて用いることもでき
る。 本発明で担体に結合している疎水性化合物また
は/および疎水性化合物を含む重合体の量は、担
体1ml当り0.1〜30mgの範囲が好ましい。より好
ましくは0.5〜15mgの範囲である。保持量が0.1
mg/mlを下まわるとグロブリン系化合物の吸着量
が極度に低下するし、30mg/mlを上まわると吸着
特異性が低下し好ましくない。 本発明の吸着材は、体液の導出入口を備えた容
器内に充填保持させて吸着装置として使用するの
が好ましい。 第1図において、1は本発明のグロブリン系化
合物の吸着材を用いた吸着装置の1例を示すもの
であり、円筒2の一端開口部に、内側にフイルタ
ー3を張つたパツキング4を介して体液導入口5
を有するキヤツプ6をネジ嵌合し、円筒2の他端
開口部に内側にフイルター3′を張つたパツキン
グ4′を介して体液導出口7を有するキヤツプ8
をネジ嵌合して容器を形成し、フイルター3およ
び3′の間隙に吸着材を充填保持させて吸着材層
9を形成してなるものである。 吸着材層9には、本発明の該吸着材を単独で充
填してもよく、他の吸着材と混合もしくは積層し
てもよい。他の吸着材としては、例えばDNA等
の他の悪性物質(抗原)の吸着材や、幅広い吸着
能を有する活性炭等を用いることができる。これ
により吸着材の相乗効果によるより広範な臨床効
果が期待できる。吸着材層9の容積は、体外循環
に用いる場合、50〜400ml程度が適当である。 上記の装置を体外循環で用いる場合には、大略
次の二通りの方法がある。一つには、体内から取
り出した血液を遠心分離器もしくは膜型血漿分離
器を使用して、血漿成分と血球成分とに分離した
後、血漿成分を該装置に通過させ、浄化した後、
血球成分と合わせて体内にもどす方法であり、他
の一つは体内から取り出した血液を直接該装置に
通過させ、浄化する方法である。 また、血液もしくは血漿の通過速度について
は、該吸着材の吸着能率が非常に高いため、吸着
材の粒度を粗くすることができ、また充填度を低
くできるので、吸着材層の形状の如何にかゝわり
なく、高い通過速度を与えることができる。その
ため多量の体液処理をすることができる。 体液の通液方法としては、臨床上の必要に応
じ、あるいは設備の装置状況に応じて、連続的に
通液してもよいし、また断続的に通液使用しても
よい。 本発明の吸着材および吸着装置は、以上述べて
きたように、体液中のグロブリン系化合物を高率
かつ特異的に吸着除去し、非常にコンパクトであ
ると共に簡便かつ安全である。 ビニルアルコール単位を主構成成分とし、イソ
シアヌレート環を有するビニル化合物により架橋
した共重合体を担体に用いたため、血漿タンパク
の非特異吸着が少なく、補体系、凝固系との相互
作用も小さいという極めて優れた特性を有する上
に、物理的、機械的強度に優れ、吸着材の調製、
取扱いによるカケ、クダケが極めて少ない。また
硬質であるため高流速で体液を流すことができ
る。その上、耐熱性を有するため、通常の滅菌法
(エチレンオキサイドガス滅菌、高圧蒸気等熱滅
菌、γ線滅菌等)も容易に、かつ確実に実施でき
るという効果を併せもつている。さらには全血用
吸着材として用いる場合にも、血球成分との相互
作用が小さいため、血栓形成や血球成分の非特異
粘着、残血等を最小限におさえられるメリツトを
有する。 本発明は、自己血漿等の体液を浄化、再生する
一般的な用法に適用可能であり、生体免疫機能に
関係した疾患の安全で確実な治療、特に慢性関節
リウマチ、全身性エリテマトーデス等の自己免疫
疾患の治療に有効である。 また、本発明の吸着材は、装置に充填して治療
器として用いられるにとゞまらず、イムノグロブ
リン、自己抗体、イムノグロブリン誘導体、免疫
複合体の分離、精製用吸着材およびこれらの測定
用基材としても極めて有効に利用できる。 以下実施例により、本発明の実施の態様をより
詳細に説明する。 実施例 1 酢酸ビニル100g、トリアリルイソシアヌレー
ト24.1g(X=0.20)、酢酸エチル124g、ヘプタ
ン124g、ポリ酢酸ビニル(重合度500)、3.1gお
よび2,2′−アゾビスイソブチロニトリル3.1g
よりなる均一混合液と、ポリビニルアルコール一
重量%、リン酸二水素ナトリウム二水和物0.05重
量%およびリン酸水素二ナトリウム十二水和物
1.5重量%を溶解した水400mlとをフラスコに入
れ、十分撹拌した後、6.5℃で18時間、さらに75
℃で5時間加熱撹拌して懸濁重合を行い、粒状共
重合体を得た。過、水洗、ついでアセトン抽出
後、カセイソーダ46.5gおよびメタノール2よ
りなる溶液中で、40℃で18時間、共重合体のエス
テル交換反応を行つた。得られた粒子の平均粒径
は150μmであつた。前記方法で水酸基密度
(qOH)を求めたところ、13meq/gであつた。 このゲルを内径7.5mm、長さ25cmのステンレス
製カラムに充填して、種々の分子量を持つデキス
トランやポリエチレングリコールの水溶液および
アルブミン、イムノグロブリンG、イムノグロブ
リンM、β−リポプロテインのリン酸緩衝塩溶液
を測定したところ、それぞれ分子量の大きい順に
溶出された。デキストランの排除限界分子量は約
3×105、タンパク質の排除限界分子量は約18×
106であつた。また0.3M塩化ナトリウムおよび
0.1Mリン酸ナトリウムを含む水溶液を溶媒とし
て、ヒト−γ−グロブリン、ヒト−アルブミンの
溶液を流したところ、ほとんど100%の回収率で
回収され、ゲルの非特異的吸着は非常に少なかつ
た。サンプルの測定はすべて流速1ml/minで実
施した。 つぎにエステル交換され、水で十分に洗浄され
たゲル50c.c.を200mlの水に懸濁し、3gの臭化シ
アンを加え、撹拌する。2N水酸化ナトリウム水
溶液を用いてPHを10〜11に保ち8分間反応させ
た。反応終了後はすみやかにガラスフイルターで
過し、ついで水2で洗浄して活性化ゲルを得
た。該活性化ゲルに通常の方法によつて疎水性化
合物を結合せしめ、過剰の活性基をエタノールア
ミンでブロツキングした。保持量は、残余疎水性
化合物の1級アミノ基を4−フエニルスピロ〔フ
ラン−2(3H)、1′−フタラン〕−3,3′−ジオン
(“フルラム ”ロシユ社製)と反応結合させ、
475〜490nmの蛍光(励起波390nm)で測定し、
別に未活性化ゲルで実験した物理吸着量をさし引
いて算出した。 エタノールアミンブロツキング後の吸着材を、
PH4−0.1M酢酸バツフアー、PH8.5−0.1Mホウ酸
バツフアーでくり返し洗浄後、生理食塩水で洗
浄、水切りして実験に供した。 吸着実験は、ヒト血漿3容と吸着材1容を混合
し、37℃、3時間インキユベートした。吸着後の
グロブリン、アルブミン量をA/Gテストキツト
〔A/GBテスト ワコー、和光純薬工業(株)製〕に
て測定した。また、未活性化ゲルを用いて吸着実
験を行い、コントロールとした。結果をコントロ
ールの吸着率を0%とした場合の吸着率で表−1
に示した。表−1より、ビニルアルコール単位を
主構成々分とする架橋共重合体に結合した疎水性
化合物が、特異的かつ高率にグロブリンを吸着す
ることが明らかである。 【表】 【表】 実施例 2 疎水性化合物としてl−トリブトフアンメチル
エステルを、ヒト血漿の代りにヒト慢性関節リウ
マチ患者血漿を用いる以外は、実施例1と同様の
実験を行つた。慢性関節リウマチの悪性物質であ
るリウマチ因子(自己抗体)、免疫複合体の吸着
除去能を測定した。リウマチ因子の測定は、ラテ
ツクス凝集テスト、受身感作血球凝集テストにて
行つた。 ラテツクス凝集テストは、ポリスチレンラテツ
クス粒子にヒト−γ−グロブリンを吸着させたも
のに、リウマチ因子を含む患者血漿を作用させる
と、ラテツクス粒子が凝集する性質を検出法とし
て測定するものであり、通常血漿の希釈系列を作
成して、ラテツクス粒子が凝集しなくなる血漿希
釈倍率でリウマチ因子濃度を評価するものであ
る。リウマチ因子を高濃度に含む血漿は、陰性に
なる希釈倍率が高くなり、低濃度の血漿は逆に低
くなる。 受身感作血球凝集テストは、ヒツジ赤血球にウ
サギ−γ−グロブリンを吸着させたものであり、
他はラテツクス凝集テストと同じである。一般
に、受身感作血球凝集テストの方がラテツクス凝
集テストよりリウマチ因子特異性が高いとされて
いる。 グリシン食塩緩衝液で希釈系列を作成して、ラ
テツクス凝集テストにてリウマチ因子の陰性にな
る希釈倍率を求めた。ラテツクス凝集テストは、
日本凍結乾燥研究所のキツトを用いて行つた。同
様に受身感作血球凝集テスト〔RAHAテスト、
富士臓器製薬(株)製〕にて評価した。 また、免疫複合体の測定は、ポリエチレングリ
コール、補体溶血法によつた。この方法はポリエ
チレングリコールで沈降分取した免疫複合体を、
ヒト健康人血清中の補体と反応させ、残余の補体
量を、抗体を結合した赤血球の溶血量で測定する
ことにより、免疫複合体量を評価するものであ
る。この方法の操作方法、条件は以下の通りであ
る。 (1) 検体0.3mlを分離管に注ぐ。0.2M EDTA50μl
を加え撹拌する。ほう酸バツフア(PBS)50μ
を加え撹拌する。12.5%PEG(ポリエチレング
リコール)Mw7500)を0.1ml加え撹拌し、4
℃90mm静置する。 (2) 4℃、1700g10mm遠心し、得られた沈澱を
2.5%PEG1.0mlで洗う。1700g15min遠心し、
上清を排出する。 (3) 37℃のGVB(2価陽イオンを含むゼラチ
ンベロナールバツフアー)30μlを加え、沈澱を
溶解する。補体源としてプール健康人血清10μ
加える。37℃、30min、免疫複合体と補体と
を反応させる。 (4) 1.5×108/mlEA(抗体感作赤血球)1.0mlを加
え、37℃60min振とうさせて、残存補体による
溶血反応を促進させる。 (5) 反応後、4℃の生食水6.5mlを加えて遠心し、
上清の吸光度(OD414)を測定する。 (6) 対照(健康人血清)に対する溶血の阻止率を
算出し、単位をPED−c.c.%とする。 〔阻止率=対照−検体吸光度/対照吸光度×100〕 〔除去率=未処理−処理血漿阻止率/未処理血漿阻止
率×100〕 なお、EAは日本凍結乾燥研究所製の補体価測
定用感作赤血球(KW)を用いた。また、グロブ
リンは実施例1で用いた方法によつて測定した。
未活性ゲルをコントロールとして用い、結果はコ
ントロールの吸着率を0%とした場合の除去率で
表−2に示した。 【表】 これより、本発明の担体に結合したl−トリプ
トフアンメチルエステルが血漿中のグロブリン系
化合物を、特にリウマチ因子、免疫複合体を効率
よく吸着することは明らかである。また吸着前後
の補体価を測定したが、いずれもその減少はわず
かであつた。 実施例 3 実施例2の吸着材5mlを第1図の如き容器内に
収納し、グロブリンの除去装置を作成した。 第2図に示す実験系を用いてグロブリンの吸着
実験を行つた。 すなわち、容器10にヒト健康人血液(ヘパリ
ン添加1200U/100ml血液)11を25ml入れ、ポ
ンプ12により毎分1mlの流速で汲み出し、イム
ノグロブリンに除去装置1に送り、ドリツプキヤ
ンバー15およびサンプリング口13を経て、容
器10に返送されるようにチユーブ14を配設し
た。なお、血液中にはヘバリン250Uを添加した。 上記装置により、血液を1時間循環させた後、
血液をサンプリングし、血漿中のグロブリン量を
測定した。結果を表−3に示した。 いずれの場合も、循環の前後で白血球、血小板
の減少は比較的少なかつた。また血栓形成や、残
血も比較的少なかつた。 【表】 実施例 4 疎水性化合物としてl−トリプトフアン、l−
フエニルアラニンおよびアデニンを、ヒト血漿の
代りに重症筋無力症患者血漿を用いる以外は、実
施例1と同様の実験を行なつた。重症筋無力症の
悪性物質である抗アセチルコリンレセプター抗体
(自己抗体)の吸着率をリンドストロム
(Lindstrom)の2抗体法にて測定した。結果は
コントロールを0とした場合の除去率で表−4に
示した。表−4より、本発明の担体にl−トリプ
トフアン、l−フエニルアラニン、アデニンを結
合した吸着材が、重症筋無力症の自己抗体である
抗アセチルコリンレセプターを選択的、かつ高率
に吸着することが明らかである。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a globulin-based compound that specifically adsorbs and removes immunoglobulins and/or immunoglobulin complexes that are thought to be closely related to various diseases caused by the immune system of the body. Regarding adsorbents. As is well known, immunoglobulins and/or immunoglobulin complexes expressed in blood are
Closely related to the cause or progression of autoimmune diseases such as cancer, immunoproliferative syndrome, rheumatoid arthritis, and systemic lupus erythematosus, or diseases and phenomena related to the immune system of the body such as allergies and rejection reactions during organ transplants. It is believed that Therefore, by specifically adsorbing and removing the above-mentioned immunoglobulin and/or immunoglobulin complex from body fluid components such as blood and plasma, the progression of the above-mentioned diseases can be prevented, symptoms can be alleviated, and even cured. It was hoped that this would be accelerated. As a result of intensive research in accordance with the above request, the present inventors have surprisingly found that a hydrophobic compound bound to an insoluble carrier and/or an oligomer containing a hydrophobic compound adsorbs immunoglobulin with extremely high activity. In particular, we discovered that it specifically adsorbs autoantibodies and immune complexes, and filed a patent application (Japanese Patent Application No. 7152/1982). The present invention was made as a result of a more detailed study on carriers with respect to the previous invention, and relates to improvements in carriers. Hitherto, no carrier specifically designed for this purpose is known. Therefore, there was no choice but to repurpose a carrier that is generally known for use in affinity chromatography. Known carriers include natural polymer carriers such as agarose carriers, dextran carriers, and cellulose carriers, polyacrylamide carriers, and glass carriers. However, natural polymeric carriers have the following drawbacks when used for therapeutic purposes. (1) There are many operational restrictions due to insufficient mechanical strength. For example, the carrier may be destroyed during preparation of the adsorbent such as activation or immobilization, or the carrier may break or crumble during transportation or use. (2) Since it is a soft gel, when it is packed into a column and used for extracorporeal circulation, it is not possible to flow body fluids containing substances to be removed at a high flow rate. When a high viscosity, high solute concentration liquid such as body fluid is flowed at a high flow rate, since it is a soft gel, the filling volume decreases, causing clogging and a decrease in flow rate, which may eventually stop flowing. (3) Since it is a soft gel and does not have permanent bores, it cannot be easily sterilized, which is an essential requirement for adsorbents for extracorporeal circulation therapy. For example, in the case of chemical sterilization such as ethylene oxide gas sterilization, the material is sterilized by freeze-drying, but the pores are destroyed by freeze-drying and do not return to their original state even if they are re-dispersed in an aqueous medium. During freeze-drying, its volume decreases to about half, and even when it is redispersed in an aqueous medium, it only returns to about 80% of its original volume, and its adsorption capacity usually decreases. Some methods include adding additives to protect the pores during freeze-drying, but to prevent the additives from entering body fluids, they must be thoroughly washed before use. Furthermore, heat sterilization such as high-pressure steam sterilization cannot be used because it destroys the pores. Similarly, radiation sterilization cannot be used as it destroys the skeleton and pores. (4) Furthermore, when natural polymer carriers are used for extracorporeal circulation therapy, they are said to activate the complement system and the coagulation system, resulting in leukopenia, thrombocytopenia, etc., and are therefore not very desirable. Although polyacrylamide carriers have the advantage of being relatively physically and chemically stable,
Specific adsorption of plasma proteins occurs, and residual toxicity of acrylamide cannot be ignored. Although glass carriers are physically and chemically stable, they are not used because they cause significant nonspecific adsorption of plasma proteins and cause thrombus formation when used with whole blood. In view of the problems of carriers based on the prior art as described above, an object of the present invention is to be generally applicable,
Adsorbs immunoglobulins and/or immunoglobulin complexes with high activity and specificity, maintains stable activity, is safe, can be easily sterilized, and is suitable for body fluid purification or regeneration. The aim is to provide materials. The present inventors have conducted research in line with the above objectives,
Hydrophobic compounds and/or polymers containing hydrophobic compounds were bound to various carriers, and the binding activity for immunoglobulins and immunoglobulin complexes, nonspecific adsorption of plasma proteins, and usability for whole blood were evaluated. What is really surprising is that vinyl alcohol units are the main constituent,
The present inventors have discovered that a copolymer crosslinked with a vinyl compound having an isocyanurate ring gives extremely good results as a carrier, and has completed the present invention. That is, the present invention provides a carrier in which a hydrophobic compound and/or a polymer containing a hydrophobic compound is bonded to a carrier consisting of a copolymer mainly composed of vinyl alcohol units and crosslinked with a vinyl compound having an isocyanurate ring. The present invention relates to an adsorbent for immunoglobulins and/or immunoglobulin complexes, characterized in that: The carrier used for this purpose is required to have interaction and adsorption characteristics with plasma proteins, such as low non-specific adsorption of plasma proteins and no activation of the complement system or coagulation system. Also, in terms of safety,
It is required to be sterilizable, have physical strength, not cause chipping or scum of the carrier, and be free from eluates from the carrier. Furthermore, when used as an adsorbent for whole blood, interaction with blood cell components, ie, thrombus formation and non-specific adhesive residual blood of blood cell components, etc., becomes a problem. Natural polymeric carriers containing sugars such as dextran, agarose, and cellulose interact with blood cells and plasma components, causing activation of the complement system and coagulation system. On the other hand, synthetic polymer carriers are said to be relatively free from these problems. As a result of studies on synthetic polymer carriers, the present inventors found that a carrier consisting of a copolymer mainly composed of vinyl alcohol units and cross-linked with a vinyl compound having an isocyanurate ring successfully solved the above unresolved problems. I found a solution to this. Due to its hydrophilic nature, a carrier consisting of a copolymer mainly composed of vinyl alcohol units and cross-linked with a vinyl compound having isocyanurate rings has a small interaction with solutes such as proteins in plasma, and does not cause non-specific adsorption. Reduce to a minimum. It also has extremely excellent properties such as not interacting with the complement system and coagulation system in plasma. In terms of physical properties, it has heat resistance, enables heat sterilization, and has excellent physical and mechanical strength, which is a characteristic of synthetic polymers. When used as a carrier for adsorbent for whole blood, it has extremely excellent properties such as minimal interaction with blood cell components, minimizing thrombus formation, non-specific adhesion of blood cell components, and residual blood. . The higher the density of hydroxyl groups in the crosslinked copolymer of the present invention, the more its hydrophilicity increases, which is advantageous in minimizing interaction with blood components, and also increases the hydroxyl group density when activated with an activation reagent. This is preferable because the active group density can be maintained at a high level, but on the other hand, the physical and mechanical strength decreases in relation to the crosslinking density (crosslinking agent content). Therefore, the hydroxyl group density is 5 to 17
meq/g is preferred, more preferably 6 to 15 meq/g
It is g. The hydroxyl group density can be determined by reacting the carrier with acetic anhydride in a pyridine solvent and measuring the amount of acetic anhydride consumed by the reaction with the hydroxyl group or the change in weight of the carrier. 1g dry carrier
When reacted with 1 mmol of acetic anhydride, the hydroxyl group density is 1 meq/g. A copolymer containing vinyl alcohol units as a main component and crosslinked with a vinyl compound having an isocyanurate ring can be produced by copolymerization of a vinyl monomer and an allyl crosslinking agent. Examples of the vinyl monomer in this case include vinyl esters of carboxylic acids such as vinyl acetate and vinyl propionate, and vinyl ethers such as methyl vinyl ether and ethyl vinyl ether. As the allylic crosslinking agent, triallyl isocyanurate, triallyl cyanurate, etc. can be used. Furthermore, copolymerized comonomers with other comonomers can also be used, if necessary. A copolymer whose main constituent is vinyl alcohol units and crosslinked with a vinyl compound having an isocyanurate ring is produced by copolymerizing a vinyl ester of carboxylic acid and a vinyl compound having an isocyanurate ring (allyl compound). A crosslinked polyvinyl alcohol triallyl isocyanurate obtained by hydrolysis provides a particularly good carrier in terms of strength and chemical stability. An example of a method for producing a copolymer having vinyl alcohol units as a main component and crosslinked with a vinyl compound having an isocyanurate ring used in the present invention is as follows:
It is also described in Japanese Unexamined Patent Publication No. 190003/1983. As for the shape of the present carrier, any of the shapes such as spherical, granular, filamentous, hollow fiber, and flat membrane shapes can be effectively used.
A spherical or granular shape is particularly preferably used in view of the surface area of the carrier (adsorption capacity as an adsorbent) and the flow surface of body fluid during extracorporeal circulation. Therefore, the known suspension polymerization method is particularly effectively used as a method for synthesizing the carrier. The average particle size of spherical or particulate carrier is 25-2500μ
150~m can be used, but due to its specific surface area (adsorption ability as an adsorbent) and circulation of body fluids,
Particularly preferred is one with a diameter of 1500 μm. In the present invention, a crosslinked copolymer having a specific surface area of at least 5 m 2 /g is used. The specific surface area is expressed as the surface occupied by nitrogen gas adsorbed per unit weight of the dry crosslinked copolymer. In other words, the specific surface area indicates how effectively the substance constituting the crosslinked copolymer per unit weight forms the surface in a dry state. Generally, a crosslinked copolymer swells in a medium that is compatible with the crosslinked copolymer and shrinks when dried. For soft gels whose medium-filled bores are maintained only by a network of crosslinks during swelling;
When it dries, the mesh collapses and the boa almost disappears. The specific surface area in this case is generally 1 m 2 /g since it is almost only the value on the outside of the particle.
Since the agarose conventionally known for use in affinitai chromatography, which exhibits the following low values, is a soft gel, its bores disappear when it dries. Therefore, it is not easy to sterilize, and it has a soft mesh that is easily crushed, so it is difficult to sterilize it when packed in a column and used for extracorporeal circulation.
Body fluids cannot flow at high flow rates for long periods of time. On the other hand, it is a hard gel (cross-linked copolymer) that has a firm bore structure and can withstand freeze-drying and heat sterilization.
In this case, although the bore shrinks somewhat when dried, it maintains most of its swollen state. In other words, it had permanent bores, and the specific surface area showed a value higher than that of the soft gel, at least 5 m 2 /g or more. The specific surface area of the present invention was determined by the most common BET method using nitrogen gas. In addition, the sample used for specific surface area measurement must be sufficiently dried, but since the crosslinked copolymer of the present invention is difficult to dry, the sample used for specific surface area measurement must be dried at 60°C or lower after equilibrating the water-wetted carrier with acetone. It was dried under reduced pressure and used for measurement. Water retention capacity of the crosslinked copolymer used in the present invention (hereinafter referred to as
W R ) is suitably in the range of 0.5 to 16 g/g, preferably in the range of 1.0 to 15.0 g/g. W R is the amount of physiological saline that can be contained within the particles when the crosslinked copolymer is brought into equilibrium with physiological saline, expressed as a value per dry weight of the crosslinked copolymer. In other words, W R is a measure of the amount of pores within the crosslinked copolymer. As W R increases, the weight of the part that forms the skeleton per unit volume of the crosslinked copolymer in water, that is, the weight of the crosslinked copolymer itself, decreases relatively. The mechanical strength of the coalescence is reduced. Furthermore, as W R becomes smaller, the amount of pores per unit weight (or unit volume) effective for adsorption decreases, resulting in a decrease in adsorption capacity. Therefore, it is preferable for the carrier for this purpose that W R be within an appropriate range. W R is measured in advance by measuring the weight (W 2 ) of a sufficiently dried crosslinked copolymer, and then centrifuging the crosslinked copolymer that has been sufficiently equilibrated with physiological saline so that it adheres to the surface of the crosslinked copolymer. After removing the physiological saline, its weight (W 1 ) can be measured and determined by the following formula. W R = W 1 - W 2 /W 2 (g/g) The exclusion limit molecular weight (protein) of the carrier is 150,000 (IgG) for the target adsorbent of the present invention, and the molecular weight for immune complexes, especially IgM immune complexes. In this case, it reaches 10 million, so 15 to 10 million is preferable. The most common exclusion limit molecular weight for purposes of this invention is 1 million to 5 million. The adsorbed substances targeted by the present invention are immunoglobulins and/or immunoglobulin complexes, and to explain in more detail, ordinary immunoglobulins, rheumatoid factors, anti-nuclear antibodies, anti-DNA antibodies,
anti-lymphocyte antibodies, anti-erythrocyte antibodies, anti-platelet antibodies,
acetylcholine receptor antibody, serum depletion antibody,
Immunoglobulins including autoantibodies such as anti-thyroglobulin antibodies, anti-microsome antibodies, anti-colon antibodies, immunoglobulin derivatives such as reduction products of immunoglobulins, chemically modified products, and other substances between immunoglobulins or immunoglobulins, especially They are complexes with antigens and antigen-like substances (hereinafter collectively referred to as globulin compounds). Among these, autoantibodies and immune complexes, which are closely related to the cause and progression of autoimmune diseases, are particularly preferred as adsorbent substances targeted by the present invention. The hydrophobic compound used in the present invention refers to a compound having a solubility in physiological saline of 100 mmol/dl or less (at 25°C), more preferably 30 mmol/dl or less. A compound having a solubility in physiological saline of more than 100 mmol/dl becomes too hydrophilic and has a reduced affinity for globulin compounds, resulting in a reduced adsorption capacity. Furthermore, an affinity for albumin, which is more hydrophilic, is generated, and albumin is also non-specifically adsorbed, which is undesirable. Among the hydrophobic compounds, compounds having at least one aromatic ring give particularly favorable results. What is an aromatic ring?
It means a cyclic compound with aromatic properties, and any of them can be usefully used, but benzene-based aromatic rings such as benzene, naphthalene, and phenanthrene, pyridine,
Nitrogen-containing 6-membered rings such as quinoline, acridine, isoquinoline, and phenanthridine; nitrogen-containing 5-membered rings such as indole, carbazole, isoindole, indolizine, porphyrin, 2,3,2',3'-pyrrolopyrrole, and pyridazine. , pyrimidine, sym-triazine, sym-tetrazine, quinazoline, 1,
Polyvalent nitrogen-containing 6-membered rings such as 5-naphthyridine, pteridine, phenazine, pyrazole, iminazole,
Polyvalent nitrogen-containing five-membered rings such as 1,2,4-triazole, 1,2,3-triazole, tetrazole, benziminazole, imidazole, purine, norharman ring, perimidine ring, benzofuran, isobenzofuran, dibendofuran, etc. Oxygen-containing aromatic rings, sulfur-containing aromatic rings such as bentothiophene, thienothiophene, and thievin; oxygen-containing heteroaromatic rings such as oxazole, isoxazole, 1,2,5-oxadiazole, and benzoxazole;
A hydrophobic low-molecular organic compound having at least one aromatic ring such as a sulfur-containing heteroaromatic ring such as thiazole, isothiazole, 1,3,4-thiadiazole, and benzothiazole and its derivatives gives preferable results. Among these, compounds containing an indole ring such as tryptamine give particularly favorable results. This can be interpreted as a result of the hydrophobicity, steric structure, and molecular rigidity of the compound acting effectively in the bonding between the globulin compound and the compound. In addition, as a result of intensive research in search of inexpensive hydrophobic compounds that can be used more safely and practically, the present inventors found that hydrophobic amino acids and their derivatives adsorb globulin compounds at an extremely high rate and specifically. , found that it can be removed. What are hydrophobic amino acids and their derivatives?
Tanford, Nozaki (J.Am.Chem.Soc., 184 4240
(1962), J.Biol.Chqm. 246 2211 (1971))
Chemical Society, 184 , 4240 (1962), Journal of Biological Chemistry
246, 2211 (1971)], the solubility in physiological saline is 100 mmol/dl for amino acids and their derivatives of 1500 cal/mol or more.
It means the following compounds. Examples include lysine, valine, leucine, tyrosine, phenylalanine, isoleucine, tryptophan and derivatives thereof. Among these hydrophobic amino acids and their derivatives, tryptophan and its derivatives give particularly good results. Also, amino acids are l, d
The conformation of can be used without particular limitation. Further, as a result of intensive research, the present inventors have surprisingly found that among hydrophobic compounds, non-dissociable, amphoteric, and cationic compounds when bound to the carrier are globulin-based compounds. was found to be able to adsorb more selectively. That is, anionic compounds have an affinity for albumin, contrary to the expected result since albumin molecules are more electronegative than globulin molecules.
The adsorption amount of globulin compounds decreased. For example, phenylalanine methyl ester, phenylalanine, and tyrosine do not have much difference in their hydrophobicity, but when their amino groups are covalently bonded to a carrier and their immunoglobulin adsorption ability is evaluated, phenylalanine methyl ester > An example of this can be seen in the fact that the adsorption capacity of phenylalanine and tyrosine decreases. Furthermore, non-aromatic ring compounds also showed similar results. In particular, a more hydrophilic compound having a sulfonic acid group as an anionic group had more affinity for albumin than a globulin compound, and acted as an albumin adsorbent. This is presumed to be due to the interaction between the charge of the compound, albumin, and the charge of the microenvironment within the molecule. Based on the above experimental results, the mechanism of action of the present invention is based on the hydrophobic interaction force (Van der
This is thought to be based on the Waals force. It is also presumed that the interaction force between charges (Coulomb force) as a long-distance force acts secondarily. The polymer containing the hydrophobic compound of the present invention has a molecular weight of 10,000 or less, more preferably a molecular weight of 1,000 or less. This makes it easier to handle during immobilization and to store after immobilization compared to natural polymers such as protein A (molecular weight 42,000). Furthermore, even if the substance is eluted from the carrier, a polymer with a molecular weight of 10,000 or less has negligible antigenicity to living organisms and is safe, and can be easily sterilized. The polymer is
It can be obtained by copolymerizing hydrophobic compound monomers alone or with other compounds. As the hydrophobic compound monomer, for example, a vinyl derivative of a compound containing an indole ring such as tributamine, or a hydrophobic amino acid such as tryptophan can be used. Methods for bonding a hydrophobic compound or/and a polymer containing a hydrophobic compound to a carrier made of a crosslinked copolymer mainly composed of vinyl alcohol units include covalent bonding, ionic bonding, physical adsorption, embedding, or polymerization. Any known method such as precipitation and insolubilization on the combined surface can be used, but in view of the elution properties of the bound substance, it is preferable to use it after fixation and insolubilization by covalent bonding. Therefore, known methods for activating immobilized enzymes and carriers commonly used in acquisition chromatography can be used. Examples of activation methods include cyanogen halide method, epichlorohydrin method, bisepoxide method,
Examples include the halogenated triazine method, the bromoacetyl bromide method, the ethyl chloroformate method, and the 1,1'-carbonyldiimidazole method. The activation method of the present invention comprises an amino group of a conjugate,
It is sufficient that it can undergo a substitution and/or addition reaction with a nucleophilic reactive group having active hydrogen such as a hydroxyl group, a carboxyl group, a thiol group, and is not limited to the above examples. Further, if necessary, a molecule (spacer) of any length may be introduced between the crosslinked copolymer (carrier) and the hydrophobic compound or/and the polymer containing the hydrophobic compound. For example, the hydroxyl group of the carrier and the isocyanate group on one side of hexamethylene diisocyanate are reacted and bonded, and the remaining isocyanate group is reacted and bonded with the amino group, hydroxyl group, thiol group, carboxyl group, etc. of the bond. can do. As for the spacer length, a range from no spacer to 20 atoms in the spacer gives particularly preferable results. In addition, in the present invention, if necessary, 2
It is also possible to use more than one kind of hydrophobic compound or/and a polymer containing a hydrophobic compound in combination. In the present invention, the amount of the hydrophobic compound and/or the polymer containing the hydrophobic compound bound to the carrier is preferably in the range of 0.1 to 30 mg per ml of the carrier. More preferably, it is in the range of 0.5 to 15 mg. Retention amount is 0.1
If it is less than mg/ml, the adsorption amount of globulin compounds will be extremely reduced, and if it is more than 30 mg/ml, the adsorption specificity will be reduced, which is not preferable. It is preferable that the adsorbent of the present invention is used as an adsorption device by being filled and held in a container equipped with an inlet and outlet for body fluids. In FIG. 1, reference numeral 1 shows an example of an adsorption device using the globulin-based compound adsorbent of the present invention, in which a packing 4 with a filter 3 stretched inside is inserted into an opening at one end of a cylinder 2. Body fluid inlet 5
A cap 8 is screw-fitted with a cap 6 having a body fluid outlet 7 through a packing 4' having a filter 3' inside the opening at the other end of the cylinder 2.
are screw-fitted to form a container, and an adsorbent layer 9 is formed by filling and holding an adsorbent in the gap between the filters 3 and 3'. The adsorbent layer 9 may be filled with the adsorbent of the present invention alone, or may be mixed or laminated with other adsorbents. As other adsorbents, for example, adsorbents for other malignant substances (antigens) such as DNA, activated carbon having a wide range of adsorption capacity, etc. can be used. As a result, a wider range of clinical effects can be expected due to the synergistic effect of the adsorbent. The appropriate volume of the adsorbent layer 9 is about 50 to 400 ml when used for extracorporeal circulation. When using the above device for extracorporeal circulation, there are roughly two methods as follows. One method is to separate blood taken from the body into plasma components and blood cell components using a centrifuge or membrane plasma separator, and then pass the plasma components through the device to purify them.
One method is to return the blood to the body together with blood cell components, and the other method is to directly pass the blood taken out from the body through the device and purify it. In addition, regarding the passage speed of blood or plasma, since the adsorption efficiency of the adsorbent is extremely high, the particle size of the adsorbent can be made coarser, and the degree of packing can be lowered, so the shape of the adsorbent layer can be changed. Regardless, high passing speeds can be provided. Therefore, a large amount of body fluid can be treated. The method for passing body fluids may be either continuous or intermittent, depending on clinical needs or equipment conditions. As described above, the adsorbent and adsorption device of the present invention adsorb and remove globulin compounds in body fluids at a high rate and specifically, and are extremely compact, simple, and safe. Because a copolymer containing vinyl alcohol units as the main component and cross-linked with a vinyl compound having an isocyanurate ring is used as a carrier, non-specific adsorption of plasma proteins is small, and interaction with the complement system and coagulation system is also small. In addition to having excellent properties, it has excellent physical and mechanical strength, and is suitable for the preparation of adsorbents.
There are very few chips and chips due to handling. Also, since it is hard, body fluids can flow through it at a high flow rate. Furthermore, since it is heat resistant, it also has the effect that ordinary sterilization methods (ethylene oxide gas sterilization, heat sterilization such as high-pressure steam, γ-ray sterilization, etc.) can be carried out easily and reliably. Furthermore, when used as an adsorbent for whole blood, since the interaction with blood cell components is small, it has the advantage of minimizing thrombus formation, non-specific adhesion of blood cell components, residual blood, etc. The present invention is applicable to the general use of purifying and regenerating body fluids such as autologous plasma, and is suitable for safe and reliable treatment of diseases related to the body's immune function, especially autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Effective in treating diseases. In addition, the adsorbent of the present invention can be used not only as a therapeutic device by filling it into a device, but also as an adsorbent for separating and purifying immunoglobulins, autoantibodies, immunoglobulin derivatives, and immune complexes, and for measuring these. It can also be used extremely effectively as a base material. Embodiments of the present invention will be explained in more detail with reference to Examples below. Example 1 100 g of vinyl acetate, 24.1 g of triallylisocyanurate (X = 0.20), 124 g of ethyl acetate, 124 g of heptane, 3.1 g of polyvinyl acetate (degree of polymerization 500), and 3.1 g of 2,2'-azobisisobutyronitrile. g
A homogeneous liquid mixture consisting of 1% by weight of polyvinyl alcohol, 0.05% by weight of sodium dihydrogen phosphate dihydrate, and disodium hydrogen phosphate dodecahydrate
Add 400ml of water in which 1.5% by weight was dissolved into a flask, stir thoroughly, and then heat at 6.5℃ for 18 hours, then for a further 75 minutes.
Suspension polymerization was carried out by heating and stirring at °C for 5 hours to obtain a granular copolymer. After filtering, washing with water, and then extracting with acetone, the copolymer was transesterified in a solution consisting of 46.5 g of caustic soda and 2 methanol at 40° C. for 18 hours. The average particle size of the obtained particles was 150 μm. When the hydroxyl group density (qOH) was determined by the above method, it was 13 meq/g. This gel was packed into a stainless steel column with an inner diameter of 7.5 mm and a length of 25 cm, and aqueous solutions of dextran and polyethylene glycol with various molecular weights and phosphate buffered salts of albumin, immunoglobulin G, immunoglobulin M, and β-lipoprotein were added. When the solution was measured, the molecules were eluted in descending order of molecular weight. The exclusion limit molecular weight of dextran is approximately 3×10 5 , and the exclusion limit molecular weight of protein is approximately 18×
It was 10 6 . Also 0.3M sodium chloride and
When a solution of human-gamma-globulin and human-albumin was run through an aqueous solution containing 0.1M sodium phosphate as a solvent, the recovery rate was almost 100%, and non-specific adsorption of the gel was very low. . All sample measurements were performed at a flow rate of 1 ml/min. Next, 50 c.c. of the gel that has been transesterified and thoroughly washed with water is suspended in 200 ml of water, 3 g of cyanogen bromide is added, and the mixture is stirred. The pH was maintained at 10 to 11 using a 2N aqueous sodium hydroxide solution, and the reaction was carried out for 8 minutes. After the reaction was completed, it was immediately filtered through a glass filter and then washed with 2 portions of water to obtain an activated gel. A hydrophobic compound was bound to the activated gel by a conventional method, and excess active groups were blocked with ethanolamine. The retained amount is determined by reacting and bonding the primary amino group of the remaining hydrophobic compound with 4-phenylspiro[furan-2(3H), 1'-phthalane]-3,3'-dione ("Flurum" manufactured by Rochie).
Measured by fluorescence from 475 to 490 nm (excitation wave 390 nm),
It was calculated by subtracting the amount of physical adsorption from a separate experiment using an unactivated gel. The adsorbent after ethanolamine blocking is
After repeated washing with PH4-0.1M acetic acid buffer and PH8.5-0.1M boric acid buffer, the sample was washed with physiological saline, drained, and used for experiments. In the adsorption experiment, 3 volumes of human plasma and 1 volume of adsorbent were mixed and incubated at 37°C for 3 hours. The amount of globulin and albumin after adsorption was measured using an A/G test kit [A/GB Test Wako, manufactured by Wako Pure Chemical Industries, Ltd.]. In addition, an adsorption experiment was conducted using unactivated gel as a control. The results are shown in Table 1 with the adsorption rate when the control adsorption rate is 0%.
It was shown to. From Table 1, it is clear that the hydrophobic compound bonded to the crosslinked copolymer mainly composed of vinyl alcohol units adsorbs globulin specifically and at a high rate. [Table] [Table] Example 2 The same experiment as in Example 1 was conducted except that l-tributophane methyl ester was used as the hydrophobic compound and human rheumatoid arthritis patient plasma was used instead of human plasma. The ability to adsorb and remove rheumatoid factor (autoantibody) and immune complexes, which are malignant substances in rheumatoid arthritis, was measured. Rheumatoid factor was measured using a latex agglutination test and a passive sensitized hemagglutination test. The latex agglutination test is a detection method that measures the tendency of latex particles to agglutinate when patient plasma containing rheumatoid factor is applied to polystyrene latex particles adsorbed with human-gamma-globulin. A plasma dilution series is created and the rheumatoid factor concentration is evaluated at the plasma dilution rate at which latex particles no longer aggregate. Plasma containing a high concentration of rheumatoid factor has a high dilution factor, while plasma with a low concentration has a low dilution factor. The passive sensitization hemagglutination test involves adsorbing rabbit γ-globulin to sheep red blood cells.
The rest is the same as the latex agglutination test. Generally, the passive sensitization hemagglutination test is considered to have higher rheumatoid factor specificity than the latex agglutination test. A dilution series was prepared using glycine saline buffer, and the dilution ratio at which rheumatoid factor was negative in a latex agglutination test was determined. Latex agglutination test
This was done using a kit from the Japan Freeze Drying Research Institute. Similarly, passive sensitization hemagglutination test [RAHA test,
[manufactured by Fuji Organ Pharmaceutical Co., Ltd.] was used for evaluation. In addition, immune complexes were measured using polyethylene glycol and complement hemolysis. This method uses polyethylene glycol to precipitate and separate immune complexes.
The amount of immune complexes is evaluated by reacting with complement in the serum of a healthy human, and measuring the amount of remaining complement as the amount of hemolysis of red blood cells bound to antibodies. The operating method and conditions for this method are as follows. (1) Pour 0.3ml of sample into a separation tube. 0.2M EDTA50μl
Add and stir. Boric acid buffer (PBS) 50μ
Add and stir. Add 0.1ml of 12.5% PEG (polyethylene glycol) Mw7500) and stir.
Leave at ℃90mm. (2) Centrifuge at 4°C, 1700g, 10mm, and remove the resulting precipitate.
Wash with 1.0ml of 2.5% PEG. Centrifuge at 1700g for 15min.
Drain the supernatant. (3) Add 30 μl of GVB (gelatin veronal buffer containing divalent cations) at 37°C to dissolve the precipitate. Pool healthy human serum 10μ as complement source
Add. React the immune complex and complement at 37°C for 30 min. (4) Add 1.0 ml of 1.5×10 8 /ml EA (antibody-sensitized red blood cells) and shake at 37°C for 60 min to promote hemolytic reaction due to residual complement. (5) After the reaction, add 6.5ml of saline at 4℃ and centrifuge.
Measure the absorbance (OD 414 ) of the supernatant. (6) Calculate the inhibition rate of hemolysis relative to the control (serum from a healthy person) and use the unit as PED-cc%. [Rejection rate = Control - Specimen absorbance / Control absorbance x 100] [Removal rate = Untreated - Treated plasma inhibition rate / Untreated plasma inhibition rate x 100] The EA is for complement value measurement manufactured by Japan Freeze Drying Institute. Sensitized red blood cells (KW) were used. Furthermore, globulin was measured by the method used in Example 1.
An unactivated gel was used as a control, and the results are shown in Table 2 as removal rates when the adsorption rate of the control was set to 0%. [Table] From the above, it is clear that l-tryptophan methyl ester bound to the carrier of the present invention efficiently adsorbs globulin compounds in plasma, particularly rheumatoid factors and immune complexes. In addition, the complement values before and after adsorption were measured, and in both cases the decrease was slight. Example 3 5 ml of the adsorbent of Example 2 was placed in a container as shown in FIG. 1 to prepare a globulin removal device. Globulin adsorption experiments were conducted using the experimental system shown in FIG. That is, 25 ml of healthy human blood (heparin-added 1200 U/100 ml blood) 11 is placed in a container 10, pumped out at a flow rate of 1 ml per minute by a pump 12, sent to the immunoglobulin removal device 1, drip chamber 15 and sampling. A tube 14 is arranged so that the liquid is returned to the container 10 through the port 13. In addition, 250 U of hevarin was added to the blood. After circulating blood for 1 hour using the above device,
Blood was sampled and the amount of globulin in plasma was measured. The results are shown in Table-3. In all cases, there was a relatively small decrease in white blood cells and platelets before and after circulation. In addition, there was relatively little thrombus formation and residual blood. [Table] Example 4 Hydrophobic compounds: l-tryptophan, l-
An experiment similar to Example 1 was conducted except that phenylalanine and adenine were used in myasthenia gravis patient plasma instead of human plasma. The adsorption rate of anti-acetylcholine receptor antibody (autoantibody), which is a malignant substance in myasthenia gravis, was measured by Lindstrom's two-antibody method. The results are shown in Table 4 as the removal rate when the control is set as 0. Table 4 shows that the adsorbent in which l-tryptophan, l-phenylalanine, and adenine are bound to the carrier of the present invention selectively and highly adsorbs anti-acetylcholine receptor, which is an autoantibody for myasthenia gravis. That is clear. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のグロブリン系化合物の吸着装
置の1例を示す断面図、第2図は実施例における
モデル実験説明図である。 1……グロブリン系化合物の除去装置、2……
円筒、3,3′……フイルター、4,4′……パツキ
ング、5……体液導入口、6……キヤツプ、7…
…体液導出口、8……キヤツプ、9……吸着材。
FIG. 1 is a cross-sectional view showing one example of the globulin compound adsorption apparatus of the present invention, and FIG. 2 is an explanatory diagram of a model experiment in an example. 1... Globulin compound removal device, 2...
Cylinder, 3, 3'... Filter, 4, 4'... Packing, 5... Body fluid inlet, 6... Cap, 7...
...Body fluid outlet, 8...Cap, 9...Adsorbent.

Claims (1)

【特許請求の範囲】 1 ビニルアルコール単位を主構成成分とし、イ
ソシアヌレート環を有するビニル化合物により架
橋した共重合体からなる担体に、疎水性化合物お
よび/または疎水性化合物を含む重合体が結合さ
れていることを特徴とするイムノグロブリンおよ
び/またはイムノグロブリン複合体の吸着材。 2 ビニルアルコール単位を主構成成分とし、イ
ソシアヌレート環を有するビニル化合物により架
橋した共重合体が、カルボン酸のビニルエステル
とイソシアヌレート環を有するビニル化合物の共
重合体を加水分解して得られる架橋ポリビニルア
ルコールである特許請求の範囲第1項記載の吸着
材。
[Scope of Claims] 1. A hydrophobic compound and/or a polymer containing a hydrophobic compound is bonded to a carrier consisting of a copolymer mainly composed of vinyl alcohol units and crosslinked with a vinyl compound having an isocyanurate ring. An adsorbent for immunoglobulins and/or immunoglobulin complexes, characterized in that: 2 A crosslinked copolymer mainly composed of vinyl alcohol units and crosslinked with a vinyl compound having an isocyanurate ring is obtained by hydrolyzing a copolymer of a vinyl ester of carboxylic acid and a vinyl compound having an isocyanurate ring. The adsorbent according to claim 1, which is polyvinyl alcohol.
JP56112919A 1981-01-22 1981-07-21 Immunological adsorbent and adsorbing apparatus Granted JPS5815924A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56112919A JPS5815924A (en) 1981-07-21 1981-07-21 Immunological adsorbent and adsorbing apparatus
US06/339,368 US4432871A (en) 1981-01-22 1982-01-15 Immune adsorbent, adsorbing device and blood purifying apparatus
AT82100371T ATE13014T1 (en) 1981-01-22 1982-01-20 ADSORBENT FOR ANTIBODIES AND IMMUNE COMPLEXES, ADSORBER THEREOF AND BLOOD PURIFICATION DEVICE.
DE8282100371T DE3263327D1 (en) 1981-01-22 1982-01-20 Immune adsorbent, adsorbing device and blood purifying apparatus
EP82100371A EP0056977B1 (en) 1981-01-22 1982-01-20 Immune adsorbent, adsorbing device and blood purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112919A JPS5815924A (en) 1981-07-21 1981-07-21 Immunological adsorbent and adsorbing apparatus

Publications (2)

Publication Number Publication Date
JPS5815924A JPS5815924A (en) 1983-01-29
JPH0215222B2 true JPH0215222B2 (en) 1990-04-11

Family

ID=14598762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112919A Granted JPS5815924A (en) 1981-01-22 1981-07-21 Immunological adsorbent and adsorbing apparatus

Country Status (1)

Country Link
JP (1) JPS5815924A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607237B2 (en) * 1984-01-10 1997-05-07 シャープ株式会社 Light focusing position control device
JP2005279617A (en) * 2004-03-31 2005-10-13 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Hydrophobic organic compound trapping material and its production method and method for removing hydrophobic organic compound

Also Published As

Publication number Publication date
JPS5815924A (en) 1983-01-29

Similar Documents

Publication Publication Date Title
EP0056977B1 (en) Immune adsorbent, adsorbing device and blood purifying apparatus
US4627915A (en) Absorbent of autoantibody and immune complexes, adsorbing device and blood purifying apparatus comprising the same
JPH0144725B2 (en)
JPS6353971B2 (en)
JPH0513696B2 (en)
JP2814399B2 (en) Adsorber for whole blood processing
JPH0215222B2 (en)
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPH0323182B2 (en)
JPH0135670B2 (en)
JPH0114791B2 (en)
JPS59186559A (en) Self-antibody and/or immunological composite adsorbing material
JPS5810055A (en) Production of immune adsorbing device
JPS6087854A (en) Adsorbent for purifying blood
JPH0534024B2 (en)
JP2665526B2 (en) β2-microglobulin adsorbent
JP3157026B2 (en) Adsorbent for blood purification
JPS58165860A (en) Carrier of adsorbing material for purifying body liquid
JPH0113861B2 (en)
JPS61206457A (en) Material and apparatus for adsorbing malignant substance
JPS5922557A (en) Endotoxin blood disease treating device
JPS59139937A (en) Adsorbent for lipoprotein with low specific gravity
JPS59189859A (en) Material for adsorbing self-antibody immunological composite
JPS59186560A (en) Adsorbing material of self-antibody immnological composite
JPH035821B2 (en)