JPH02122266A - Immunological measurement - Google Patents

Immunological measurement

Info

Publication number
JPH02122266A
JPH02122266A JP27563088A JP27563088A JPH02122266A JP H02122266 A JPH02122266 A JP H02122266A JP 27563088 A JP27563088 A JP 27563088A JP 27563088 A JP27563088 A JP 27563088A JP H02122266 A JPH02122266 A JP H02122266A
Authority
JP
Japan
Prior art keywords
substance
measured
microplate
magnetic particles
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27563088A
Other languages
Japanese (ja)
Other versions
JP2647931B2 (en
Inventor
Toyohiro Tamai
玉井 豊広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27563088A priority Critical patent/JP2647931B2/en
Publication of JPH02122266A publication Critical patent/JPH02122266A/en
Application granted granted Critical
Publication of JP2647931B2 publication Critical patent/JP2647931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To shorten the agglutination time required for an agglutination reaction without using a centrifuge and to obtain more distinct agglutination patterns by putting a reaction liquid contg. a material to be measured and the magnetic particles fixed with a material reacting or competing specifically therewith into a reaction vessel, then applying magnetic fields thereto. CONSTITUTION:A microplate 3 as a reaction vessel is disposed above a supporting base 1 and this microplate 3 has plural bottomed cylindrical wells 4 which have the U-shaped bottoms and are disposed in correspondence to respective magnets 2. The material reacting or competing specifically with the material to be measured is fixed to the wall of the microplate 3 at 0.2X10<6> to 1.2X10<6> cell/cm<2> density. The reaction liquid contg. the material to be mea sured and the magnetic particles fixed with the material reacting or competing specifically therewith is put into the microplate 3 and such magnetic fields as to focus the magnetic particles along the wall surfaces of a part of the microplate 3 are applied to the reaction liquid, by which the distribution patterns of the magnetic particles are formed and the bonding states among the materials are measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、免疫学的凝集反応により抗原又は抗体の存在
を検出し判定するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for detecting and determining the presence of an antigen or antibody by immunological agglutination reaction.

〔従来の技術及び課題〕[Conventional technology and issues]

免疫学的な凝集反応に基ついて凝集又は非凝集粒子の分
布パターンを形成し分析する方法においては、サンプル
中の抗原又は抗体を特定の指標粒子に固定された抗原又
は抗体と混合して結合させると共に、これら反応成分を
反応容器の壁面に移動させ、かつ未結合の指標粒子を同
壁面の一部に集めて分離している。このような方法は、
一般に混合凝集法(mixed agglutinat
ion )と呼ばれ、Wicnsr、  A、S、とl
lerman、  M、、  J、Immunol、 
 3G。
In a method of forming and analyzing a distribution pattern of aggregated or non-aggregated particles based on an immunological agglutination reaction, antigens or antibodies in a sample are mixed and bound to antigens or antibodies immobilized on specific indicator particles. At the same time, these reaction components are moved to the wall surface of the reaction vessel, and unbound indicator particles are collected on a part of the wall surface and separated. Such a method is
Generally, mixed agglutination method (mixed agglutinat method)
ion), Wicnsr, A, S, and l
lerman, M., J. Immunol.
3G.

255  (1939)において報告されて以来、Co
ombs。
255 (1939), Co.
ombs.

R、R、A 、と13edford 、  D、、  
Voxsang、、  5  111(1955)及び
Coombs、 R,R,A、ら、 Lancet、 
+461、  (1,956)の報告により血液型の判
定を行なうまでに発展確立された。例えば、各種血液型
について応用したものにUSP 4608246号明細
書、USP4275053号明細書(特公昭132−4
4221号)やUSP4328183号明細書かある。
R, R, A, and 13edford, D.
Voxsang, 5 111 (1955) and Coombs, R.R.A., et al., Lancet.
+461, (1,956) reported that it was developed and established to the point where blood type determination was performed. For example, USP 4,608,246 and USP 4,275,053 apply to various blood types.
No. 4221) and USP No. 4328183.

また、固体表面で血液型の判定を行なって感度の向−に
を図ったものにUSP 2770572号明細書がある
。更に、Rosenrield1? 、 IE 、  
ら、  Paris 、  Proc、  15Th 
Cong、Intl、  5ocBlood Tras
f’usion、 27 (197G)では混合凝集法
の原理を利用して固体表面で赤血球抗原と抗体との反応
を行なっている。
Further, there is USP No. 2,770,572 which attempts to improve the sensitivity by determining blood type on a solid surface. Furthermore, Rosenrield1? , IE,
et al., Paris, Proc., 15Th
Cong, Intl, 5ocBlood Tras
f'usion, 27 (197G) uses the principle of mixed agglutination to react red blood cell antigens and antibodies on a solid surface.

ところで、従来の混合凝集法の多くは底面に収束部を有
する形状の反応容器中での指標粒子の自然沈降によるも
のである。従って、指標粒子か底面に一様に沈降し、な
おも未反応の粒子が収束部に沈積してパターンを形成す
るまでに多大な時間を要していた。単に沈降速度を高め
るためならば粒径を大きくしたり、比重の大きな祠質を
利用することが考えられるが、パターンが荒くならない
程度に粒径及び比重を選定しなければならない点に限界
を生じ、大幅な時間の短縮は望めない。
By the way, most of the conventional mixing aggregation methods are based on natural sedimentation of indicator particles in a reaction vessel having a convergence section at the bottom. Therefore, it took a long time for the indicator particles to settle uniformly on the bottom surface and for the unreacted particles to settle in the convergence part to form a pattern. In order to simply increase the sedimentation rate, it is possible to increase the particle size or use abrasive material with a high specific gravity, but there is a limit in that the particle size and specific gravity must be selected to the extent that the pattern does not become rough. , a significant time reduction cannot be expected.

そこで、USP 4297104号明細書(特公昭62
31299号)では対称軸」−に収束点を有する容器壁
面及び指標粒子としての赤血球表面に抗体(例えばIg
G )を固定し、予めサンプル中の抗原と赤血球表面及
び容器壁面の抗体に対する抗1gG抗体を加え、更に第
1及び第2の遠心処理により抗原と未反応である赤血球
とを容器の収束点に集めることによりパターンの形成を
行なっている。しかしながら、遠心による凝集反応は粒
子の沈降を促進させる点て有効であるものの、遠心機が
必要となること自体に操作」−の制約が生じてしまう。
Therefore, USP No. 4297104 (Specification
31299), antibodies (e.g. Ig
G) is fixed, an anti-1gG antibody against the antigen in the sample and antibodies on the surface of the red blood cells and the wall of the container is added in advance, and red blood cells that have not reacted with the antigen are brought to the convergence point of the container by the first and second centrifugation treatments. Patterns are formed by collecting them. However, although the agglutination reaction by centrifugation is effective in promoting sedimentation of particles, the necessity of a centrifuge itself poses operational constraints.

即ち、サンプリングから反応、判定、廃棄等を実施する
際に、反応容器のハンドリングの流れがスムーズになら
ず、特に遠心力のかかる方向に対して反応容器の対称軸
を精密に一致させなければならない。
In other words, when performing sampling, reaction, determination, disposal, etc., the flow of handling the reaction container is not smooth, and in particular, the axis of symmetry of the reaction container must be precisely aligned with the direction in which centrifugal force is applied. .

また、異なる項目の分析においては夫々粒子の沈降条件
を変える必要があるか、同一の遠心処理中に遠心の精度
やタイミングを複数設定することは困難であるから、そ
の都度工程をやり直すか、或いは複数の遠心機に接続す
る等の構成を必要とする。更に、遠心機を用いることで
不可避的に装置が大型になる。
In addition, when analyzing different items, it is necessary to change the sedimentation conditions for each particle, or it is difficult to set multiple centrifugation accuracy and timing during the same centrifugation process, so it is necessary to repeat the process each time, or Requires configuration such as connecting to multiple centrifuges. Furthermore, the use of a centrifuge inevitably increases the size of the apparatus.

本発明は、」二記従来の課題を解決するためになされた
もので、遠心機を用いずに凝集反応の判定に要する時間
を短縮すると共に、凝集パターンの明瞭化を達成するこ
とか+if能な免疫学的測定方法を提供しようとするも
のである。
The present invention has been made in order to solve the problems of the prior art described in 2.It is an object of the present invention to shorten the time required to determine an agglutination reaction without using a centrifuge, and to clarify the agglutination pattern. The purpose of this study is to provide a method for immunological measurement.

〔課題を解決するだめの手段及び作用〕本発明は、反応
容器の壁面に測定すべき物質と特異的に反応するかもし
くは競合する物質を0.2×100セル/cTA〜1.
2 X106セル/護の密度で固定し、この容器内に測
定すべき物質と該物質に特異的に反応するかもしくは競
合する磁性粒子を含む反応液を入れた後、前記磁性粒子
か前記反応容器の内面に固定された物質に沿って収束す
るような磁場をかけることにより前記磁性粒子の分布パ
ターンを形成して前記容器内面に固定された物質と測定
すべき物質との結合状態を測定することを特徴とする免
疫学的測定方法である。
[Means and effects for solving the problems] The present invention provides a substance that specifically reacts with or competes with the substance to be measured on the wall of a reaction vessel at a rate of 0.2 x 100 cells/cTA to 1.
After fixing at a density of 2 × 106 cells/cell and placing a reaction solution containing a substance to be measured and magnetic particles that specifically react with or compete with the substance in this container, either the magnetic particles or the reaction vessel forming a distribution pattern of the magnetic particles by applying a converging magnetic field along the substance fixed on the inner surface of the container, and measuring the bonding state between the substance fixed on the inner surface of the container and the substance to be measured; This is an immunological measurement method characterized by:

以下、本発明を第1図(A)、(B)及び第2図〜第4
図を参照して詳細に説明する。ここで、第1図(A)は
本発明の免疫学的測定方法に使用されるマイクロプレー
ト及びマグネット等からなる装置を示す平面図、同図(
B)は同図(A)の正面図である。図中の1は、」二面
に複数の円板状フェライトマグネット2を支持した支持
台である。
Hereinafter, the present invention will be explained as shown in FIGS. 1(A) and (B) and FIGS.
This will be explained in detail with reference to the drawings. Here, FIG. 1(A) is a plan view showing an apparatus consisting of a microplate, a magnet, etc. used in the immunoassay method of the present invention, and FIG.
B) is a front view of the same figure (A). 1 in the figure is a support stand that supports a plurality of disc-shaped ferrite magnets 2 on two sides.

この支持台1の」二方には、反応容器としてのマイクロ
プレート3が配置されており、かつ該マイクロプレー1
・3は前記各マグネソl−2に対応して配置された底部
がU字形をなす有底円筒形の複数のウェル4をイ1ii
iえている。
A microplate 3 as a reaction container is placed on both sides of the support 1, and the microplate 1
・3 denotes a plurality of cylindrical wells 4 with a U-shape at the bottom arranged corresponding to each of the magnesols 1-2.
I'm getting better.

まず、測定すべき物質、例えばウィルス、細菌、タンパ
ク質等の抗原ないし抗体に対して特異的に反応するか又
は競合する物質、例えば抗体ないし抗原等を公知の磁性
体を含む磁性粒子の表面に固定する。磁性粒子としては
、市販のDYNABEADSM −450(DYNAI
社製)又は磁性ラテ・ソクス(cstapor )  
[R11ONE−POULENC社製]等や磁性体を含
むゼラチン粒子(特開昭59−195161号参照)等
を使用することが可能である。また、前記磁性粒子に前
記物質を固定化する方法は種々の公知の方法を適用でき
る。
First, a substance to be measured, such as a substance that specifically reacts with or competes with an antigen or antibody such as a virus, bacteria, or protein, such as an antibody or an antigen, is immobilized on the surface of a magnetic particle containing a known magnetic material. do. As magnetic particles, commercially available DYNABEADSM-450 (DYNAI
) or magnetic latte socks (cstapor)
[manufactured by R11ONE-POULENC], gelatin particles containing magnetic material (see Japanese Patent Application Laid-open No. 195161/1983), etc. can be used. Moreover, various known methods can be applied to immobilize the substance on the magnetic particles.

次いで、第1図(A)、(、B )に示すマイクロプレ
ート3の各ウェル4内にサンプル中の測定すべき物質と
特異的に反応するかもしくは競合する物質を入れ、第2
図に示すように該ウェル4内面に前記物質5を固定する
。かかる物質5のウェル4内面への固定にあたっては、
0.2XIO’セル/crj〜12×106セル/ c
Jの密度となるように固定する。前記物質の固定密度を
限定した理由は、その密度を0.2XIO′−′セル/
 ci未満にすると本来、磁性粒子の分布パターンか陽
性パターンとなるものか陰性パターンとなり、一方その
密度を1,2×10 ’セル/ crdを越えると本来
、磁性粒子の分布パターンが陰性パターンとなるものか
偽陽性バタンとなるからである。なお、ウェル壁面への
測定すべき物質と特異的に反応するかもしくは競合する
物質の固定化法は従来の公知方法を使用できる。
Next, a substance that specifically reacts with or competes with the substance to be measured in the sample is placed in each well 4 of the microplate 3 shown in FIGS.
As shown in the figure, the substance 5 is fixed on the inner surface of the well 4. In fixing such a substance 5 to the inner surface of the well 4,
0.2XIO' cell/crj~12x106 cell/c
Fix it so that the density is J. The reason for limiting the fixed density of the material is that its density is 0.2XIO'-'cell/
When the density is less than ci, the distribution pattern of magnetic particles becomes either a positive pattern or a negative pattern, whereas when the density exceeds 1.2 x 10' cells/crd, the distribution pattern of magnetic particles becomes a negative pattern. This is because it may result in a false positive. Note that conventional known methods can be used to immobilize a substance that specifically reacts with or competes with the substance to be measured on the well wall surface.

つづいて、前記各ウェル4内にサンプルを加え、該サン
プル中の測定すべき物質と該ウェル内面に固定した物質
との反応を行ない、更に前述した磁性粒子を加える。こ
の後、マイクロプレート3とマグネット2か支持された
支持台1とを相対的に移動させ(例えば支持台1をその
−にの各マグネット2が前記マイクロプレート3の各ウ
ェル4の底部に接近するように移動させ)、磁性粒子を
つエル4の少なくとも一部壁面に沿って収束するような
磁場をかける。
Subsequently, a sample is added to each well 4, the substance to be measured in the sample reacts with the substance immobilized on the inner surface of the well, and then the above-described magnetic particles are added. After that, the microplate 3 and the support 1 supported by the magnets 2 are moved relatively (for example, each magnet 2 of the support 1 is moved closer to the bottom of each well 4 of the microplate 3). A magnetic field is applied to converge the magnetic particles along at least a portion of the wall surface of the well 4.

上記磁場をかけることにより、第3図に示すようにウェ
ル4の壁面に引き寄せられた磁性粒子6はサンプル中の
測定ずへぎ物質7を介してウェル4内面に固定された物
質5と結合してウェル4の内面に一様に広かった分布パ
ターンを形成する。
By applying the magnetic field, the magnetic particles 6 attracted to the wall of the well 4 combine with the substance 5 fixed on the inner surface of the well 4 via the non-measurable substance 7 in the sample, as shown in FIG. A uniformly wide distribution pattern is formed on the inner surface of the well 4.

これに対し、サンプル中に測定すべき物質が存在しない
場合には、磁性粒子6は磁場によりウェル4の壁面に引
き寄せられ、更に内面に沿って移動して第4図に示すよ
うに内面の一部に収束して集められる。なお、磁性粒子
にはサンプル中の測定すべき物質と競合する物質を固定
しておき、一定量の測定すべき物質と結合反応する物質
を添加して行なう公知の凝集抑制反応を用いてもよい。
On the other hand, when there is no substance to be measured in the sample, the magnetic particles 6 are attracted to the wall surface of the well 4 by the magnetic field, move further along the inner surface, and move along the inner surface as shown in FIG. Converged and collected in the department. Note that a known aggregation suppression reaction may be used, in which a substance that competes with the substance to be measured in the sample is immobilized on the magnetic particles, and a certain amount of a substance that binds and reacts with the substance to be measured is added. .

従って、反応容器の内面に測定すべき物質と特異的に反
応するかもしくは競合する物質を特定の密度で固定し、
この容器内に測定すべき物質と該物質に特異的に反応す
るかもしくは競合する磁性粒子を含む反応液を入れた後
、前記磁性粒子が前記反応容器の壁面に固定された物質
に沿って収束するような磁場をかけることにより、磁性
粒子の反応容器壁面への移動を促進できるため、反応容
器内面に固定された物質とサンプル中の測定すべき物質
を介して結合した磁性粒子の分布パターンを迅速に形成
できる。また、前記反応容器内面にサンプル中の測定す
べき物質と反応するかもしくは競合する物質を特定の密
度で固定することによって、前記磁性粒子の分布パター
ンを明瞭に形成できる。その結果、凝集反応の判定に要
する時間を短縮できると共に、その明瞭な分布パターン
からサンプル中の測定すべき物質の存在を高感度で検出
できる。
Therefore, a substance that specifically reacts with or competes with the substance to be measured is immobilized on the inner surface of the reaction vessel at a specific density,
After placing a reaction solution containing a substance to be measured and magnetic particles that specifically react with or compete with the substance in this container, the magnetic particles converge along the substance fixed to the wall of the reaction vessel. By applying a magnetic field such as Can be formed quickly. Furthermore, by fixing a substance that reacts with or competes with the substance to be measured in the sample at a specific density on the inner surface of the reaction vessel, a clear distribution pattern of the magnetic particles can be formed. As a result, the time required to determine the agglutination reaction can be shortened, and the presence of the substance to be measured in the sample can be detected with high sensitivity from its clear distribution pattern.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に゛説明する。 Embodiments of the present invention will be described in detail below.

く赤血球固定化のためのWGA  (小麦胚芽レクチン
)プレートの作製〉 NUNC社のU型プレート (Micro well 
Module 2X 8 well round bo
ttom High binding Capacit
yNo、469264 )にWGA  (生化学工業・
製造番号92107 )を0.OIM PI35 、 
pH7,0で3μg/厭に溶解したものを50μl/ウ
ェル分注し、室温で30分間インキュベー1・後、0.
01M PBSでウェルを満たして2回洗浄した。つづ
いて、0.05%Tween 20を含むO,DIM 
PBSで1回洗浄し、水切りした後、風乾し、冷蔵保存
した。
Preparation of WGA (wheat germ lectin) plate for immobilization of red blood cells> NUNC U-shaped plate (Micro well
Module 2X 8 well round bo
ttom High binding Capacit
yNo, 469264) to WGA (Seikagaku Corporation)
Serial number 92107) to 0. OIM PI35,
Dispense 50 μl/well of 3 μg/min dissolved at pH 7.0, incubate for 30 minutes at room temperature, and then 0.00 μg/well.
Wells were filled with 01M PBS and washed twice. Next, O, DIM containing 0.05% Tween 20
After washing once with PBS and draining, it was air-dried and stored refrigerated.

< WGAプレートへの赤血球の否定〉測定すべき物質
であるIgGが未感作の血球としてサージスクリーン(
ortho社、製造番号3SS888)と測定すべき物
質であるIgGが感作された血球としてクームスコン!
・ロール(ortbo社、製造番号に804)を用いた
。各々の血球懸濁液を0.01%サルコシネートLNに
ッコーケミカル社、製造番号5083)を含むIjss
、 pH6,7を用いて希釈し、1.0%、09%、f
]、7%、05%、0.3%、0.2%、01%、0.
08%、0.06%、004%、0.02%、0.01
%に調整した。希釈した各々の血球を前記WGAプレー
1・に50μJ!/ウエルずつ分注し、室温で10分間
インキュベートシ、0.01M PBSを用いて200
μア/ウエルで3回洗浄した。洗浄後、0 、01. 
M]0 PBSを200μi/ウェル分注し、血球が乾燥しない
ように冷蔵保存した。こうして作製した赤血球コーティ
ングプレートを顕微鏡にて200倍で鏡検し、ウェル底
面への結合セル数をカランl−L、1d当りの赤血球数
を求めた。その結果を下記第1表に示した。
<Negation of red blood cells on WGA plate> IgG, the substance to be measured, is treated as unsensitized blood cells by surge screen (
Ortho Inc., serial number 3SS888) and IgG, the substance to be measured, are sensitized blood cells.
- A roll (manufactured by Ortbo, serial number 804) was used. Each blood cell suspension was added to Ijss containing 0.01% sarcosinate LN (Kkko Chemical Co., Product No. 5083).
, diluted with pH 6,7, 1.0%, 09%, f
], 7%, 05%, 0.3%, 0.2%, 01%, 0.
08%, 0.06%, 004%, 0.02%, 0.01
adjusted to %. Add 50 μJ of each diluted blood cell to the WGA Play 1! Dispense 200ml/well into 0.01M PBS and incubate for 10 minutes at room temperature.
Washed three times with μA/well. After washing, 0, 01.
M]0 PBS was dispensed at 200 μi/well and stored refrigerated to prevent the blood cells from drying out. The thus prepared red blood cell coated plate was examined under a microscope at a magnification of 200 times, and the number of cells bound to the bottom of the well was determined by the number of cells bound to the well bottom surface, and the number of red blood cells per 1 d. The results are shown in Table 1 below.

く抗ヒI−1gG感作磁性ビーズの調製〉粒径1.7μ
m1磁性ラテツクス(estapor )[RO11N
 E −P OU L E N 0社、製造番号LMP
233]にAnti−HumanlgG  [Capp
e1社、Afrinjty  Purrjf。
Preparation of anti-human I-1gG sensitized magnetic beads> Particle size 1.7μ
m1 magnetic latex (estapor) [RO11N
E-POU L E N 0 company, serial number LMP
233] to Anti-HumanlgG [Capp
e1 company, Afrinjty Purrjf.

Goat−anti−11Mman IgG製造番号2
997+ )とAnti−11Mman1gG F (
ab’ ) 2[Cappe1社、F(ab’ ) 2
 Fragment orAf’rjnity Pur
rif、Goatanti−Human IgG製造番
号2959B )を夫々感作させた。即ち、O,1M 
C1y−NaOH、pH8,3に前記ビズは04%、抗
体は20Mg/厭に希釈し、各IIILlを混合して3
7°Cて1時間反応させた。つづいて、0.2%BSA
 、 O,14M NaClを含む0.02MのGly
−NaOII、pH8,5,2mlで各々のビーズを3
回洗浄し、同バッファ2鮮に懸濁して抗ヒトIgG磁性
ピース及び] 1 抗ヒトIgG F (ab’ ) 2磁性ビーズを冷蔵
保存した。
Goat-anti-11Mman IgG serial number 2
997+) and Anti-11Mman1gGF (
ab' ) 2 [Cappe1, F(ab' ) 2
Fragment or Af'rjnity Pur
rif, Goatanti-Human IgG production number 2959B). That is, O, 1M
The above biz was diluted to 0.4% and the antibody was diluted to 20 Mg/min in C1y-NaOH, pH 8.3, and each IIIL was mixed.
The reaction was carried out at 7°C for 1 hour. Next, 0.2% BSA
, 0.02M Gly containing O,14M NaCl
- Incubate each bead with 3 ml of NaOII, pH 8, 5, 2 ml.
After washing twice, the anti-human IgG magnetic pieces and the anti-human IgG F (ab') 2 magnetic beads were suspended in the same buffer and stored in a refrigerator.

また、未感作磁性ピースは抗体を用いずに同様な操作を
行なった。
Furthermore, the same operation was performed on the unsensitized magnetic piece without using the antibody.

く抗ヒl−1gGピースを用いた分析〉前記赤血球コー
ティングプレー1・に2種の抗ヒトIgG磁性ピース[
抗ヒトIgG磁性ピース、抗ヒl□ IgG F (a
b”)2磁性ビースコと未感作ビーズの懸濁液を25μ
l/ウエルずつ分注した。つづいて、第1図(A)、(
B)に示す支持台1をその」−のマグネット(直径g 
mm、厚さ3 mm、残留磁束密度2000ガウス)2
か前記マイクロプレート3の各ウェル4の底部に接近す
るように移動させて、各ウェル4底而の垂直方向に磁界
を作用させ、室温で2分間反応させた。
Analysis using anti-human IgG pieces> Two types of anti-human IgG magnetic pieces [
Anti-human IgG magnetic piece, anti-human IgG F (a
b”) 25μ suspension of magnetic Beisco and unsensitized beads
1/well was dispensed. Continuing, Figure 1 (A), (
The support stand 1 shown in B) is attached to a magnet (diameter g).
mm, thickness 3 mm, residual magnetic flux density 2000 Gauss)2
The microplate was moved so as to approach the bottom of each well 4 of the microplate 3, a magnetic field was applied perpendicularly to the bottom of each well 4, and the reaction was carried out at room temperature for 2 minutes.

しかして、各ウェル底面に形成された抗ヒトIgG磁性
ピース、抗ヒトIgG F (ab’ ) 2磁性ビス
及び未感作ピースの分布パターンを調べたところ、同第
1表に示す結果を得た。なお、第1表中の反応パターン
は第5図(A)のようにビーズ]2 がウェル底面に一様に広がったものを陽性(+)、同図
(B)に示すようにビーズの分布が中心か薄く、その回
りか少し濃く分布して陰性、陽性のどちらかとも区別て
きないものを偽陽性(±)、同図(C)に示すようにウ
ェル底面に中心にビーズが集まったものを陰性(−)と
して判定した結果である。
When we investigated the distribution patterns of anti-human IgG magnetic pieces, anti-human IgG F (ab') 2 magnetic screws, and unsensitized pieces formed on the bottom of each well, we obtained the results shown in Table 1. . The reaction pattern in Table 1 is as shown in Figure 5 (A), where the beads]2 are uniformly spread over the bottom of the well (positive), and the distribution of beads as shown in Figure 5 (B). A false positive (±) indicates a case where the beads are thinly distributed in the center and slightly densely distributed around the center, making it difficult to distinguish between negative and positive beads.As shown in the same figure (C), beads are concentrated in the center at the bottom of the well. This is the result of determining negative (-).

第1表から明らかなように、ウェル底面に固定する血球
の密度を0.2X10bセル/ cM〜1.2×106
セル/ ciの範囲とすることによって、陽性、陰性の
判別か明瞭となることかわかる。これに対し、ウェル底
面に固定する血球のセル密度を0.2×106セル/c
1j未満では本来、陽性(+)パタンになるものが陰性
(−)パターンになってしまい、一方、同血球の密度か
1.2 ×106セル/ ciを越えると本来、陰性(
−)パターンになるものが偽陽性(±)パターンになり
不明瞭となる。
As is clear from Table 1, the density of blood cells fixed on the bottom of the well is 0.2 x 10 cells/cM ~ 1.2 x 10 cells.
By setting the cell/ci range, it is possible to clearly distinguish between positive and negative results. In contrast, the cell density of blood cells fixed on the bottom of the well was set to 0.2 x 106 cells/c.
If the blood cell density is less than 1j, what would normally be a positive (+) pattern becomes a negative (-) pattern; on the other hand, if the density of the same blood cells exceeds 1.2 x 106 cells/ci, it will become negative (-).
−) pattern becomes a false positive (±) pattern and becomes unclear.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の免疫学的測定方法によれば
遠心機を用いずに凝集反応の判定に要する時間を短縮す
ると共に、凝集パターンを明瞭化をでき、ひいては検出
時間の短縮と陽性、陰性の検出感度の向」二を達成でき
、更に反応容器内面に固定するための測定すべき物質と
特異的に反応もしくは競合する物質(赤血球など)の使
用量を低減できる等顕著な効果を奏する。
As described in detail above, according to the immunoassay method of the present invention, it is possible to shorten the time required to determine an agglutination reaction without using a centrifuge, and to clarify the agglutination pattern. , it is possible to achieve two improvements in negative detection sensitivity, and it also has remarkable effects such as reducing the amount of substances (red blood cells, etc.) that specifically react with or compete with the substance to be measured, which is immobilized on the inner surface of the reaction vessel. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)はマイクロプレー!・及びマグネ
ットを備えた免疫学的測定装置を示し、同図(A)は平
面図、同図(B)は同図(A)の正面図、第2図は前記
装置のウェルに測定すべき物質と特異的に反応するかも
しくは競合する物質を固定した状態を示す模式図、第3
図は本発明による陽性時での粒子間の結合状態を示す模
式図、第4図は本発明による陰性時での粒子間の結合状
態を示す模式図、第5図は(A5)は陽性時におけるビ
ーズの反応パターンを示す模式図、同図(B)は偽陽性
時におけるビーズの反応パターンを示す模式図、同図(
C)は陰性時におけるビーズの反応パターンを示す模式
図である。 ■・・・支持台、2・・・円板状フェライトマグネット
、3・・・マイクロプレート、4 ・・ウェル、5・・
・測定すべき物質と特異的に反応するかもしくは競合す
る物質、6・・・磁性粒子、7・・・測定すべき物質。 出願人代理人 弁理士 坪井  淳 ] 6 第5図 (C)
Figures 1 (A) and (B) are microplay!・This figure shows an immunological measuring device equipped with a magnet, and the same figure (A) is a plan view, the same figure (B) is a front view of the same figure (A), and FIG. Schematic diagram showing a state in which a substance that specifically reacts with or competes with a substance is immobilized, 3rd
The figure is a schematic diagram showing the bonding state between particles when the present invention is positive. Figure 4 is a schematic diagram showing the bonding state between particles when the present invention is negative. Figure 5 (A5) is a schematic diagram showing the bonding state between particles when the present invention is negative. Figure (B) is a schematic diagram showing the bead reaction pattern at the time of false positive;
C) is a schematic diagram showing the reaction pattern of beads when negative. ■... Support stand, 2... Disc-shaped ferrite magnet, 3... Microplate, 4... Well, 5...
- Substance that specifically reacts with or competes with the substance to be measured, 6... Magnetic particles, 7... Substance to be measured. Applicant's representative Patent attorney Atsushi Tsuboi] 6 Figure 5 (C)

Claims (1)

【特許請求の範囲】[Claims] 反応容器の壁面に測定すべき物質と特異的に反応するか
もしくは競合する物質を0.2×10^6セル/cm^
2〜1.2×10^6セル/cm^2の密度で固定し、
この容器内に測定すべき物質と該物質に特異的に反応す
るかもしくは競合する磁性粒子を含む反応液を入れた後
、前記磁性粒子が前記反応容器の内面に固定された物質
に沿って収束するような磁場をかけることにより前記磁
性粒子の分布パターンを形成して前記容器内面に固定さ
れた物質と測定すべき物質との結合状態を測定すること
を特徴とする免疫学的測定方法。
A substance that specifically reacts with or competes with the substance to be measured is placed on the wall of the reaction vessel at 0.2 x 10^6 cells/cm^.
Fixed at a density of 2 to 1.2 x 10^6 cells/cm^2,
After placing a reaction solution containing a substance to be measured and magnetic particles that specifically react with or compete with the substance in this container, the magnetic particles converge along the substance fixed on the inner surface of the reaction vessel. An immunoassay method, characterized in that a magnetic field is applied to form a distribution pattern of the magnetic particles, and the state of binding between the substance fixed on the inner surface of the container and the substance to be measured is measured.
JP27563088A 1988-10-31 1988-10-31 Immunological measurement method Expired - Fee Related JP2647931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27563088A JP2647931B2 (en) 1988-10-31 1988-10-31 Immunological measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27563088A JP2647931B2 (en) 1988-10-31 1988-10-31 Immunological measurement method

Publications (2)

Publication Number Publication Date
JPH02122266A true JPH02122266A (en) 1990-05-09
JP2647931B2 JP2647931B2 (en) 1997-08-27

Family

ID=17558135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27563088A Expired - Fee Related JP2647931B2 (en) 1988-10-31 1988-10-31 Immunological measurement method

Country Status (1)

Country Link
JP (1) JP2647931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203651A (en) * 1991-07-22 1993-08-10 Pasteur Sanofi Diagnostics Magnetic method and apparatus for per- forming immunological analysis on solid phase
JPH05297001A (en) * 1992-04-15 1993-11-12 Fujirebio Inc Method and device for automatic immunity measurement using magnetic particle
JP2008503714A (en) * 2004-06-19 2008-02-07 ホール イフェクト テクノロジーズ リミテッド Method for determining the presence and / or concentration of related substances in a fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203651A (en) * 1991-07-22 1993-08-10 Pasteur Sanofi Diagnostics Magnetic method and apparatus for per- forming immunological analysis on solid phase
JPH05297001A (en) * 1992-04-15 1993-11-12 Fujirebio Inc Method and device for automatic immunity measurement using magnetic particle
JP2008503714A (en) * 2004-06-19 2008-02-07 ホール イフェクト テクノロジーズ リミテッド Method for determining the presence and / or concentration of related substances in a fluid

Also Published As

Publication number Publication date
JP2647931B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JP2510932B2 (en) Method and apparatus for determining the presence of biological material in a sample
US4338094A (en) Macroencapsulated immunosorbent assay technique
US6143510A (en) Measuring method using whole blood sample
JP3908272B2 (en) Solid phase assay for detection of ligands
EP0194156B1 (en) Method of measuring the amount of immune antibody in serum
EP0345277B1 (en) Analyte detection in particulate-containing samples
JP4167491B2 (en) Whole blood measurement method
JP2532670B2 (en) Immunological measurement method using magnetic marker particles
JPH02122266A (en) Immunological measurement
JPS60177265A (en) Detection of immunoglobulin of antibody by class
JP3786543B2 (en) Immunological reagent
JPH02165052A (en) Immunological measurement
JP2614997B2 (en) Reaction accelerator for agglutination reaction
KR970007080B1 (en) Self-contained multiimmunoassay diagnostic system
JPH07117541B2 (en) Immunological measurement method using magnetic particles
JPH0324458A (en) Immunological measuring method of erythrocyte in urine
JP2716227B2 (en) Immunological measurement method using magnetic marker particles
JP3618797B2 (en) Immunoassay
JPH08327629A (en) Pretreatment of specimen
JPH0251150B2 (en)
JPH04233462A (en) Immunological quantitative analysis
JPH02259569A (en) Method for measuring rheumatism factor
CA2172840C (en) Measuring method using whole blood sample
Achord et al. Immunoconcentration
JP2004117068A (en) Immunoassay reagent and immunoassay method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees