JPH0214056A - Fiber-entangled nonwoven fabric - Google Patents

Fiber-entangled nonwoven fabric

Info

Publication number
JPH0214056A
JPH0214056A JP63318067A JP31806788A JPH0214056A JP H0214056 A JPH0214056 A JP H0214056A JP 63318067 A JP63318067 A JP 63318067A JP 31806788 A JP31806788 A JP 31806788A JP H0214056 A JPH0214056 A JP H0214056A
Authority
JP
Japan
Prior art keywords
fiber
fibers
nonwoven fabric
polymer
entangled nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63318067A
Other languages
Japanese (ja)
Other versions
JPH0320504B2 (en
Inventor
Kunio Kogame
小亀 邦雄
Yoshihiro Tanba
善博 丹波
Masaru Makimura
勝 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63318067A priority Critical patent/JPH0214056A/en
Publication of JPH0214056A publication Critical patent/JPH0214056A/en
Publication of JPH0320504B2 publication Critical patent/JPH0320504B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain the subject nonwoven fabric having excellent stretchability and suitable as a substrate for artificial leather, etc., by combining a multi- component fiber composed of an elastic fiber of polyurethane elastomer and a specific other non-elastic polymer with a multi-component fiber composed of non-elastic polymers other than the above polymer and entangling the fibers. CONSTITUTION:(A) An elastic polymer composed mainly of a polyurethane and (B) a non-elastic polymer (e.g., polyethylene) having solvent and decomposition agent different from those of the component A are dissolved in e.g., a common solvent and the obtained dope is spun to produce a multi-component fiber I. The ratio of the component A is preferably 30-80wt.%. Separately, a multi-component fiber II is produced by spinning (C) a non-elastic polymer such as polyethylene terephthalate and (D) a polymer (e.g., polystyrene) having solvent solubility and decomposability different from those of the component C in the same manner as above. The produced multi-component fiber II is combined with the above multi-component fiber I, opened e.g., with a carding machine to form a web and subjected to entangling treatment to obtain the objective nonwoven fabric.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は伸縮性に優れた繊維絡合不織布に関するもので
ある。更に詳しくは、繊維の絡合性に優れ、繰り返し伸
長変形を行っても、実質的に構造変形あるいは構造破壊
を生じない伸長範囲が大きい伸長性を有し、かつ伸縮性
に富み、充実感のある柔軟な風合いであって、人工皮革
の基体として適した繊維絡合不織布に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fiber entangled nonwoven fabric with excellent elasticity. More specifically, it has excellent fiber entanglement, has a wide stretching range that does not substantially cause structural deformation or structural destruction even when repeatedly stretched and deformed, and is rich in stretchability, giving a sense of fulfillment. The present invention relates to a fiber-entangled nonwoven fabric that has a certain soft texture and is suitable as a substrate for artificial leather.

〈従来の技術〉 従来、伸mttに優れた繊維絡合不織布として、ポリウ
レタンを7ラツシユ紡糸で得た短繊維の流れを堆積し、
自己膠着などの方法で繊維交点を接着した不織布が既に
作られている。また、ポリウレタンを紡糸して得た長繊
維を堆積して得たスパンボンド法の不織布が特開昭52
−81177号公報に、伸縮性があり、かつ強さのある
不織布として、非弾性繊維に弾性繊11!5〜80重量
%混繊して得た不織布が特開昭48−18579号公報
に、非弾性ポリマーと弾性ポリマーを複合紡糸して得た
複合繊維を用いて繊維絡合不織布とし、次いで、複合繊
維を各成分に剥離する方法が特開昭52−85575号
公報に、そして、弾性ポリマーと非弾性ポリマーを混合
紡糸して得た混合繊維と2種類の非弾性ポリマーを混合
紡糸して得た混合繊維とを混繊し、不織布を作り、混合
繊維中の非弾性ポリマーの少なくとも1種類を溶解し、
次いで溶解した非弾性ポリマー溶液、をそのまま不織布
内に凝固させる皮革様シートの製造方法が特公昭40−
2792号公報に提案されている。
<Conventional technology> Conventionally, a fiber entangled nonwoven fabric with excellent elongation mtt was produced by depositing a stream of short fibers obtained by spinning polyurethane in 7 lashes.
Nonwoven fabrics have already been made in which fiber intersection points are bonded together using methods such as self-adhesion. In addition, a spunbond nonwoven fabric obtained by depositing long fibers obtained by spinning polyurethane was published in Japanese Patent Application Laid-Open No. 52
JP-A No. 18579/1989 describes a stretchable and strong nonwoven fabric obtained by mixing 11.5 to 80% by weight of elastic fibers with inelastic fibers. JP-A-52-85575 discloses a method in which composite fibers obtained by composite spinning an inelastic polymer and an elastic polymer are used to form a fiber-entangled nonwoven fabric, and then the composite fibers are peeled into each component. A non-woven fabric is produced by blending a mixed fiber obtained by mixing and spinning a non-elastic polymer with a mixed fiber obtained by mixing-spinning two types of non-elastic polymers, and at least one type of non-elastic polymer in the mixed fiber. dissolve,
Next, a method for manufacturing a leather-like sheet in which the dissolved inelastic polymer solution is directly coagulated into a nonwoven fabric was disclosed in Japanese Patent Publication No. 1973-
This is proposed in Japanese Patent No. 2792.

〈発明が解決しようとする課題〉 従来の繊維絡合不織布の製造方法では、非弾性ポリマー
かもなる繊維の不織布の場合には、僅かな伸長、例えば
不織布を10%伸長した程度でも繊維絡合組織の変形を
生じ、元の状態に回復することはない。一方、ポリウレ
タンエラストマーのような弾性ポリマーからなる繊維の
不織布の場合には、ある程度の伸長範囲までは伸縮挙動
を示すが、弾性ポリマーからなる繊維を用いて均質な繊
維ウェブを作ること、更に良好な絡合処理を行うことは
極めて困難である。更に、弾性ポリマーからなる繊維と
非弾性ポリマーからなる繊維は、繊維の剛性、伸長性及
び曲げ弾性率などが比較にならないほど大きな差を有し
ているため、両繊維を混繊すること、そして、カードに
掛けることはもとより、良好な繊維ウェブを作ることは
全く困難である。また、非弾性ポリマーと弾性ポリマー
を複合紡糸して得た複合繊維を用いて繊維絡合不織布を
作り、その後、各成分に剥離する不織布の製造方法があ
るが、この方法では非弾性繊維と弾性繊維とが同じ状態
で拘束されてしまい十分な伸縮性が得られない。
<Problems to be Solved by the Invention> In the conventional manufacturing method of fiber-entangled nonwoven fabric, in the case of a nonwoven fabric made of fibers that are also inelastic polymers, even a slight elongation, e.g., 10% elongation of the nonwoven fabric, causes the fiber entangled structure to deteriorate. deformation occurs and never recovers to its original state. On the other hand, in the case of nonwoven fabrics made of fibers made of elastic polymers such as polyurethane elastomers, they exhibit stretch behavior up to a certain extent of elongation. It is extremely difficult to perform entanglement processing. Furthermore, fibers made of elastic polymers and fibers made of inelastic polymers have an incomparably large difference in stiffness, elongation, and flexural modulus, so it is necessary to mix both fibers. , it is quite difficult to make a good fiber web, let alone hang it on a card. In addition, there is a method for manufacturing nonwoven fabric in which a fiber-entangled nonwoven fabric is made using composite fibers obtained by composite spinning of an inelastic polymer and an elastic polymer, and then each component is peeled off. The fibers are constrained in the same state and sufficient stretchability cannot be obtained.

また、従来のように、弾性重合体を含有せしめた非弾性
繊維の繊維絡合不織布では、絡合繊維の固定点間に生ず
る変形の範囲で伸縮性があり、その範囲は大きいもので
ない。
Furthermore, as in the past, a fiber-entangled nonwoven fabric of inelastic fibers containing an elastic polymer has elasticity within the range of deformation that occurs between the fixed points of the entangled fibers, and the range is not large.

本発明は繊維の絡合性に優れ、繰り返し伸長変形を行っ
ても、実質的に構造変形あるいは構造破壊を生じない伸
長範囲が大きく、かつ伸縮性に富み、充実感のある柔軟
な風合いであって、伸縮性を有する人工皮革の基体とし
て適した繊維絡合不織布を提供するにある。
The present invention has excellent fiber entanglement properties, has a wide stretching range that does not substantially cause structural deformation or structural destruction even when repeatedly stretched and deformed, and has high elasticity and a soft texture with a satisfying feel. Therefore, it is an object of the present invention to provide a fiber-entangled nonwoven fabric suitable as a substrate for artificial leather having elasticity.

く課題を解決するための手段〉 本発明は、ポリウレタンエラストマーを主体とする弾性
ポリマー(A)と、該弾性ポリマー(A)とは溶解性あ
るいは分解性を異にする少なくとも1種類の非弾性ポリ
マー(C)からなる多成分繊維■および溶解性あるいは
分解性を異にする少なくとも2種類の非弾性ポリマー(
B)、(D)からなる多成分繊維IIの各短繊維が混繊
され、絡合してなることを特徴とする繊維絡合不織布で
ある。
Means for Solving the Problems> The present invention comprises an elastic polymer (A) mainly composed of a polyurethane elastomer, and at least one type of inelastic polymer having a different solubility or degradability from the elastic polymer (A). A multicomponent fiber consisting of (C) and at least two types of inelastic polymers with different solubility or degradability (
This fiber-entangled nonwoven fabric is characterized in that short fibers of multicomponent fibers II consisting of B) and (D) are mixed and entangled.

また、本発明はポリウレタンエラストマーを主体とする
弾性ポリマー(A)からなる極細繊維束繊維あるいは微
細空間を有する繊維である変成繊維Aおよび非弾性ポリ
マー(B)からなる極細繊維束繊維あるいは微細空間を
有する繊維である変成縁mBの各短繊維が混繊され、絡
合してなる繊維絡合不織布であって、該不織布内の繊維
の絡合状態が、変成繊維Bは緊張した絡合状態の変成繊
維Aにより屈折・屈曲して緩んだ組織構造に絡合してな
ることを特徴とする繊維絡合不織布である。
In addition, the present invention uses modified fibers A, which are ultrafine fiber bundle fibers made of an elastic polymer (A) mainly composed of polyurethane elastomer or fibers having micro spaces, and ultrafine fiber bundle fibers or micro spaces made of an inelastic polymer (B). It is a fiber-entangled nonwoven fabric formed by mixing and entangling short fibers of the modified fibers B, in which the entangled state of the fibers in the nonwoven fabric is such that the modified fibers B are in a tense entangled state. This is a fiber-entangled nonwoven fabric characterized by being formed by bending and bending the modified fibers A and entangling them in a loose tissue structure.

更に、本発明はポリウレタンエラストマーを主体とする
弾性ポリマー(A)からなる極細繊維束繊維あるいは微
細空間を有する繊維である変成繊維へおよび非弾性ポリ
マー(B)からなる極細繊維束繊維あるいは微細空間を
有する繊維である変成繊維Bの各短繊維が混繊され、絡
合してなる繊維絡合不織布であって、該不織布内の繊維
の絡合状態が、変成繊維Bは緊張した絡合状態の変ぽ繊
維Aにより屈折・屈曲して緩んだ組織構造に絡合してな
る繊維絡合不織布の繊維絡合空間に、弾性ポリマーを主
体とする重合体が含有してなることを特徴とする繊維絡
合不織布である。
Furthermore, the present invention provides modified fibers that are ultrafine fiber bundle fibers or fibers with micro spaces made of an elastic polymer (A) mainly composed of polyurethane elastomer, and ultrafine fiber bundle fibers or modified fibers containing micro spaces made of an inelastic polymer (B). It is a fiber-entangled nonwoven fabric obtained by mixing and entangling short fibers of modified fibers B, which are fibers with modified fibers B, and the entangled state of the fibers in the nonwoven fabric is such that the modified fibers A fiber characterized by containing a polymer mainly composed of an elastic polymer in the fiber entanglement space of a fiber entangled nonwoven fabric formed by bending and bending and entangling the loosened tissue structure by the modified fibers A. It is an entangled nonwoven fabric.

即ち、本発明の伸縮性に富む繊維絡合不織布は、ポリウ
レタンエラストマーを主体とする弾性ポリマー(A)と
、該弾性ポリマー(A)とは溶解性あるいは分解性を異
にする少な(とも1種類の非弾性ポリマー(C)からな
る多成分繊維Iの短繊維と、溶解性あるいは分解性を異
にする少なくとも2種類の非弾性ポリマー(B)、(D
)からなる多成分繊維IIの短繊維とを所定の割合で混
繊し、繊維ウェブを形成し、繊維の絡合処理を施して繊
維絡合不織布とし、次いで以下の(1)、(2)および
(3)の工程、 (1)多成分繊維Iは大きく収縮するが、多成分繊維■
は低収縮あるいは非収縮である条件下で、繊維絡合不織
布の面積を10〜80%収縮させる工程、 (2)多成分繊維■から非弾性ポリマー(C)および多
成分繊維■から少なくとも1種類の非弾性ポリマー(D
)を除去するあるいは多成分繊維■を各成分に分割する
工程、 (3)弾性ポリマーを主体とする重合体の溶液あるいは
分散液を不織布に含浸し、固化する工程、 の少なくとも2工程を組み合わせて処理する、即ち、工
程(1)→工程(2)、工程(2)→工程(1)、工程
(1)と工8!(2)を同時に、更に、工程(1)→工
程(2)−工程(3)、工程(1)−工程(3)−工程
(2)または工程(1)と工程(2)を同時→工程(3
)を行う、のいずれかの工程順序で処理し、次いで、8
0〜170℃の温度で少なくとも3分間加熱処理するこ
とにより、ポリウレタンエラストマーを主体とする弾性
ポリマー(A)からなる極細繊維束繊維あるいは微細空
間を有する繊維である変成繊維Aおよび非弾性ポリマー
(B)からなる極細繊維束繊維あるいは微細空間を有す
る繊維である変成繊維Bの繊維絡合不織布または弾性ポ
リマーを主体とする重合体を含有した繊維絡合不織布と
しt;ことを特徴とする伸縮性に優れた繊維絡合不織布
の製造方法である。
That is, the highly stretchable fiber-entangled nonwoven fabric of the present invention comprises an elastic polymer (A) mainly composed of a polyurethane elastomer, and a small number of (all one type) having different solubility or degradability from the elastic polymer (A). Short fibers of multicomponent fiber I consisting of an inelastic polymer (C) and at least two types of inelastic polymers (B) and (D) having different solubility or degradability.
) are mixed with short fibers of multicomponent fiber II at a predetermined ratio to form a fiber web, and subjected to fiber entanglement treatment to form a fiber entangled nonwoven fabric, and then the following (1) and (2) and step (3), (1) Multicomponent fiber I shrinks significantly, but multicomponent fiber ■
is a step of shrinking the area of the fiber-entangled nonwoven fabric by 10 to 80% under conditions of low shrinkage or non-shrinkage; (2) at least one type of multicomponent fiber (■) to an inelastic polymer (C) and multicomponent fiber (■); An inelastic polymer (D
) or dividing the multicomponent fibers into their respective components; and (3) impregnating a nonwoven fabric with a solution or dispersion of a polymer mainly composed of an elastic polymer and solidifying it. Processing, that is, step (1) → step (2), step (2) → step (1), step (1) and step 8! (2) at the same time, further, step (1) → step (2) - step (3), step (1) - step (3) - step (2) or step (1) and step (2) simultaneously → Process (3
), and then 8
By heat-treating at a temperature of 0 to 170°C for at least 3 minutes, modified fibers A, which are microfiber bundle fibers made of an elastic polymer (A) mainly composed of polyurethane elastomer or fibers with microscopic spaces, and an inelastic polymer (B) are heated. ) or a fiber entangled nonwoven fabric of modified fiber B, which is an ultrafine fiber bundle fiber or a fiber having microscopic spaces, or a fiber entangled nonwoven fabric containing a polymer mainly composed of an elastic polymer. This is an excellent method for producing fiber-entangled nonwoven fabric.

本発明の伸縮性繊維絡合不織布を構成する原料繊維は、
ポリウレタンエラストマーを主体とする弾性ポリマー(
A)と、該弾性ポリマー(A)とは溶解性あるはい分解
性を異にする少なくとも1種類の非弾性ポリマー(C)
を紡糸して得た多成分繊維■と、溶解性あるいは分解性
を異にする少なくとも2種類の非弾性ポリマー(B)、
(D)を紡糸して得た多成分繊維■を用いる。本発明で
は多成分繊維Iを用いることによって、繊維の伸長挙動
、剛性、曲げ弾性率などの物性が多成分繊維■と近似あ
るいは同じ範囲に入るため、両繊維の混繊性、カーデイ
ング性が良く、均質性の良好な繊維ウェブが得られ、更
にニードルパンチング法、高圧流体噴射法等による繊維
絡合法で良好な繊維の絡合状態を得ることができる。
The raw material fibers constituting the stretchable fiber-entangled nonwoven fabric of the present invention are:
Elastic polymer mainly composed of polyurethane elastomer (
A) and at least one non-elastic polymer (C) having different solubility or degradability from the elastic polymer (A).
A multicomponent fiber obtained by spinning ■ and at least two types of inelastic polymers (B) having different solubility or degradability,
A multicomponent fiber (2) obtained by spinning (D) is used. In the present invention, by using multicomponent fiber I, physical properties such as elongation behavior, stiffness, and flexural modulus of the fiber are similar to or within the same range as multicomponent fiber II, so that the blendability and carding properties of both fibers are improved. A fiber web with good homogeneity can be obtained, and a good fiber entanglement state can be obtained by a fiber entanglement method such as a needle punching method or a high-pressure fluid jetting method.

なお、本発明において弾性ポリマーとは、該弾性ポリマ
ーを紡糸して得た繊維を、室温において50%伸長し、
伸長を解除して1分後の伸長弾性回復率が90%以上で
あるポリマーを示し、非弾性ポリマーとは、同様にして
測定した伸長弾性回復率が50%以下の低伸長弾性回復
率または室温において限界伸長率が50%に達しないポ
リマーを示している。
In addition, in the present invention, the elastic polymer refers to fibers obtained by spinning the elastic polymer, which are stretched by 50% at room temperature,
A polymer with an elongation elastic recovery rate of 90% or more after 1 minute after release of elongation, and an inelastic polymer refers to a polymer with a low elongation elastic recovery rate of 50% or less measured in the same manner or at room temperature. shows a polymer whose critical elongation rate does not reach 50%.

本発明に使用する多成分繊維Iの弾性ポリマー(A)は
、例えば、平均分子量500〜3500のポエステルジ
オール、ポリエーテルジオール、ポリエステルエーテル
ジオール、ポリラクトンジオール、ポリカーボネートジ
オールなどのポリマージオールの群から選ばれた少なく
とも1種類と、芳香環を有するジイソシアネート、脂肪
族系あるいは脂環族系ジイソシアネートなどの有機ジイ
ソシアネートの群から選ばれた少なくとも1種類と、低
分子ジオール、脂肪族系あるいは脂環族系ジアミン、ヒ
ドラジン、芳香環を有するジアミンなどの活性水素原子
を2個有する鎖伸長剤の群から選ばれた少なくとも1種
類とを反応させて得たポリウレタンエラストマーから選
ばれた少なくとも1種類のポリウレタンエラストマーで
ある。更に、必要に応じてポリイソプレン、ポリブタジ
ェンなどの共役ジエン系重合体、その他紡糸可能な弾性
ポリマーを混合したポリウレタンエラストマーを主体と
した弾性ポリマーである。
The elastic polymer (A) of the multicomponent fibers I used in the invention can be selected from the group of polymer diols, such as polyester diols, polyether diols, polyester ether diols, polylactone diols, polycarbonate diols, etc., with an average molecular weight of 500 to 3500. At least one selected from the group of organic diisocyanates such as diisocyanates having an aromatic ring, aliphatic or alicyclic diisocyanates, and low molecular weight diols, aliphatic or alicyclic diisocyanates. At least one type of polyurethane elastomer selected from polyurethane elastomers obtained by reacting with at least one type selected from the group of chain extenders having two active hydrogen atoms such as diamine, hydrazine, and diamine having an aromatic ring. be. Further, the elastic polymer is mainly composed of a polyurethane elastomer mixed with a conjugated diene polymer such as polyisoprene or polybutadiene, or other spinnable elastic polymers as required.

一方、多成分繊維■の非弾性ポリマー(C)は、弾性ポ
リマー(A)とは溶剤あるいは分解剤を異にする溶剤あ
るいは分解剤で処理して除去できるポリマーで、例えば
、ポリエチレン、エチレン共を合体、ポリプロピレン、
ポリブテンなどのポリオレフイン類、エチレン酢酸ビニ
ル共重合体、ポリスチレンまたはスチレン共重合体、ポ
リ塩化ビニルまたは塩化ビニル共重合体、ポリエステル
、ポリアミド、ポリカーボネートなどの群から選ばれl
:少なくとも1種類のポリマーである。
On the other hand, the inelastic polymer (C) of the multicomponent fiber (2) is a polymer that can be removed by treatment with a solvent or decomposition agent different from that of the elastic polymer (A), such as polyethylene and ethylene. Combined, polypropylene,
Selected from the group of polyolefins such as polybutene, ethylene vinyl acetate copolymer, polystyrene or styrene copolymer, polyvinyl chloride or vinyl chloride copolymer, polyester, polyamide, polycarbonate, etc.
: At least one type of polymer.

そして、多成分繊維Iの製造法は、弾性ポリマー(A)
と、該弾性ポリマーとは溶剤あるいは分解剤を異にする
非弾性ポリマー(C)であって、熟成ffi温度範囲が
重なっているポリマーを組み合わせる、または共通溶媒
あるいは相溶性のある溶媒で溶解でき、かつ紡糸に要す
る時間内では溶解状態が保たれていて、紡糸および繊維
中の非弾性ポリマーの除去に支障を来す反応や相互作用
を生じないポリマーの組み合わせ、例えば、ポリウレタ
ン・ポリオレフィンあるいは才しフィン共重合体、ポリ
ウレタン・ポリスチレンあるいはスチレン共重合体、ポ
リウレタン・ポリオレフィン/ポリスチレン、ポリウレ
タン・ポリアミドあるいはポリエステル、ポリウレタン
/共役ジエン系重合体・ポリスチレンあるいはスチレン
共重合体などが挙げられる。そして、多成分繊維中に占
める弾性ポリマー(A)の比率は30〜80重量%、好
ましくは40〜70重量%である。選ばれた弾性ポリマ
ー(A)と非弾性ポリマー(C)は、共通溶剤に溶解し
て湿式紡糸法あるいは乾式紡糸法で紡糸するまたは共通
溶融温度で溶融紡糸する。即ち、弾性ポリマー(A)と
非弾性ポリマー(C)を、同一溶解系で溶解しあるいは
同一溶融系で溶融して紡糸する方法、異なる溶解系で溶
解しあるいは異なる溶融系で溶融して、交互に多数層張
り合わせ型あるいは一方が分散媒成分となり、他方が多
数の分散成分となった海鳥型または複合型の繊維断面形
状を形成する構造の紡糸頭あるいは紡糸口金で合流して
紡糸する方法によって多成分繊維Iを製造する(なお、
後述の多成分繊維IIの製造も同様の紡糸法である)、
次いで、多成分繊維■は乾熱、湿熱あるいは加温水など
の条件下で紡糸原繊維の少なくとも2倍に延伸すること
が好ましい、延伸倍率が高いと高収縮繊維が得られ、繊
維絡合不織布にした場合にも充実感の高い、伸縮性の大
きいものが得られる。延伸繊維は捲縮を掛け、繊維長2
0〜100m+mに切断して多成分繊維■の短繊維を得
る。この多酸分繊!#Iは弾性ポリマーによる弾性挙動
が抑制され、通常の非弾性繊維、とりわけ多成分繊維I
Iの剛性、伸長挙動などの繊維物性の範囲に入るものと
なるため、多成分繊維■と同じに取り扱うことができる
The method for producing multicomponent fiber I is based on an elastic polymer (A).
and the elastic polymer is an inelastic polymer (C) in a different solvent or decomposition agent, and the polymers with overlapping aging ffi temperature ranges can be combined, or they can be dissolved in a common solvent or a compatible solvent, and a combination of polymers that remains dissolved during the time required for spinning and does not cause reactions or interactions that would interfere with spinning or removal of inelastic polymers from the fibers, such as polyurethane/polyolefin or sintered fins. Examples include copolymers, polyurethane/polystyrene or styrene copolymers, polyurethane/polyolefin/polystyrene, polyurethane/polyamides or polyesters, polyurethane/conjugated diene polymers/polystyrene or styrene copolymers. The proportion of the elastic polymer (A) in the multicomponent fiber is 30 to 80% by weight, preferably 40 to 70% by weight. The selected elastic polymer (A) and inelastic polymer (C) are dissolved in a common solvent and spun by a wet spinning method or a dry spinning method, or melt spun at a common melting temperature. That is, the elastic polymer (A) and the inelastic polymer (C) are melted in the same melting system or melted in the same melting system and spun, or alternatively by melting them in different melting systems or melting them in different melting systems. Multi-layer fibers can be spun by laminating multiple layers together, or by combining them in a spinning head or spinneret with a structure that forms a seabird-shaped or composite fiber cross-sectional shape, with one side serving as a dispersion medium component and the other as a large number of dispersion components. Manufacture component fiber I (in addition,
The production of multicomponent fiber II described below is also a similar spinning method).
Next, it is preferable to draw the multicomponent fiber (2) under conditions such as dry heat, wet heat, or heated water to at least twice the amount of the spun raw fiber.If the drawing ratio is high, a high shrinkage fiber will be obtained, and the fiber entangled nonwoven fabric will be produced. Even if you do this, you can get something with a high sense of fulfillment and great elasticity. The drawn fibers are crimped and the fiber length is 2.
Cut into 0 to 100 m+m to obtain short fibers of multicomponent fiber (2). This multi-acid fiber! #I has an elastic behavior suppressed by an elastic polymer, and is a normal inelastic fiber, especially a multicomponent fiber I
Since it falls within the range of fiber physical properties such as stiffness and elongation behavior of I, it can be handled in the same way as multicomponent fiber (■).

また、繊維絡合不織布を構成するもう一方の多成分繊維
■は、繊維成分として利用する非弾性ポリマー(B)は
、例えば、ポリエチレンテレフタレートあるいはエチレ
ンテレフタレート共重合体、ポリブチレンテレフタレー
トあるいはブチレンテレフタレート共重合体などのポリ
エステル、ナイロン−6、ナイロン−66、ナイロン−
610、丈イロン−12、芳香環を含むポリアミドなど
のポリアミド、ポリエチレン、ポリプロピレンなどのポ
リオレフィン、エチレン酢酸ビニル共重合体の鹸化物、
ポリビニルアルコール、アクリル系共重合体などの群か
ら選ばれた少なくとも1種類のポリマーである。一方、
最終的に除去されるポリマー(D)としては、溶剤可溶
あるいは分解剤で分解するポリマーで、例えば、ポリエ
チレンあるいはエチレン共重合体、エチレン酢酸ビニル
共重合体あるいはその部分鹸化物、ポリスチレンあるい
はスチレン共重合体、ポリエステル、ポリアミド、ポリ
ビニルアルコール、ポリ塩化ビニルあるいは塩化ビニル
共重合体などの群から選ばれた少なくとも1種類のポリ
マーである。そして、繊維成分として利用する非弾性ポ
リマー(B)と除去成分の非弾性ポリマー(D)を組み
合わせて紡糸する。しかし、多成分繊維■が分割型繊維
の場合は、相溶性の小さいあるいは相溶性のない、かつ
物理的性質の異なる少なくども2種類の非弾性ポリマー
(B)を組み合わせて紡糸する。具体的なポリマーの組
み合わせは、例えば、ポリエチレンテレフタレート・ポ
リエチレンあるいはエチレン共重合体、ポリエチレンテ
レフタレート・ポリスチレンあるいはスチレン共重合体
、ポリブチレンテレフタレート・ポリエチレンあるいは
エチレン共重合体、ポリブチレンテレフタレート・ポリ
スチレンあるいはスチレン共重合体、ナイロン−6ある
いはナイロン−610・ポリエチレンあるいはエチレン
共重合体、ポリエチレンテレフタレートあるいはポリブ
チレンテレフタレート・ナイロン−6あるいはナイロン
−61O、ポリプロピレン・ポリスチレンあるいはポリ
エチレンなどが挙げられる。
In the other multicomponent fiber (2) constituting the fiber-entangled nonwoven fabric, the inelastic polymer (B) used as a fiber component is, for example, polyethylene terephthalate or ethylene terephthalate copolymer, polybutylene terephthalate or butylene terephthalate copolymer. Polyester such as coalescence, nylon-6, nylon-66, nylon-
610, length iron-12, polyamides such as polyamides containing aromatic rings, polyolefins such as polyethylene and polypropylene, saponified products of ethylene vinyl acetate copolymers,
It is at least one type of polymer selected from the group such as polyvinyl alcohol and acrylic copolymers. on the other hand,
The polymer (D) to be finally removed is a polymer that is soluble in a solvent or decomposed with a decomposing agent, such as polyethylene or ethylene copolymer, ethylene vinyl acetate copolymer or its partially saponified product, polystyrene or styrene copolymer, etc. It is at least one type of polymer selected from the group of polymers, polyesters, polyamides, polyvinyl alcohols, polyvinyl chlorides, and vinyl chloride copolymers. Then, the inelastic polymer (B) used as the fiber component and the inelastic polymer (D) as the removed component are combined and spun. However, when the multicomponent fiber (1) is a splittable fiber, at least two types of inelastic polymers (B) having low or no compatibility and different physical properties are combined and spun. Specific polymer combinations include, for example, polyethylene terephthalate/polyethylene or ethylene copolymer, polyethylene terephthalate/polystyrene or styrene copolymer, polybutylene terephthalate/polyethylene or ethylene copolymer, polybutylene terephthalate/polystyrene or styrene copolymer. Examples include nylon-6 or nylon-610/polyethylene or ethylene copolymer, polyethylene terephthalate or polybutylene terephthalate/nylon-6 or nylon-61O, polypropylene/polystyrene, or polyethylene.

そして、繊維成分としての非弾性ポリマー(B)の比率
は40〜85!を量%である。紡糸法は前述の多成分繊
維■と同様にして紡糸し、延伸し、捲縮し、切断して多
成分繊維IIの短繊維を得る。
And the ratio of the inelastic polymer (B) as a fiber component is 40 to 85! is the amount%. The spinning method is the same as that for multicomponent fiber (1) described above, followed by stretching, crimping, and cutting to obtain short fibers of multicomponent fiber II.

次に、多成分繊維Iと多成分&1ilffを混繊する。Next, the multicomponent fiber I and the multicomponent &1ilff are mixed.

混繊比率は繊維絡合不織布の所望する物性によって決定
されるが、一般には多成分繊維■が15〜80重量%、
好ましくは20〜70重量%の範囲である。多成分繊維
Iが少ないと伸縮性は小さいが柔軟性のものになり、多
成分繊維■が多いと伸縮性は大きくなり充実感が大きく
なる。また、必要に応じて再生セルロース繊維、天然繊
維、化学繊維を伸縮性を妨げない範囲、おおよそ25重
量%以下で混繊してもよい。
The blending ratio is determined depending on the desired physical properties of the fiber-entangled nonwoven fabric, but generally the multicomponent fibers are 15 to 80% by weight,
Preferably it is in the range of 20 to 70% by weight. If there is less multicomponent fiber I, the product will have less elasticity but will be more flexible, and if there is more multicomponent fiber (I), the product will have greater elasticity and a greater sense of fulfillment. Furthermore, if necessary, regenerated cellulose fibers, natural fibers, and chemical fibers may be mixed in an amount of approximately 25% by weight or less, within a range that does not impede stretchability.

多成分繊維Iと多成分繊維■を混繊したのち、カードで
解繊し、ウニバーを通してランダムウェブまたはクロス
ラップウェブを形成し、得られた繊維ウェブは所望の重
さ、厚さに積層する。繊維ウェブの重量は一般に100
−2000 g / m ”の範囲である。次いで、繊
維ウェブは公知の手段で繊維の絡合処理を施して繊維絡
合不織布とする。
After mixing multicomponent fibers I and multicomponent fibers (2), they are defibrated using a card and passed through Univer to form a random web or a cross-wrap web, and the resulting fiber webs are laminated to a desired weight and thickness. The weight of the fibrous web is generally 100
-2000 g/m''. Next, the fiber web is subjected to fiber entanglement treatment by a known method to form a fiber entangled nonwoven fabric.

好ましい繊維の絡合方法はニードルパンチング法、高圧
水流噴射法の単独処理あるいは併合処理により絡合させ
る。一般に、ニードルパンチング法ではパンチ数200
〜2500バンチ/cm”の範囲の処理であり、また高
圧水流噴射法では水圧15〜l OOKg/ cm”の
柱状流で3〜10回の範囲の処理であり、繊維の絡合は
十分に施されていることが伸縮性と充実感のうえで好ま
しい。
A preferable method for entangling the fibers is to use a needle punching method or a high-pressure water jet method alone or in combination. Generally, in the needle punching method, the number of punches is 200.
In the high-pressure water jet method, treatment is performed in the range of 3 to 10 times using a columnar flow with a water pressure of 15 to 100 kg/cm, and the entanglement of the fibers is sufficiently achieved. It is preferable for it to be flexible and fulfilling.

得られた繊維絡合不織布に十分な伸縮性を付与するI;
めには、繊維絡合不織布に収縮をさせなければならない
。収縮処理法は乾熱雰囲気、湿熱雰囲気あるいは熱水中
で、多成分繊維Iは十分に収縮するが多成分繊維■は低
収縮あるいは非収縮である条件下で地理して、繊維絡合
不織布の面積を10〜80%収縮させる。この繊維絡合
不織布の収縮処理は、多成分繊維から非弾性ポリマー成
分を除去する前であっても、除去した後でもあるいは不
織布中に弾性重合体が含有されていてもよいが、それぞ
れの場合で条件を設定することによって目的の収縮範囲
は得られる。この収縮処理により多成分1a維■あるい
はそれから得られた弾性ポリマー(A)からなる変成繊
維Aは大きく収縮し、それにつられて多成分繊維■ある
いはそれから得られた非弾性ポリマー(B)からなる変
成繊維Bは折られたり、曲げられたりして不織布内では
緩んだ状態のmJ1組織構造になっている。
I imparts sufficient stretchability to the obtained fiber-entangled nonwoven fabric;
In order to achieve this, the fiber-entangled nonwoven fabric must be caused to shrink. The shrinkage treatment method is performed in a dry heat atmosphere, a moist heat atmosphere, or hot water under conditions in which the multicomponent fibers I are sufficiently shrunk, but the multicomponent fibers are low or non-shrinkable. Shrink the area by 10-80%. This shrinking treatment of the fiber-entangled nonwoven fabric may be performed before or after removing the inelastic polymer component from the multicomponent fibers, or while the nonwoven fabric contains an elastic polymer, but in each case, By setting the conditions, the desired shrinkage range can be obtained. Through this shrinkage treatment, the modified fiber A made of the multi-component 1a fiber (1) or the elastic polymer (A) obtained therefrom shrinks significantly, and the modified fiber A made of the multi-component fiber (1) or the inelastic polymer (B) obtained therefrom shrinks significantly. The fibers B are folded or bent and have a loose mJ1 structure within the nonwoven fabric.

この繊維絡合不織布の収縮率は収縮処理条件(例えば、
温度、時間、張力等)でも調節はできるが、繊維絡合不
織布の潜在収縮能(最大収縮率)は、不織布を構成する
多成分繊維Iの弾性ポリマーの種類、ポリマーの分子構
造、紡糸条件、延伸倍率、繊度等によ−)て支配され、
一方、多成分繊維IIの非弾性ポリマーの種類、配向度
、繊度等に基づく繊維の曲げ剛性、そして、多成分繊維
Iと多成分繊維■との混繊比率によって、主として決ま
る。従って、これらの条件を変えることにより、繊維絡
合不織布の収縮率を任意に変えることが出来る。
The shrinkage rate of this fiber-entangled nonwoven fabric is determined by the shrinkage treatment conditions (e.g.
(temperature, time, tension, etc.), but the potential shrinkage (maximum shrinkage rate) of a fiber-entangled nonwoven fabric depends on the type of elastic polymer of the multicomponent fiber I that makes up the nonwoven fabric, the molecular structure of the polymer, the spinning conditions, It is controlled by the draw ratio, fineness, etc.
On the other hand, it is mainly determined by the bending rigidity of the fiber based on the type of inelastic polymer of the multicomponent fiber II, the degree of orientation, the fineness, etc., and the blending ratio of the multicomponent fiber I and the multicomponent fiber II. Therefore, by changing these conditions, the shrinkage rate of the fiber-entangled nonwoven fabric can be changed arbitrarily.

また、繊維絡合不織布に伸縮性を付与するためには、多
成分繊維Iの非弾性ポリマー繊維成分を除去して、極細
繊維束繊維あるいは微細空間を有する繊維の変成繊維A
とせねばならない。一方、多成分繊維IIの少なくとも
1種類の非弾性ポリマー繊維成分を除去して、繊維形態
を極細繊維束繊維あるいは微細空間を有する繊維の変成
繊維Bとするか、あるいは多成分s維nを各成分に剥離
分割して極細繊維束繊維の変成繊維Bとすることによっ
て一層柔軟で伸縮性に富む繊維絡合不織布となる。非弾
性ポリマー繊維成分の除去方法は、弾性ポリマー繊維成
分および利用非弾性ポリマー繊mfg:分の非溶剤ある
いは非分解剤であって他の繊維成分の溶剤あるいは分解
剤で処理することによって行われる。例えば、ポリウレ
タン・ポリオレフィンあるいはポリスチレンの繊維では
トルエン、トリクロルエチレン、パークロロエチレンな
ど、ポリウレタン・ポリアミドの繊維では塩化カルシウ
ム・メタノール溶液、ポリランタン・ポリ塩化ビニル系
の繊維ではシクロヘキサノンなどである。
In addition, in order to impart elasticity to the fiber-entangled nonwoven fabric, it is necessary to remove the inelastic polymer fiber component of the multicomponent fiber I and modify the ultrafine fiber bundle fibers or the modified fibers A of fibers with microscopic spaces.
I have to do it. On the other hand, at least one kind of inelastic polymer fiber component of the multicomponent fiber II is removed to change the fiber form to a modified fiber B, which is an ultrafine fiber bundle fiber or a fiber having microscopic spaces, or the multicomponent fibers N are each By peeling and dividing the fibers into modified fibers B, which are ultrafine fiber bundle fibers, a fiber-entangled nonwoven fabric with greater flexibility and stretchability can be obtained. The method for removing the inelastic polymer fiber component is carried out by treating the elastic polymer fiber component and the used inelastic polymer fiber mfg: with a non-solvent or non-degrading agent, and a solvent or a decomposing agent for other fiber components. For example, toluene, trichlorethylene, perchlorethylene, etc. are used for polyurethane/polyolefin or polystyrene fibers, calcium chloride/methanol solution is used for polyurethane/polyamide fibers, and cyclohexanone is used for polylanthane/polyvinyl chloride fibers.

このように、多成分繊維から1成分を除去して得た繊維
あるいは多成分繊維を処理して多数の極細繊維に分割し
て得た繊維を、本発明では「変成繊維」と称する。変成
繊維は最終製品において、例えば、ポリウレタン繊維の
ように膠着して明確な極細繊維束繊維の形態あるいは微
細空間を有する繊維の形態をとらない繊維であっても、
変成された繊維であることが明確な繊維であればよい。
In this invention, fibers obtained by removing one component from a multicomponent fiber or fibers obtained by processing a multicomponent fiber and dividing it into a large number of ultrafine fibers are referred to as "modified fibers" in the present invention. Modified fibers are used in the final product, even if they are fibers that do not take the form of glued and distinct microfiber bundle fibers or fibers with microscopic spaces, such as polyurethane fibers.
Any fiber that is clearly denatured may be used.

多成分繊維から変成繊維にする工程は、多成分繊維1と
多成分繊維■とを同一工程で行うことでも、別々の工程
で行うことでもよく、更には、繊維絡合不織布に弾性ポ
リマーを含有させた後でもよい。しかし、工程の筒略さ
から同一工程で行うことが好ましい。
The process of converting multicomponent fibers into modified fibers may be performed in the same process or in separate processes for producing multicomponent fibers 1 and multicomponent fibers (2). You can do it after doing so. However, due to the simplicity of the steps, it is preferable to carry out the steps in the same step.

本発明の変成された繊維からなる繊維絡合不織布は、繊
維絡合不織布に伸ばす力が掛けられた場合、初期には専
ら変成繊維Aを伸ばす力だけであるから大きな力は要し
ない、そして変成繊維Bの変形が始まるようになって徐
々に大きな力を要するようになる。従って、繊維絡合不
織布の交絡による固定や、変成繊維Aの膠着による繊維
間の固定あるいはバインダーによる固定が外れるまでの
範囲、すなわち、構造破壊が生ずるまでの範囲が広く、
その間は実質的に構造破壊を生ずることなく伸縮性が付
与できる。
In the fiber-entangled nonwoven fabric of the present invention, when stretching force is applied to the fiber-entangled nonwoven fabric, the force initially stretches only the modified fibers A, so a large force is not required. As fiber B begins to deform, a larger force is gradually required. Therefore, the range until the fixation due to the entanglement of the fiber-entangled nonwoven fabric, the fixation between fibers due to the adhesion of the modified fiber A, or the fixation due to the binder comes off, that is, the range until structural destruction occurs, is wide.
During this period, stretchability can be imparted without substantially causing structural destruction.

また、本発明の繊維絡合不織布には伸縮性を阻害しない
範囲で弾性重合体からなるバインダー樹脂を含有するこ
ともよい。バインダー樹脂として用いられる弾性重合体
は、例えば、ポリエステルジオール、ポリエーテルジオ
ール、ポリエステルエーテルジオール、ポリラクトンジ
オール、ポリカーボネートジオールなどのポリマージオ
ールの群から選ばれた少なくとも1種類と、有機ジイソ
シアネートの少なくとも1種類と、活性水素原子を少な
くとも2個有する低分子化合物を鎖伸長剤として反応さ
せて得たポリウレタン、アクリル酸またはアクリル酸エ
ステルの重合体あるいは共重合体、ポリイソプレン、ポ
リブタジェンなどの共役ジエン系重合体、スチレン・ブ
タジェン共重合体、アクリロニトリル・ブタジェン共重
合体などの群から選ばれた少なくとも1種類の弾性重合
体である。弾性重合体は繊維を侵さない溶剤に溶解した
溶液あるいは分散剤に分散させた分散液を用いて不織布
に含浸し、繊維および弾性重合体を侵さない溶剤−非溶
剤、非溶剤中あるいは塩水溶液で処理するまたは溶剤あ
るいは分散剤を蒸発処理することによって固化する。繊
維絡合不織布に弾性重合体を含有させることによって、
繊維絡合不織布の柔軟性、伸縮性及び風合いなどの性能
の範囲を広げることができる。
Further, the fiber-entangled nonwoven fabric of the present invention may contain a binder resin made of an elastic polymer within a range that does not impede stretchability. The elastic polymer used as the binder resin is, for example, at least one type selected from the group of polymer diols such as polyester diol, polyether diol, polyester ether diol, polylactone diol, and polycarbonate diol, and at least one type of organic diisocyanate. and polyurethane obtained by reacting a low-molecular compound having at least two active hydrogen atoms as a chain extender, a polymer or copolymer of acrylic acid or acrylic ester, a conjugated diene polymer such as polyisoprene, polybutadiene, etc. , styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, and the like. The elastomeric polymer is impregnated into a nonwoven fabric using a solution dissolved in a solvent that does not attack the fibers or a dispersion in a dispersant. It is solidified by processing or by evaporating the solvent or dispersant. By incorporating an elastic polymer into the fiber-entangled nonwoven fabric,
It is possible to widen the range of performance such as flexibility, stretchability, and texture of the fiber-entangled nonwoven fabric.

本発明の繊維絡合不織布は所望の厚みにスライス分割し
て、一定の厚みにしたり、−面あるいは両面をサンドペ
ーパーなどでパフィングして一定の厚みにしたり、また
はそのままの厚みの繊維絡合不織布を製品として用いる
。本発明の繊維絡合不織布は弾性ポリマーからなる変成
繊維Aと、非弾性ポリマーからなる変成繊維Bの各短繊
維がほぼ均一に混繊されてなり、繊維の絡合状態が変成
繊維Bは緊張した絡合状態の変成繊維Aにより屈折・屈
曲して全体として緩んだ組織構造に絡み合っている不織
布あるいはその不織布内に弾性重合体を含有してなる不
織布である。そして、この組織構造の状態を確認する一
つの手段として、繊維絡合不織布から一方の繊維を除去
した後の不織布の形状で知ることができる。すなわち、
弾性ポリマーの変成繊維Aを溶解あるいは分解して除去
すると、非弾性ポリマーの変成繊維Bの繊維絡合不織布
は緊張が解除されて、収縮処理前の面積近くにまで拡大
する。一方、不織布の非弾性ポリマーの変成繊維Bを溶
解あるいは分解して除去すると、弾性ポリマーの変成繊
維への繊維絡合不織布は殆ど面積変化を生じることがな
いかあるいは小さい面積変化に留まることから知ること
ができる。上記の繊維絡合不織布の構造によって、繰り
返し伸長変形を行っても、実質的に構造変形あるいは構
造破壊を生じない伸長範囲が大きい伸長性、通常的15
〜50%の伸長を有し、かつ伸縮性に富み、充実感のあ
る柔軟な風合いのものとなる。
The fiber-entangled nonwoven fabric of the present invention can be sliced into desired thicknesses to have a constant thickness, or the fiber-entangled nonwoven fabric can be made to a constant thickness by puffing the negative side or both sides with sandpaper, or the fiber-entangled nonwoven fabric can be left as is. is used as a product. The fiber-entangled nonwoven fabric of the present invention is made by almost uniformly mixing short fibers of modified fiber A made of an elastic polymer and modified fiber B made of an inelastic polymer, and the entangled state of the fibers is such that the modified fiber B has tension. This is a nonwoven fabric that is bent and bent by the modified fibers A in an entangled state and intertwined with each other to form a loose tissue structure as a whole, or a nonwoven fabric that contains an elastic polymer in the nonwoven fabric. One way to check the state of this tissue structure is to check the shape of the nonwoven fabric after removing one of the fibers from the fiber-entangled nonwoven fabric. That is,
When the elastic polymer modified fibers A are dissolved or decomposed and removed, the fiber-entangled nonwoven fabric of the inelastic polymer modified fibers B is released from tension and expands to an area close to that before the shrinkage treatment. On the other hand, when the non-elastic polymer modified fibers B of the non-woven fabric are removed by dissolving or decomposing, the area of the non-woven fabric entangled with the elastic polymer modified fibers is known to hardly change or only to a small extent. be able to. Due to the structure of the above-mentioned fiber-entangled nonwoven fabric, it has a large elongation range that does not substantially cause structural deformation or structural destruction even if it is repeatedly elongated.
It has an elongation of ~50%, is highly stretchable, and has a soft and fulfilling texture.

本発明の繊維絡合不織布は、表面にアイロン掛けを行っ
て平滑面としI;す、表面に弾性重合体の被膜を形成あ
るいは皮膜を付与して銀面に仕上げて、銀行皮革様シー
トとしたり、表面に繊維立毛処理を施して仕上げてスェ
ード調皮革様シートとすることができる。
The fiber-entangled nonwoven fabric of the present invention can be made into a bank leather-like sheet by ironing the surface to make it smooth, forming an elastic polymer film on the surface or adding a film to give it a silver surface finish. The surface can be finished with fiber raising treatment to produce a suede-like leather-like sheet.

本発明の繊維絡合不織布はサポータ−、バンド類、医療
用品、衣料用あるいは衣料用パーツ、皮革様シートとし
てインテリア用、外衣用、カーシート、その他多くの有
用な用途を有している。
The fiber-entangled nonwoven fabric of the present invention has many useful uses such as supports, bands, medical supplies, clothing or parts for clothing, leather-like sheets for interior use, outer clothing, car seats, and many others.

〈実施例〉 次に、本発明の実施態様を具体的な実施例で説明するが
、本発明はこれら実施例に限定されるものではない。な
お、実施例中の部および%はことわりのない限り、重量
に関するものである。
<Examples> Next, embodiments of the present invention will be described using specific examples, but the present invention is not limited to these examples. Note that parts and percentages in the examples are by weight unless otherwise specified.

実施例1〜4、比較例1,2 ポリエステル系ポリウレタン(伸長弾性回復率100%
)60部と低密度ポリエチレン(50%伸長せず)40
部からなりポリエチレンが海成分となった2成分繊維を
溶融紡糸法で作り、2.8倍に延伸し、捲縮し、繊維長
51mmに切断して繊度6デニールのステープル繊維(
以下繊維I□と称す)を得た。一方、ナイロン−6(伸
長弾性回復率50%未満)50部と低密度ポリエチレン
50部からなり、ポリエチレンが海成分となつt;2成
分繊維を溶融紡糸法で作り、延伸、熱処理、捲縮し、繊
維長511IIIaに切断して繊度4デニールのステー
ブル繊維(以下繊維■1と称す)を得た。
Examples 1 to 4, Comparative Examples 1 and 2 Polyester polyurethane (elongation elastic recovery rate 100%
) 60 parts and low density polyethylene (50% unstretched) 40 parts
A bicomponent fiber with a sea component of polyethylene is made using a melt spinning method, stretched 2.8 times, crimped, and cut into fiber lengths of 51 mm to obtain staple fibers with a fineness of 6 denier (
A fiber (hereinafter referred to as fiber I□) was obtained. On the other hand, the bicomponent fiber is made of 50 parts of nylon-6 (with an elongation elastic recovery rate of less than 50%) and 50 parts of low-density polyethylene, with polyethylene as the sea component; it is made by a melt-spinning method, stretched, heat treated, and crimped. The fiber was cut into a fiber length of 511IIIa to obtain a stable fiber with a fineness of 4 denier (hereinafter referred to as fiber Ⅰ1).

次いで繊維■、及び繊維■、を第1表に示した比率で混
繊し、カードにかけて開繊しt;後、ランダムウニバー
でランダムウェブを形成し、針番手#40の針で繊維ウ
ェブを両面から交互に合計560パンチ/ Cm”のニ
ードルパンチングを行い、重さ約400g/m’の繊維
絡合不織布を作っI;。この繊維絡合不織布をテフロン
コーティングシート上に載置し、無緊張状態で135℃
の熱風中で熱処理して繊維絡合不織布に収縮を付与した
Next, the fibers (1) and (2) were mixed in the ratio shown in Table 1, spread on a card, and then a random web was formed using a random univer, and the fiber web was formed using a needle with a needle size of #40. A total of 560 punches/cm'' of needle punching was performed alternately on both sides to produce a fiber-entangled nonwoven fabric weighing approximately 400 g/cm. This fiber-entangled nonwoven fabric was placed on a Teflon-coated sheet, and then untensioned. 135℃ in condition
The fiber-entangled nonwoven fabric was heat-treated in hot air to give shrinkage.

収縮処理した繊維絡合不織布を約80℃の熱パークロル
エチレン中に浸漬−絞りを繰り返してポリエチレンを溶
解除去した後、風乾して溶剤を除去し、約130℃の熱
風中で乾燥熱処理を施して、ポリウレタン繊維同士の接
している部分に膠着による接着点を形成させた。得られ
た繊維絡合不織布はポリウレタン変成繊維とナイロン−
6極細繊維東繊維が良好な混繊状態で存在し、ポリエチ
レンを溶解した繊維はしなやかになり、絡合結節点が多
くできていて良好な伸縮性が得られ、30%伸長しても
構造変形を生じなかった。得られた繊維絡合不織布の状
態を第1表に示した。
The shrink-treated fiber-entangled nonwoven fabric was dipped in hot perchlorethylene at about 80°C and repeatedly squeezed to dissolve and remove the polyethylene, then air-dried to remove the solvent, and then subjected to dry heat treatment in hot air at about 130°C. Then, adhesive points were formed by adhesion in the areas where the polyurethane fibers were in contact with each other. The obtained fiber-entangled nonwoven fabric is composed of polyurethane modified fibers and nylon.
6 ultra-fine fibers are present in a good mixed fiber state, and the fibers dissolved in polyethylene become flexible and have many intertwining nodes, resulting in good elasticity and no structural deformation even after 30% elongation. did not occur. Table 1 shows the state of the obtained fiber-entangled nonwoven fabric.

本発明の繊維絡合不織布は柔軟性があり、繊維絡合不織
布特有の繊維質感が少ないあるいはないものであった。
The fiber entangled nonwoven fabric of the present invention was flexible and had little or no fiber texture peculiar to fiber entangled nonwoven fabrics.

実施例1及び2の厚物試料は表面にアイロン掛けして平
滑面とし、着色したものはカジュアルシューズ用として
使用出来る素材である。また、薄物にしてサポータ−に
使用出来る素材である。実施例3及び4の試料は表面に
毛羽室て処理を施して、スェード類似の素材が得られる
The surfaces of the thick samples of Examples 1 and 2 were ironed to make them smooth, and the colored samples were materials that could be used for casual shoes. It is also a thin material that can be used as a supporter. The surfaces of the samples of Examples 3 and 4 were treated with a fuzz chamber to obtain a suede-like material.

第    1    表 上記の実施例で得られた繊維絡合不織布を拡大して観察
した結果、ポリウレタン変成繊維は緊張した状態にある
のに対して、ナイロン−6極細繊維東繊維は緩んだ状態
を有していた。一方、比較例の繊維絡合不織布ではこの
ような状態が観察されなかった。
Table 1 As a result of enlarging and observing the fiber-entangled nonwoven fabrics obtained in the above examples, it was found that the modified polyurethane fibers were in a tensed state, whereas the nylon-6 ultrafine fibers were in a relaxed state. Was. On the other hand, such a state was not observed in the fiber entangled nonwoven fabric of the comparative example.

実施例5〜7、比較例3 ポリエステル系ポリウレタン(伸長弾性回復率100%
)60部とスチレン共重合体(50%伸長せず)40部
からなる2成分繊維を溶融紡糸法で作り、2.5@に延
伸し、捲縮、繊維長51mmに切断して繊度6デニール
のステーグル繊維(以下繊維I、と称す)を得た。一方
ポリエチレンテレフタレート(伸長弾性回復率50%未
満)50部と低密度ポリエチレン50部がらなり、ポリ
エチレンが海成分となった2成分m維を溶融紡糸法で作
り、延伸、熱処理、捲縮、繊維長51mmに切断して繊
度4デニールの非収縮性ステープル繊維(以下繊維■2
と称す)を得た。
Examples 5 to 7, Comparative Example 3 Polyester polyurethane (elongation elastic recovery rate 100%
) and 40 parts of styrene copolymer (50% unstretched) were made by melt spinning, drawn to 2.5@, crimped, and cut to a fiber length of 51 mm to obtain a fineness of 6 denier. A staple fiber (hereinafter referred to as fiber I) was obtained. On the other hand, a two-component m-fiber consisting of 50 parts of polyethylene terephthalate (with an elongation elastic recovery rate of less than 50%) and 50 parts of low-density polyethylene, with polyethylene as the sea component, was produced using a melt-spinning method, and then stretched, heat treated, crimped, and lengthened. Non-shrinkable staple fiber with a fineness of 4 denier cut into 51 mm pieces (hereinafter referred to as fiber ■2)
) was obtained.

次いで繊維l、および繊維■2を第2表に示した比率で
混繊し、カードにかけて解繊した後、クロスラップウェ
ブを形成し、針番手#4oの針で繊維ウェブを両面から
交互に合計700パンチ/cm”のニードルパンチング
を行い、重さ約750g/m”の繊維絡合不織布を作っ
た。この繊維絡合不織布を約85aC!の熱パークロル
エチレン中に無緊張状態で導入し、繊維中のスチレン共
重合体とポリエチレンの溶解除去と繊維絡合不織布の収
縮を同一処理工程で行った。溶液を絞液除去後プレスし
て約80℃の熱風中で乾燥した。得られt;繊維絡合不
織布はポリウレタン繊維同士の接している部分に膠着に
よる接着点を形成しており、更にポリウレタン繊維と極
細ポリエチし一ンテレ7タレート繊維東繊維が良好な混
繊状態でしなやかであるため繊維絡合結節点が多くでき
ていて良好な伸縮性を示し、30%伸長しても構造変形
を生じなかった。得られた繊維絡合不織布の状態を第2
表に示した。
Next, fiber 1 and fiber 2 are mixed in the ratio shown in Table 2, and after defibration by carding, a cross-wrap web is formed, and the fiber web is summed alternately from both sides using a needle with a needle size of #4o. Needle punching was performed at a rate of 700 punches/cm" to produce a fiber-entangled nonwoven fabric weighing approximately 750 g/m". Approximately 85aC of this fiber-entangled nonwoven fabric! The styrene copolymer and polyethylene in the fibers were dissolved and removed, and the fiber-entangled nonwoven fabric was shrunk in the same treatment step. After squeezing out the solution, it was pressed and dried in hot air at about 80°C. Obtained T: The fiber-entangled nonwoven fabric forms adhesion points due to adhesion in the areas where the polyurethane fibers are in contact with each other, and the polyurethane fibers and ultra-fine polyester fibers are in a good mixed state and are flexible. Therefore, it had many fiber entanglement nodes and exhibited good elasticity, and no structural deformation occurred even after 30% elongation. The state of the obtained fiber-entangled nonwoven fabric was
Shown in the table.

これら実施例で得られた繊維絡合不織布の繊維の状態を
拡大して観察したところ、実施例1〜4と同様であった
When the state of the fibers of the fiber-entangled nonwoven fabrics obtained in these Examples was observed under magnification, it was the same as in Examples 1 to 4.

(以下余白) 茅2表 実施例8〜11.比較例4 ポリエステル系ポリウレタン(伸長弾性回復率100%
)50部と低密度ポリエチレン(50%伸長せず)50
部からなりポリエチレンが海成分となった2成分繊維を
溶融紡糸法で作り、2.8倍延伸、捲縮、切断して、繊
度6デニール、繊維長5 immの原綿(以下繊維■、
と称す)を得た。
(Left space below) Kaya 2 table Examples 8 to 11. Comparative Example 4 Polyester polyurethane (elongation elastic recovery rate 100%)
) 50 parts and low density polyethylene (50% unstretched) 50 parts
A bicomponent fiber with polyethylene as the sea component is made by a melt spinning method, stretched 2.8 times, crimped, and cut to obtain raw cotton with a fineness of 6 denier and a fiber length of 5 mm (hereinafter referred to as fiber).
) was obtained.

一方、ナイロン−6(伸長弾性回復率50%未満)50
部と上記低密度ポリエチレン50部からなり、ポリエチ
レンが海成分となった2戊分繊維を溶融紡糸法で作り、
延伸、捲縮、切断して、繊度4デニール、繊維長51m
mの原綿(以下繊維■。
On the other hand, nylon-6 (elongation elastic recovery rate less than 50%) 50
and 50 parts of the above-mentioned low-density polyethylene, using a melt-spinning method to make two-branch fibers with polyethylene as the sea component,
Stretched, crimped and cut, fineness 4 denier, fiber length 51m
m raw cotton (hereinafter referred to as fiber ■).

と称す)を得た。) was obtained.

次いで繊維I3を40部と繊維■、を60部を混繊し、
カードを通してランダムウニバーでランダムウェブを作
り、#40のニードルでウェブを両面から交互に合計4
20パンチ/c+s”のニードルパンチ処理を行い、重
さ約500g/m”の繊維絡合不織布を作っI;。この
繊維絡合不織布を固形分濃度4%のポリウレタン水分散
液中に浸漬した後、搾成ロールで含液率80%に搾成し
た。そして、テフロンコーティングを施したシート上に
載置し、実質的に無緊張状態で130℃の熱風乾燥機で
乾燥した。乾燥した繊維絡合不織布は縦、横方向とも長
さで約35%収縮(面積収縮率約57%)していた。
Next, 40 parts of fiber I3 and 60 parts of fiber 1 were mixed,
Make a random web with a random univer through the card, and use a #40 needle to alternately run the web from both sides for a total of 4
A fiber-entangled nonwoven fabric weighing approximately 500 g/m was produced by needle punching at a rate of 20 punches/c+s. This fiber-entangled nonwoven fabric was immersed in an aqueous polyurethane dispersion having a solid content concentration of 4%, and then squeezed to a liquid content of 80% using a squeezing roll. Then, it was placed on a Teflon-coated sheet and dried in a hot air dryer at 130° C. under substantially no tension. The dried fiber-entangled nonwoven fabric had shrunk by about 35% in length (area shrinkage rate about 57%) in both the longitudinal and transverse directions.

次いで80℃のパークロルエチレン中に繊維絡合不織布
を浸漬して繊維I、及びI!3中のポリエチレンを溶解
除去し、約80℃の熱風乾燥機で乾燥L2だ。得られた
ポリウレタン含有繊維絡合不織布はポリウレタンとナイ
ロン−6の微細デニール繊維の収束状繊維がよく絡合し
た重さ約630 g/1112、最終面積収縮率約60
%のシート状物であつj;。このシート状物の厚さのほ
ぼ中央付近をバンドマシンナイフでスライスし、2分割
した後、ポリビニルアルコール5%濃度の水溶液を含浸
し、乾燥し、続いて行うシート状物の処理における伸び
を抑えた。そしてサンドペーパーでスライス面をパフィ
ングして厚みを均一にした後、表面をパフィングして厚
み0.611!lの繊維立毛を有するスェード調表面に
した。得られたシート状物を金属錯塩染料濃度2%ov
f、、温度90℃、時間60分で染色し、乾燥した後、
もみ処理、表面をブラッシングしてスェード調人工皮革
を得た(実施例8の試料)。この人工皮革はライティン
グ効果を有し、両方向に高い伸縮性をもち、かつ極めて
柔軟性に富んでおり、しわが生じ難いものであった。
Next, the fiber entangled nonwoven fabric was immersed in perchlorethylene at 80°C to form fibers I and I! The polyethylene in 3 was dissolved and removed and dried in a hot air dryer at about 80°C. The obtained polyurethane-containing fiber-entangled nonwoven fabric has polyurethane and convergent fibers of fine denier fibers of nylon-6 well entangled, has a weight of about 630 g/1112, and a final area shrinkage rate of about 60.
% sheet-like material. After slicing approximately the center of the sheet material's thickness with a band machine knife and dividing it into two parts, the sheet material is impregnated with a 5% aqueous solution of polyvinyl alcohol and dried to prevent elongation during subsequent processing of the sheet material. Ta. Then, use sandpaper to puff the sliced surface to make the thickness uniform, then puff the surface to make it 0.611 thick! It has a suede-like surface with 1 fiber nap. The obtained sheet-like material was dyed with a metal complex dye concentration of 2% ov.
f. After dyeing at a temperature of 90°C for 60 minutes and drying,
A suede-like artificial leather was obtained by kneading and brushing the surface (sample of Example 8). This artificial leather had a lighting effect, had high elasticity in both directions, was extremely flexible, and was resistant to wrinkles.

上記と同一の製造法において、繊維I3と繊維■、の混
繊比率を第3表の如く種々変えてスェード調人工皮革を
作った。得られた人工皮革の特性を第3表に示した。更
に、各実施例の試料および比較例の試料を30%伸長−
回復を10回繰り返した後、3時間放置して回復率を求
めた結果、実施例8〜llの試料は99〜lOO%回復
したのに対して比較例4の試料は58%であった。
Using the same manufacturing method as above, suede-like artificial leather was produced by varying the blending ratio of fiber I3 and fiber 1 as shown in Table 3. The properties of the obtained artificial leather are shown in Table 3. Furthermore, the samples of each example and the sample of comparative example were stretched by 30%.
After repeating the recovery 10 times, the recovery rate was determined after being left for 3 hours. As a result, the samples of Examples 8 to 11 recovered by 99 to 100%, while the sample of Comparative Example 4 recovered by 58%.

第    3    表 また、実施例IOの人工皮革は極めて充実感に富み、5
0%伸長に対しても95%の弾性回復率を示した。しか
し、この人工皮革は、いわゆるスェード調人工皮革とす
るには立毛が少ないので、表面を120℃のフラットロ
ール面に接触させて平滑化処理した後、ポリウレタン2
0%水分教液をグラビアロールで塗布し、更にポリウレ
タン10%溶液をグラビアロールで塗布した。そして、
ポリウレタン塗布面を加熱エンボスロールでエンボシン
グして銀付き人工皮革とした。この人工皮革は充実感と
伸縮性に優れ、靴甲皮用素材に適していた。
Table 3 In addition, the artificial leather of Example IO has a very rich feeling, with 5
Even at 0% elongation, the elastic recovery rate was 95%. However, this artificial leather has too little nap to be made into so-called suede-like artificial leather, so after smoothing the surface by contacting it with a flat roll surface at 120°C,
A 0% moisture teaching solution was applied with a gravure roll, and a 10% polyurethane solution was further applied with a gravure roll. and,
The polyurethane coated surface was embossed with a heated embossing roll to obtain silver-covered artificial leather. This artificial leather had a solid feel and excellent elasticity, making it suitable as a material for shoe uppers.

これらの実施例で得られた人工皮革の内部の繊維の状態
を拡大して観察した結果、ポリエステル系ポリウレタン
からなる繊維(集束体)はバインダー樹脂による固定点
または交絡による固定点の間において緊張状態にあるの
に対してナイロン−6からなる種網繊維束繊維は緩んだ
状態にあることが確認された。
As a result of enlarging and observing the state of the fibers inside the artificial leather obtained in these examples, it was found that the fibers (bundle) made of polyester polyurethane were in a tension state between the points fixed by the binder resin or the points fixed by entanglement. In contrast, it was confirmed that the seed net fiber bundle fibers made of nylon-6 were in a loose state.

実施例12 ポリエステル系ポリウレタン(伸長弾性回復率100%
)60部とポリスチレン(50%伸長せず)40部を溶
融紡糸して得た繊度6デニールの2成分系繊維(以下繊
維I4と称す)、およびポリエチレンテレフタレート(
伸長弾性回復率50%未満)50部と前記低密度ポリエ
チレン50部を溶融紡糸して得たポリエチレンが海成分
子t’)る繊度4デニールの2成分繊維(以下繊維■、
と称す)を用い、この繊維I4を30部および繊維■。
Example 12 Polyester polyurethane (elongation elastic recovery rate 100%)
) and 40 parts of polystyrene (without 50% elongation) were melt-spun to obtain a bicomponent fiber with a fineness of 6 denier (hereinafter referred to as fiber I4), and polyethylene terephthalate (
Polyethylene obtained by melt-spinning 50 parts of elongated elastic recovery (less than 50%) and 50 parts of the low-density polyethylene has a sea component t') and has a fineness of 4 denier.
), 30 parts of this fiber I4 and fiber ■.

を7θ部混繊し、ランダムウェブを作り、ニードルパン
チングして繊維絡合不織布とした後、温度90℃のパー
クロルエチレンで繊維中のポリスチレンとポリエチレン
を溶解除去し、約80℃の熱風乾燥機で乾燥した。得ら
れた繊維絡合不織布は面積収縮率約30%の収縮を生じ
ていた。得られた繊維絡合不織布にバインダー樹脂とし
て固形分濃度4%のポリウレタン水分教戒を約100%
含浸し、テフロンコーティングを施したシート上に載置
し、無緊張状態で温度130℃の熱風乾燥機で乾燥した
。得られた繊維絡合不織布に実施例IOと同様の表面処
理および造血・仕上げを行い銀付き人工皮革を作った。
After mixing 7θ parts of the fibers to make a random web and needle punching to make a fiber-entangled nonwoven fabric, polystyrene and polyethylene in the fibers were dissolved and removed with perchlorethylene at a temperature of 90°C, and dried in a hot air dryer at about 80°C. It was dried. The obtained fiber-entangled nonwoven fabric had an area shrinkage rate of about 30%. Approximately 100% polyurethane moisture content with a solid content concentration of 4% is added to the obtained fiber-entangled nonwoven fabric as a binder resin.
It was impregnated and placed on a Teflon-coated sheet, and dried in a hot air dryer at a temperature of 130° C. under no tension. The obtained fiber-entangled nonwoven fabric was subjected to the same surface treatment, hematopoiesis, and finishing as in Example IO to produce silver-covered artificial leather.

この人工皮革はやや反発注が大きいが柔軟性及び伸縮性
に富んだ素材であった。また、この人工皮革の内部の繊
維の状態は、実施例8〜11と同様、ポリウレタン繊維
が緊張状態にあるのに対してポリエチレンテレフタレー
ト極細繊維束繊維は緩んだ状態であった。
Although this artificial leather had a rather large rebound, it was a material that was highly flexible and stretchable. Further, as in Examples 8 to 11, the state of the fibers inside this artificial leather was such that the polyurethane fibers were in a taut state, whereas the polyethylene terephthalate ultrafine fiber bundle fibers were in a loose state.

比較例5 比較のために、実施例12で得た繊維■、を温水槽に通
して自由収縮した後、実施例12と同様にして、ランダ
ムウェブとし、そして繊維絡合不織布を作り、ポリスチ
レンおよびポリエチレンを溶解除去し、熱風下で処理し
た後、バインダー園脂を付与した。得られた繊維絡合不
織布には実質的に収縮が生じていなかった。
Comparative Example 5 For comparison, the fibers (1) obtained in Example 12 were passed through a hot water bath for free shrinkage, and then made into a random web in the same manner as in Example 12, and a fiber-entangled nonwoven fabric was prepared. After the polyethylene was dissolved and removed and treated under hot air, binder resin was applied. The obtained fiber-entangled nonwoven fabric was substantially free from shrinkage.

この繊維絡合不織布から得られた人工皮革は反発性が大
きいが伸縮性が小さく、30%伸長した場合の回復率は
68%にすぎず、構造破壊が生じていた。また、この繊
維絡合不織布の繊維の状態を拡大して観察したところ、
ポリウレタンからなる繊維とポリエチレンテレフタレー
トからなる繊維の間において緊張状態にほとんど差が認
められなかった。
The artificial leather obtained from this fiber-entangled nonwoven fabric had high resilience but low elasticity, and the recovery rate after 30% elongation was only 68%, resulting in structural destruction. In addition, when we enlarged and observed the state of the fibers in this fiber-entangled nonwoven fabric, we found that
There was almost no difference in tension between the fibers made of polyurethane and the fibers made of polyethylene terephthalate.

実施例13 低密度ポリエチレン40部とポリエステル系ポリウレタ
ン(伸長弾性回復率100%)60部を溶融紡糸して得
た繊度6デニールの2成分繊維(以下繊維1.と称す)
、および低密度ポリエチレン50部とナイロン−6を5
0部を溶融紡糸して得たポリエチレンが海成分となって
いる繊度4デニールの2成分繊維(以下繊維■、と称す
)を用い、この繊維■、を20部および繊維T1sを8
0部を混繊し、クロスラップウェブを作り、ニードルパ
ンチングして繊維絡合不織布とした後、布帛上に載置し
て135℃の熱風乾燥機に通して熱処理した。得られた
繊維絡合不織布は面積収縮率が約20%、見掛は密度0
.40、繊維構成ポリエチレンの一部が繊維交点におい
て融着し、やや板状の硬さを有するものとなった。この
熱処理した繊維絡合不織布にポリエーテル系ポリウレタ
ン濃度lO%のジメチルホルムアミド溶液(但し、この
溶液には水が1%含まれている。水が1%含まれている
ことにより、繊維を構成しているポリウレタンが溶媒の
ジメチルホルムアミドにより侵されず、また溶液中のポ
リウレタンも実質的に凝固しない。)を飽充させた後ジ
メチルホルムアミド30%水溶液に浸漬して凝固し、温
度90℃のトルエン中でポリエチレンを溶解除去した。
Example 13 Bicomponent fiber with a fineness of 6 denier (hereinafter referred to as fiber 1) obtained by melt-spinning 40 parts of low-density polyethylene and 60 parts of polyester polyurethane (100% elongation elastic recovery).
, and 50 parts of low density polyethylene and 5 parts of nylon-6.
Using a bicomponent fiber with a fineness of 4 denier (hereinafter referred to as fiber ■) whose sea component is polyethylene obtained by melt spinning 0 parts, 20 parts of this fiber ■ and 8 parts of fiber T1s were used.
0 parts were blended to make a cross-wrap web, which was needle-punched to obtain a fiber-entangled nonwoven fabric, which was placed on a fabric and heat-treated by passing it through a hot air dryer at 135°C. The obtained fiber-entangled nonwoven fabric has an area shrinkage rate of about 20% and an apparent density of 0.
.. 40. A part of the fiber-constituting polyethylene was fused at the fiber intersection points, resulting in a somewhat plate-like hardness. This heat-treated fiber-entangled nonwoven fabric is coated with a polyether-based polyurethane solution containing 10% dimethylformamide (however, this solution contains 1% water. By containing 1% water, the fibers are formed. The polyurethane in the solution is not attacked by the dimethylformamide solvent, and the polyurethane in the solution does not substantially coagulate. The polyethylene was dissolved and removed.

得られた繊維絡合不織布をサンドペーパーでパフィング
し、染色処理、柔軟化処理、ブラッシング等の仕上げ処
理を施してスェード調人工皮革を得た。
The obtained fiber-entangled nonwoven fabric was puffed with sandpaper and subjected to finishing treatments such as dyeing, softening, and brushing to obtain suede-like artificial leather.

この人工皮革は極めて立毛性に優れ、毛羽密度が高く、
ライティング効果の大きいものであり、更に柔軟性、伸
縮性および充実感に富んだもので、衣料用、特にスポー
ツ衣料用に適した素材であった。また、この人工皮革も
、その内部の繊維の状態は実施例8〜11と同様であっ
た。
This artificial leather has excellent napping properties and a high fluff density.
It has a great lighting effect, and is also rich in flexibility, stretchability, and a sense of fulfillment, making it a material suitable for clothing, especially sports clothing. Moreover, the condition of the internal fibers of this artificial leather was the same as in Examples 8 to 11.

〈発明の効果〉 本発明の繊維絡合不織布は極細繊維束繊維または/およ
び微細空間を有する繊維に変成された変成繊維の絡合で
構成され、繊維の絡合性に優れ、繰り返し伸長変形を行
っても、実質的に構造変形あるいは構造破壊を生じない
伸長範囲が大きい伸長性を有し、かつ伸長性に富み、充
実感のある柔軟な風合いであって、人工皮革の基体とし
て適した繊維絡合不織布である。
<Effects of the Invention> The fiber-entangled nonwoven fabric of the present invention is composed of ultrafine fiber bundle fibers and/or modified fibers modified into fibers having micro spaces, and has excellent fiber entanglement properties and is resistant to repeated elongation deformation. A fiber that has a wide elongation range that does not substantially cause structural deformation or structural destruction even when it is stretched, and has a rich and flexible texture that is rich in elongation and is suitable as a base material for artificial leather. It is an entangled nonwoven fabric.

更に、本発明の繊維絡合不織布は、表面に立毛処理を施
すことによって、極細繊維立毛密度の高いスェード調表
面の高伸縮性人工皮革が、また表面に弾性重合体の皮膜
層を付与して、銀面層に仕上げることによって、高伸縮
性銀付き人工皮革が得られる。
Furthermore, by subjecting the fiber-entangled nonwoven fabric of the present invention to a napped treatment on the surface, a highly elastic artificial leather with a suede-like surface with a high density of napped microfibers is created, and a film layer of an elastic polymer is added to the surface. By finishing with a grain layer, highly elastic silver-coated artificial leather can be obtained.

特許出願人  株式会社 り ラ し 代 理 人  弁理士 本多 堅Patent applicant: RiRashi Co., Ltd. Representative Patent Attorney Ken Honda

Claims (2)

【特許請求の範囲】[Claims] (1)ポリウレタンエラストマーを主体とする弾性ポリ
マー(A)と、該弾性ポリマー(A)とは溶解性あるい
は分解性を異にする少なくとも1種類の非弾性ポリマー
(C)からなる多成分繊維 I および溶解性あるいは分
解性を異にする少なくとも2種類の非弾性ポリマー(B
)、(D)からなる多成分繊維IIの各短繊維が混繊され
、絡合してなることを特徴とする繊維絡合不織布。
(1) Multicomponent fiber I consisting of an elastic polymer (A) mainly composed of polyurethane elastomer and at least one type of inelastic polymer (C) that has a different solubility or degradability from the elastic polymer (A), and At least two types of inelastic polymers (B
A fiber entangled nonwoven fabric characterized in that each short fiber of multicomponent fiber II consisting of ) and (D) is mixed and entangled.
(2)ポリウレタンエラストマーを主体とする弾性ポリ
マー(A)からなる極細繊維束繊維あるいは微細空間を
有する繊維である変成繊維Aおよび非弾性ポリマー(B
)からなる極細繊維束繊維あるいは微細空間を有する繊
維である変成繊維Bの各短繊維が混繊され、絡合してな
る繊維絡合不織布であつて、該不織布内の繊維の絡合状
態が、変成繊維Bは緊張した絡合状態の変成繊維Aによ
り屈折・屈曲して緩んだ組織構造に絡合してなることを
特徴とする繊維絡合不織布。
(2) Modified fibers A, which are microfiber bundle fibers made of an elastic polymer (A) mainly composed of polyurethane elastomer or fibers with microscopic spaces, and modified fibers A, which are fibers with microscopic spaces, and an inelastic polymer (B).
) is a fiber-entangled nonwoven fabric formed by mixing and entangling short fibers of modified fibers B, which are ultrafine fiber bundle fibers or fibers with microscopic spaces, and in which the entangled state of the fibers in the nonwoven fabric is , a fiber entangled nonwoven fabric characterized in that modified fibers B are bent and bent by modified fibers A in a tense entangled state and entangled in a loose tissue structure.
JP63318067A 1988-12-15 1988-12-15 Fiber-entangled nonwoven fabric Granted JPH0214056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318067A JPH0214056A (en) 1988-12-15 1988-12-15 Fiber-entangled nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318067A JPH0214056A (en) 1988-12-15 1988-12-15 Fiber-entangled nonwoven fabric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58084481A Division JPS59211666A (en) 1983-05-13 1983-05-13 Interlaced nonwoven fabric good in extensibility and production thereof

Publications (2)

Publication Number Publication Date
JPH0214056A true JPH0214056A (en) 1990-01-18
JPH0320504B2 JPH0320504B2 (en) 1991-03-19

Family

ID=18095113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318067A Granted JPH0214056A (en) 1988-12-15 1988-12-15 Fiber-entangled nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH0214056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829486B2 (en) 2003-02-06 2010-11-09 Kuraray Co., Ltd. Stretchable leather-like sheet substrate and process for producing same
WO2015038977A1 (en) * 2013-09-13 2015-03-19 Invista North America S.A R.L. Spandex fibers for enhanced bonding
JP2018529030A (en) * 2015-07-02 2018-10-04 エスジーエル・カーボン・エスイー Method for producing thin carbon fiber nonwoven fabric by horizontal splitting process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221479A (en) * 1975-06-06 1977-02-18 Procter & Gamble Manufacturing method and apparatus for randomm arranged bonded continuous filament cloth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221479A (en) * 1975-06-06 1977-02-18 Procter & Gamble Manufacturing method and apparatus for randomm arranged bonded continuous filament cloth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829486B2 (en) 2003-02-06 2010-11-09 Kuraray Co., Ltd. Stretchable leather-like sheet substrate and process for producing same
WO2015038977A1 (en) * 2013-09-13 2015-03-19 Invista North America S.A R.L. Spandex fibers for enhanced bonding
CN105765121A (en) * 2013-09-13 2016-07-13 英威达技术有限公司 Spandex fibers for enhanced bonding
JP2018529030A (en) * 2015-07-02 2018-10-04 エスジーエル・カーボン・エスイー Method for producing thin carbon fiber nonwoven fabric by horizontal splitting process
US11208745B2 (en) 2015-07-02 2021-12-28 Sgl Carbon Se Method for producing thin carbon fiber nonwovens by a horizontal splitting process

Also Published As

Publication number Publication date
JPH0320504B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
EP0125494B1 (en) Entangled fibrous mat having good elasticity and production thereof
JP3927769B2 (en) Nonwoven fabric and method for producing sheet-like material using the same
JPS6312744A (en) Fiber interlaced body and its production
JP6583276B2 (en) Sheet-like material and manufacturing method thereof
JPH0214056A (en) Fiber-entangled nonwoven fabric
JP3366504B2 (en) Flexible artificial nubuck leather and manufacturing method thereof
JP3128333B2 (en) Flexible suede-like artificial leather and method for producing the same
JP3103434B2 (en) Flexible suede-like artificial leather and manufacturing method
JPS59211664A (en) Sheet article good in extensibility and production thereof
JP3215739B2 (en) Brushing method of microfiber sheet
JPH0141742B2 (en)
JPH0316427B2 (en)
JPS6045656A (en) Production of artificial leather sheet
JP2001131877A (en) Base substance for artificial leather
TWI342351B (en) Leather-like sheet and production method thereof
JP2001214377A (en) Leather-like sheet and method producing the same
JP2001192976A (en) Substrate for artificial leather and method of producing the same
JP3961296B2 (en) Leather-like sheet and method for producing the same
JPH10226968A (en) Production of leather-like sheet
JPS6045625A (en) Nonwoven yarn having interlaced layer
JP2001214378A (en) Leather-like sheet and method for producing the same
JPH0545714B2 (en)
JPH03227461A (en) Fiber-raised sheet-like material and preparation thereof
JP4429751B2 (en) Stretchable leather-like sheet substrate and method for producing the same
JP2004197232A (en) Leathery sheetlike material and method for producing the same