JPH02125472A - Semiconductor device using quantum interference transistor - Google Patents

Semiconductor device using quantum interference transistor

Info

Publication number
JPH02125472A
JPH02125472A JP27729988A JP27729988A JPH02125472A JP H02125472 A JPH02125472 A JP H02125472A JP 27729988 A JP27729988 A JP 27729988A JP 27729988 A JP27729988 A JP 27729988A JP H02125472 A JPH02125472 A JP H02125472A
Authority
JP
Japan
Prior art keywords
layer
channel layer
semiconductor
energy gap
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27729988A
Other languages
Japanese (ja)
Other versions
JP2675362B2 (en
Inventor
Hiroshi Mizuta
博 水田
Tomonori Tagami
知紀 田上
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27729988A priority Critical patent/JP2675362B2/en
Publication of JPH02125472A publication Critical patent/JPH02125472A/en
Application granted granted Critical
Publication of JP2675362B2 publication Critical patent/JP2675362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To increase the peak/trough ratio of a drain current vibration by providing a resonance tunneling barrier made of a semiconductor thin film having narrow energy gap and two thin semiconductor films each having a wide energy gap between a channel layer and a source electrode. CONSTITUTION:An I-type Al0.3Ge0.7As layer 8, an I-type GaAs layer 9 and an I-type Al0.3Ga0.7As layer 10 are grown on a semi-insulating GaAs board 7 by a MBE method. After a channel barrier wall 11 is formed by an EM method, an I-type GaAs layer 12, an I-type Al0.3Ga0.7As layer 13 are grown by a MBE method. A mesa region 14 is formed by a normal photolithography technique. An I-type Al0.3As0.7As layer 15, an I-type Ga/As layer 16, an I-type Al0.3Ga0.7As layer 17 are grown by a MBE method. A double barrier structure resonance tunneling barrier 18 made of the layers 15, 16, 17 is formed by a normal photolithography technique. After a MBE method N<+> type GaAs layer is grown, a source region 19, a gate region 20 and a drain region 21 are formed by an EB method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アハラノフ−ボーム効果を利用した量子干渉
トランジスタを有する半導体装置に係り、特に超高速ス
イッチング素子及び多値論理素子として用いられる半導
体装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device having a quantum interference transistor using the Ahranov-Bohm effect, and particularly to a semiconductor device used as an ultra-high-speed switching element and a multivalued logic element. It is related to.

〔従来の技術〕[Conventional technology]

従来の量子干渉トランジスタにおいては、プロシーディ
ンブオブザアイイーディーエム、4゜1.1986 (
PROCEEDINGS OF THE IEDM、 
4.1.1986)記載のように、ソース電極がチャネ
ル層に隣接して設けられており、フェルミ分布した電子
が直接チャネル内に注入されていた。この素子の部分断
面図を第2図に示す。この素子は、エネルギーギャップ
の狭い半導体から成るチャネル層1と、該チャネル層上
中及びその上下に設けられたエネルギーギャップの広い
半導体から成る障壁層2と、ソース電極と接続するソー
ス領域3と、ドレイン電極と接続するドレイン領域4と
、上記障壁層2を介してチャネル層1上に設けられ、ゲ
ート電極と連絡するゲート領域5を有し、チャネル層内
を伝播する電子波の干渉効果(elecrtrosta
ticAharanov Bohm effect)を
利用して動作する。
Regarding conventional quantum interference transistors, Proceedings of the IDM, 4°1.1986 (
PROCEEDINGS OF THE IEDM,
4.1.1986), a source electrode was provided adjacent to the channel layer, and Fermi distributed electrons were directly injected into the channel. A partial cross-sectional view of this element is shown in FIG. This device includes a channel layer 1 made of a semiconductor with a narrow energy gap, a barrier layer 2 made of a semiconductor with a wide energy gap provided above and below the channel layer, and a source region 3 connected to a source electrode. It has a drain region 4 connected to the drain electrode, and a gate region 5 provided on the channel layer 1 via the barrier layer 2 and communicating with the gate electrode.
ticAharanov Bohm effect).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、ソース領域でフェルミ分布していた電
子が直接チャネル層に注入される構造となっている。こ
の時、流れるドレイン電流は、で与えられる。ここで、
k−、kyはX+ y方向の電子の波数ベクトル、Wは
チャネル厚み1mは電子の有効質量、fはフェルミ分布
関数、Voはドレイン電圧1毛はブランク定数の1/2
πの値、eは電子の電荷である。またI T(k、)1
2は従来構造による電子波の透過確率で、 で与えられる。ここでVaはゲート電圧、Lはゲート長
である。このI ”r(kx)12のゲート電圧依存性
により、ドレイン電流Ioは第3図のような振動を生じ
、スイッチング動作、あるいは多値論理動作が可能とな
る。しかし、この構造では、前述のようにフェルミ分布
した様々な波数ベクトルに、を持つ電子がソース電極か
ら注入されるため、ドレイン電流振動のピーク/バレイ
比が小さいという問題があった6 本発明の目的は、ドレイン電流振動のピーク/バレイ比
が大きい量子干渉トランジスタを有する半導体装置を提
供することにある。
The conventional technique described above has a structure in which electrons distributed in Fermi distribution in the source region are directly injected into the channel layer. At this time, the flowing drain current is given by: here,
k-, ky are the wave number vectors of electrons in the
The value of π, e is the charge of the electron. Also I T(k,)1
2 is the transmission probability of electronic waves through the conventional structure, which is given by: Here, Va is the gate voltage and L is the gate length. This gate voltage dependence of I''r(kx)12 causes the drain current Io to oscillate as shown in Figure 3, making switching operation or multi-value logic operation possible.However, with this structure, the above-mentioned Since electrons having various wave number vectors with Fermi distribution are injected from the source electrode, there is a problem that the peak/valley ratio of drain current oscillation is small6. An object of the present invention is to provide a semiconductor device having a quantum interference transistor with a large /valley ratio.

〔課題を解決するための手段〕□ 上記目的は、(1)エネルギーギャップの狭い半導体か
ら成るチャネル層と、該チャネル層中及び該チャネル層
上下に設けられたエネルギーギャップの広い半導体から
成る障壁層と、ソース電極、ドレイン電極及び上記障壁
層を介して該チャネル層上に設けられたゲート電極を有
し、該チャネル層内を伝播する電子波の干渉効果を利用
して動作する量子干渉トランジスタを有する半導体装置
において、上記チャネル層と上記ソース電極の間に、少
なくともエネルギーギャップの狭い半導体薄膜と2層の
エネルギーギャップの広い半導体薄膜とから成る共鳴ト
ンネリングバリアを設けたことを特徴とする量子干渉ト
ランジスタを有する半導体装置、(2)エネルギーギャ
ップの狭い半導体から成るチャネル層と、該チャネル層
中及び該チャネル層上下に設けられたエネルギーギャッ
プの広い半導体から成る障壁層と、ソース電極、ドレイ
ン電極及び上記障壁層を介して該チャネル層上に設けら
れたゲート電極を有し、該チャネル層内を伝播する電子
波の干渉効果を利用して動作する量子干渉トランジスタ
を有する半導体装置において。
[Means for Solving the Problems] □ The above objects are: (1) a channel layer made of a semiconductor with a narrow energy gap; and a barrier layer made of a semiconductor with a wide energy gap provided in the channel layer and above and below the channel layer; and a quantum interference transistor that has a source electrode, a drain electrode, and a gate electrode provided on the channel layer via the barrier layer, and operates using the interference effect of electron waves propagating within the channel layer. A quantum interference transistor, characterized in that a resonant tunneling barrier comprising at least a semiconductor thin film with a narrow energy gap and two semiconductor thin films with a wide energy gap is provided between the channel layer and the source electrode. (2) a channel layer made of a semiconductor with a narrow energy gap; a barrier layer made of a semiconductor with a wide energy gap provided in the channel layer and above and below the channel layer; a source electrode, a drain electrode, and the above. A semiconductor device including a quantum interference transistor having a gate electrode provided on the channel layer via a barrier layer and operating by utilizing the interference effect of electron waves propagating within the channel layer.

上記チャネル層と上記ソース電極の間に、特定の波数ベ
クトルを持つ量子のみを通過させる共鳴トンネリングバ
リアを設けたことを特徴とする量子干渉トランジスタを
有する半導体装置によって達成される。
This is achieved by a semiconductor device having a quantum interference transistor, characterized in that a resonant tunneling barrier is provided between the channel layer and the source electrode, allowing only quanta having a specific wave number vector to pass through.

本発明における共鳴トンネリングバリアは、エネルギー
ギャップの狭い半導体薄膜をエネルギーギャップめ広い
半導体薄膜で挟んだ2重障壁構造を少なくとも有するも
のであればよく、さらに上記構造の外側にエネルギーギ
ャップの狭い半導体薄膜と広い半導体薄膜をそれぞれ設
けた5層構造としてもよく、なおさらにそれぞれの半導
体層を同様に加えた構造としてもよい。
The resonant tunneling barrier in the present invention may have at least a double barrier structure in which a semiconductor thin film with a narrow energy gap is sandwiched between semiconductor thin films with a wide energy gap, and furthermore, a semiconductor thin film with a narrow energy gap and a semiconductor thin film with a narrow energy gap on the outside of the above structure. It may be a five-layer structure in which a wide semiconductor thin film is provided respectively, or it may be a structure in which each semiconductor layer is added in the same way.

エネルギーギャップの狭い半導体薄層の厚みは、50〜
100人の範囲が好ましく、エネルギーギャップの広い
半導体薄層の厚みは、10〜100人の範囲が好ましい
The thickness of the semiconductor thin layer with a narrow energy gap is 50~
The thickness of the semiconductor thin layer with a wide energy gap is preferably in the range of 10 to 100 people.

本発明の半導体装置の一例の部分断面図を第1図に示す
。ソース電極と接続するソース領域3とチャネル層1と
の間に、エネルギーギャップの狭い半導体薄膜をエネル
ギーギャップの広い半導体薄膜で挟んだ2重障壁構造共
鳴トンネリングバリア6を設ける。
FIG. 1 shows a partial cross-sectional view of an example of the semiconductor device of the present invention. A double barrier structure resonant tunneling barrier 6 in which a semiconductor thin film with a narrow energy gap is sandwiched between semiconductor thin films with a wide energy gap is provided between a source region 3 connected to a source electrode and a channel layer 1.

〔作用〕[Effect]

上記のように導入した共鳴トンネリングバリアは、第4
図のようにその透過確率1Tn(kx)l”がδ−関数
的になり、特定の波数に、を持つ電子のみを通過させる
フィルターとして働く。すなわち、T R(k X )
 l ” Σδ(k、−ko)となる。このため、本構
造トランジスタにおけるドレイン電流は、 となり、第5図のようにゲート電圧に対してOとIoの
間を振動し、ビーク/バレイ比を無限大とすることがで
きる。
The resonant tunneling barrier introduced as above is the fourth
As shown in the figure, the transmission probability 1Tn (k
l'' Σδ(k, -ko). Therefore, the drain current in the transistor with this structure is as shown in Fig. 5, and it oscillates between O and Io with respect to the gate voltage, and the peak/valley ratio increases. It can be infinite.

〔実施例〕〔Example〕

以下、本発明の一実施例の量子干渉トランジスタを有す
る半導体装置の製造方法を第6図(a)〜第6図(g)
により説明する。
A method for manufacturing a semiconductor device having a quantum interference transistor according to an embodiment of the present invention will be described below with reference to FIGS. 6(a) to 6(g).
This is explained by:

第6図(a)二半絶縁性G a A s基板7上にMB
E法でi −A Qo、、Ga0.、As層8(膜厚1
00人)、1−GaAs層9(膜厚150人)、i −
A Qo、3Ga0,7AsllO(膜厚100人)を
成長させる。
FIG. 6(a) MB on the semi-insulating G a As substrate 7
By the E method, i −A Qo, , Ga0. , As layer 8 (film thickness 1
00 people), 1-GaAs layer 9 (film thickness 150 people), i −
A Qo, 3Ga0,7AsllO (film thickness: 100 nm) is grown.

第6図(b):EB法によりチャネル内障壁11(障壁
長さL <0.2μm)を形成した後、M B E法で
1−GaAs層12(膜厚150人)、1−AQo。
FIG. 6(b): After forming an intra-channel barrier 11 (barrier length L<0.2 μm) by the EB method, a 1-GaAs layer 12 (thickness: 150 μm) and 1-AQo are formed by the MBE method.

Ga、、、As層13(膜厚100人)を成長させる。A Ga,..., As layer 13 (thickness: 100 mm) is grown.

第6図(C):通常のフォトリングラフィ技術により、
メサ領域14を形成する。
Figure 6 (C): By ordinary photolithography technique,
A mesa region 14 is formed.

第6図(d):MBE法でi −A Q、、3Ga、、
、As層15(膜厚50人)、1−GaAs層16(膜
厚100人)、i −A (16,xGao、7重8層
17 (膜厚50人)を成長させる。
Figure 6(d): i-A Q,,3Ga,, by MBE method
, As layer 15 (thickness: 50 layers), 1-GaAs layer 16 (thickness: 100 layers), i - A (16,xGao, 7-fold, 8-layer layer 17 (thickness: 50 layers)).

第6図(e):通常のフォトリソグラフィ技術により、
上記i −A Qo、、Ga、、7As層15.1−G
aAs層16、i −AQ61Gao、7As層17か
ら成る2重障壁構造共鳴トンネリングバリア18を形成
する。
Figure 6(e): By normal photolithography technology,
The above i-A Qo, , Ga, , 7As layer 15.1-G
A double barrier structure resonant tunneling barrier 18 consisting of an aAs layer 16, an i-AQ61Gao layer 17, and a 7As layer 17 is formed.

第6図(f):MBE法n’−GaAs層(キャリア濃
度2 X 10” aa −” 、膜厚3000λ)を
成長させた後、EB法によりソース領域19、ゲート領
域20、ドレイン領域21を形成する。
FIG. 6(f): After growing an n'-GaAs layer (carrier concentration 2 x 10" aa -", film thickness 3000λ) by MBE method, the source region 19, gate region 20, and drain region 21 are grown by the EB method. Form.

第6図(g):通常のりフトオフ法により、ソース電極
22、ゲート電極23、ドレイン電極24を形成する。
FIG. 6(g): A source electrode 22, a gate electrode 23, and a drain electrode 24 are formed by a normal lift-off method.

電極材料としては、AuGe/Ni/Auを各々600
/100/600人蒸着する。
As electrode materials, AuGe/Ni/Au were used at 600% each.
/100/600 people are deposited.

実施例2:本発明の他の実施例の量子干渉トランジスタ
を有する半導体装置の製造方法を第7図(a)〜第7図
(e)により説明する。実施例1と同様に第6図(b)
の状態に製造する。
Embodiment 2: A method of manufacturing a semiconductor device having a quantum interference transistor according to another embodiment of the present invention will be explained with reference to FIGS. 7(a) to 7(e). As in Example 1, FIG. 6(b)
Manufactured to the condition of

第7図(a)二通常のフォトリソグラフィ技術により、
ソース電極頭fi25、ドレイン電極領域26を形成す
る。
FIG. 7(a) 2 By ordinary photolithography technique,
A source electrode head fi25 and a drain electrode region 26 are formed.

第7図(b):通常のフォトリングラフィ技術により、
メサ領域14を形成する。
Figure 7(b): By ordinary photolithography technique,
A mesa region 14 is formed.

第7図(c):MBE法でi −A Qo、Ga、、、
As層15 (膜厚50人)、i −GaAsJi)1
6 (膜厚100人)。
Figure 7(c): i −A Qo, Ga, , by MBE method
As layer 15 (film thickness 50 layers, i-GaAsJi) 1
6 (film thickness 100 people).

i −A Q、、、Ga0.、As層17(膜厚50人
)を成長させた後、通常のフォトリングラフィ技術によ
り、ソース電極領域に上記3層から成る2重障壁構造共
鳴トンネリングバリア18を形成する。
i-A Q, , Ga0. After growing the As layer 17 (film thickness: 50 nm), a double barrier structure resonant tunneling barrier 18 consisting of the three layers described above is formed in the source electrode region by ordinary photolithography technology.

第7図(d)CMBE法でn’−GaAs層(キャリア
濃度2 X 10” an−’ 、膜厚3000人)を
成長させた後、EB法によりソース領域19、ゲート領
域20、ドレイン領域21を形成する。
FIG. 7(d) After growing an n'-GaAs layer (carrier concentration 2 x 10"an-', film thickness 3000 layers) using the CMBE method, the source region 19, gate region 20, and drain region 21 are grown using the EB method. form.

第7図(e)二通常のリフトオフ法により、ソースな極
22.ゲート電極23、ドレイン電極24を形成する。
FIG. 7(e) Two source poles 22. A gate electrode 23 and a drain electrode 24 are formed.

電極材料、厚みは、実施例1と同じである。The electrode material and thickness are the same as in Example 1.

実施例3:実施例1及び2において、2重障壁構造共鳴
トンネリングバリア18を構成するi−A Q 6.3
 Ga6.−HAs層15、i −A Q。、、Ga、
、、As層17を1−AQAs(膜厚20人)に置き換
えても同様の結果を得た。
Example 3: In Examples 1 and 2, i-A Q 6.3 constituting the double barrier structure resonance tunneling barrier 18
Ga6. -HAs layer 15, i -A Q. ,,Ga,
Similar results were obtained even when the As layer 17 was replaced with 1-AQAs (thickness: 20).

実施例4:実施例1及び2において、2重障壁構造共鳴
トンネリングバリア18を構成するi−A Q 6 、
 s G a 6 、7 A s層15、i−GaAs
層16.1−AQ(1,3Ga、、、As層17をi 
−InAQAs、i −InGaAs、i−InAQA
sに置き換えても同様の結果を得た。
Example 4: In Examples 1 and 2, i-A Q 6 constituting the double barrier structure resonance tunneling barrier 18,
s Ga 6 , 7 As layer 15, i-GaAs
Layer 16.1-AQ (1,3 Ga,..., As layer 17 is i
-InAQAs, i-InGaAs, i-InAQAs
Similar results were obtained by replacing s with s.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ピーク電流値が一定で、ピーク/バレ
イ比の大きな量子干渉トランジスタを有する半導体装置
を実現できた。例えば従来の量子干渉トランジスタはピ
ーク/バレイ比が4層1程度であったが、本発明におい
ては10:1以上のものが得られた。そのため超高速ス
イッチング素子、及び多値論理素子として適用した時、
大きな効果が得られた。
According to the present invention, it was possible to realize a semiconductor device having a quantum interference transistor with a constant peak current value and a large peak/valley ratio. For example, conventional quantum interference transistors had a peak/valley ratio of about 4 layers to 1, but in the present invention, a peak/valley ratio of 10:1 or more was obtained. Therefore, when applied as an ultra-high-speed switching element and a multi-value logic element,
A great effect was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による量子干渉トランジスタを有する半
導体装置の部分の断面図、第2図は従来構造の量子干渉
トランジスタの断面図、第3図は従来構造で得られるド
レイン電流−ゲート電圧特性を示す図、第4図は2重障
壁構造共鳴トンネリングバリアのフィルタ特性を示す図
、第5図は本発明による量子干渉トランジスタのドレイ
ン電流−ゲート電圧特性を示す図、第6図及び第7図は
本発明の実施例の量子干渉トランジスタを有する半導体
装置の製作工程を示す部分断面図である。 1・・・チャネル層 2・・・障壁層 3.19・・・ソース領域 4.21・・・ドレイン領域 5.20・・・ゲート領域 6.18・・・2重障壁構造共鳴トンネリングバリア7
・・・半絶縁性基板 8 、10.13.15.17− i −A Q、、、
Ga、、、As層9 、12.16− i −GaAs
層11・・・チャネル内障壁 14・・・メサ領域 22・・・ソース電極 23・・・ゲート電極 24・・・ドレイン電極 25・・・ソース電極領域 26・・・ドレイン電極領域
Fig. 1 is a cross-sectional view of a portion of a semiconductor device having a quantum interference transistor according to the present invention, Fig. 2 is a cross-sectional view of a quantum interference transistor with a conventional structure, and Fig. 3 shows drain current-gate voltage characteristics obtained with the conventional structure. 4 is a diagram showing the filter characteristics of the double barrier structure resonant tunneling barrier, FIG. 5 is a diagram showing the drain current-gate voltage characteristics of the quantum interference transistor according to the present invention, and FIGS. 6 and 7 are FIG. 3 is a partial cross-sectional view showing the manufacturing process of a semiconductor device having a quantum interference transistor according to an embodiment of the present invention. 1... Channel layer 2... Barrier layer 3.19... Source region 4.21... Drain region 5.20... Gate region 6.18... Double barrier structure resonant tunneling barrier 7
...Semi-insulating substrate 8, 10.13.15.17-i-A Q,,,
Ga,..., As layer 9, 12.16-i-GaAs
Layer 11... In-channel barrier 14... Mesa region 22... Source electrode 23... Gate electrode 24... Drain electrode 25... Source electrode region 26... Drain electrode region

Claims (1)

【特許請求の範囲】 1、エネルギーギャップの狭い半導体から成るチャネル
層と、該チャネル層中及び該チャネル層上下に設けられ
たエネルギーギャップの広い半導体から成る障壁層と、
ソース電極、ドレイン電極及び上記障壁層を介して該チ
ャネル層上に設けられたゲート電極を有し、該チャネル
層内を伝播する電子波の干渉効果を利用して動作する量
子干渉トランジスタを有する半導体装置において、上記
チャネル層と上記ソース電極の間に、少なくともエネル
ギーギャップの狭い半導体薄膜と2層のエネルギーギャ
ップの広い半導体薄膜とから成る共鳴トンネリングバリ
アを設けたことを特徴とする量子干渉トランジスタを有
する半導体装置。 2、エネルギーギャップの狭い半導体から成るチャネル
層と、該チャネル層中及び該チャネル層上下に設けられ
たエネルギーギャップの広い半導体から成る障壁層と、
ソース電極、ドレイン電極及び上記障壁層を介して該チ
ャネル層上に設けられたゲート電極を有し、該チャネル
層内を伝播する電子波の干渉効果を利用して動作する量
子干渉トランジスタを有する半導体装置において、上記
チャネル層と上記ソース電極の間に、特定の波数ベクト
ルを持つ電子のみを通過させる共鳴トンネリングバリア
を設けたことを特徴とする量子干渉トランジスタを有す
る半導体装置。
[Claims] 1. A channel layer made of a semiconductor with a narrow energy gap; a barrier layer made of a semiconductor with a wide energy gap provided in the channel layer and above and below the channel layer;
A semiconductor having a source electrode, a drain electrode, and a gate electrode provided on the channel layer via the barrier layer, and having a quantum interference transistor that operates using the interference effect of electron waves propagating within the channel layer. The device has a quantum interference transistor characterized in that a resonant tunneling barrier consisting of at least a semiconductor thin film with a narrow energy gap and two semiconductor thin films with a wide energy gap is provided between the channel layer and the source electrode. Semiconductor equipment. 2. A channel layer made of a semiconductor with a narrow energy gap; a barrier layer made of a semiconductor with a wide energy gap provided in the channel layer and above and below the channel layer;
A semiconductor having a source electrode, a drain electrode, and a gate electrode provided on the channel layer via the barrier layer, and having a quantum interference transistor that operates using the interference effect of electron waves propagating within the channel layer. A semiconductor device having a quantum interference transistor, characterized in that a resonant tunneling barrier is provided between the channel layer and the source electrode to allow only electrons having a specific wave number vector to pass through.
JP27729988A 1988-11-04 1988-11-04 Semiconductor device Expired - Lifetime JP2675362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27729988A JP2675362B2 (en) 1988-11-04 1988-11-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27729988A JP2675362B2 (en) 1988-11-04 1988-11-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02125472A true JPH02125472A (en) 1990-05-14
JP2675362B2 JP2675362B2 (en) 1997-11-12

Family

ID=17581603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27729988A Expired - Lifetime JP2675362B2 (en) 1988-11-04 1988-11-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2675362B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537889A2 (en) * 1991-10-14 1993-04-21 Fujitsu Limited Quantum interference effect semiconductor device and method of producing the same
US5416040A (en) * 1993-11-15 1995-05-16 Texas Instruments Incorporated Method of making an integrated field effect transistor and resonant tunneling diode
WO2007040072A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Electromagnetic field detection element and device employing it
US12091710B2 (en) 2006-05-11 2024-09-17 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537889A2 (en) * 1991-10-14 1993-04-21 Fujitsu Limited Quantum interference effect semiconductor device and method of producing the same
EP0537889A3 (en) * 1991-10-14 1995-03-15 Fujitsu Ltd
US5416040A (en) * 1993-11-15 1995-05-16 Texas Instruments Incorporated Method of making an integrated field effect transistor and resonant tunneling diode
WO2007040072A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Electromagnetic field detection element and device employing it
US8331057B2 (en) 2005-10-03 2012-12-11 Sharp Kabushiki Kaisha Electromagnetic field detecting element utilizing ballistic current paths
US12091710B2 (en) 2006-05-11 2024-09-17 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets

Also Published As

Publication number Publication date
JP2675362B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US5130766A (en) Quantum interference type semiconductor device
JPH05218580A (en) Field variable type polarization optical element
JPS6127681A (en) Field effect transistor having channel part of superlattice construction
US4250515A (en) Heterojunction superlattice with potential well depth greater than half the bandgap
JPH07120790B2 (en) Semiconductor device
JPH0732250B2 (en) Semiconductor device
JPS62256478A (en) Compound semiconductor device
Daniels et al. Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with very high transconductance
JPH02125472A (en) Semiconductor device using quantum interference transistor
JPS6354777A (en) Resonance tunnel device
US6952019B2 (en) Electron device which controls quantum chaos and quantum chaos controlling method
Klem et al. Strained quantum well modulation-doped InGaSb/AlGaSb structures grown by molecular beam epitaxy
JPS5953714B2 (en) semiconductor equipment
JPS639388B2 (en)
JPS59184573A (en) Field effect transistor
JPS59181069A (en) Semiconductor device
JPH0684959A (en) High electron mobility field effect semiconductor device
US5225895A (en) Velocity-modulation transistor with quantum well wire layer
JP2824269B2 (en) Semiconductor element
JPH06196507A (en) Semiconductor device
Sobkowicz Spin splitting in narrow-gap two-dimensional electron systems
JPS6251265A (en) Semiconductor device
JPH01226182A (en) Electron wave interference device
JPS63115385A (en) Semiconductor device
JPS59181675A (en) Semiconductor device