JPH02121330A - Plasma processing and device therefor - Google Patents

Plasma processing and device therefor

Info

Publication number
JPH02121330A
JPH02121330A JP27298088A JP27298088A JPH02121330A JP H02121330 A JPH02121330 A JP H02121330A JP 27298088 A JP27298088 A JP 27298088A JP 27298088 A JP27298088 A JP 27298088A JP H02121330 A JPH02121330 A JP H02121330A
Authority
JP
Japan
Prior art keywords
sample
temperature
processing
processing chamber
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27298088A
Other languages
Japanese (ja)
Inventor
Ryoji Hamazaki
良二 濱崎
Motohiko Kikkai
元彦 吉開
Kazuo Takada
和男 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP27298088A priority Critical patent/JPH02121330A/en
Publication of JPH02121330A publication Critical patent/JPH02121330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent any deposits from sticking to a specimen base as well as the process characteristics from fluctuating thereby enhancing the reproducibility and reliability of the specimen processing by a method wherein, during the non-processing time of a specimen, a specimen base previously cooled down is heated by a heating means up to the temperature exceeding the stick-on temperature of the deposits. CONSTITUTION:The pressure in a processing chamber fed with processing gas is controlled at specified processing pressure by a pressure reduced exhaust system while the processing gas inside the processing chamber is changed into plasma. On the other hand, a specimen base 160 provided in the processing chamber is cooled down by a cooling down means. During the plasma processing time of a specimen, deposits stick on the inner wall inside the processing chamber and inner parts. An electric heater 170 buried in the specimen base 160 and a specimen base axle 161 is started to be supplied with power when a specimen 90 is not being processed while the specimen 90 is in the etching process and then the temperature of the specimen mounted surface on the specimen base 160 is especially thermal-controlled at the temperature until the specimen 90 is mounted thereon not to make the deposits stick on the specimen base 160.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理方法及び装置に係り、特番こ半
導体素子基板等の試料を冷却し該冷却された試料をプラ
ズマを利用して処理するのに好適なプラズマ処理方法及
び装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing method and apparatus, in which a sample such as a semiconductor element substrate is cooled and the cooled sample is processed using plasma. The present invention relates to a plasma processing method and apparatus suitable for.

〔従来の技術〕[Conventional technology]

半導体素子基板等の試料を冷却し該冷却された試料をプ
ラズマを利用して処理する技術としては、例えば、特υ
ロ昭57−155382号公報、特開昭57−6664
2号公報等に記載の技術や、また、例えば、特開昭60
−158627号公報。
As a technique for cooling a sample such as a semiconductor element substrate and processing the cooled sample using plasma, for example,
Publication No. 57-155382, Japanese Patent Application Publication No. 57-6664
The technology described in Publication No. 2, etc., or, for example, Japanese Patent Application Laid-Open No. 1983
-158627 publication.

特開昭61−187238号公報、特開昭61−240
635号公報等に記載の技術が知られている。
JP-A-61-187238, JP-A-61-240
The technique described in Japanese Patent No. 635 and the like is known.

例えば、特開昭57−155382号公報、特開昭57
−66642号公報等に記載の技術では、試料は、水冷
されている試料台に設置されて間接的に冷却され、プラ
ズマを利用してエツチング処理される。これにより、マ
スク材であるレジストの変質防止やプロセス特性の安定
化、向上が図られる。
For example, JP-A-57-155382, JP-A-57-155382,
In the technique described in Japanese Patent No. 66642, etc., a sample is placed on a water-cooled sample stage, cooled indirectly, and etched using plasma. This prevents deterioration of the resist, which is a mask material, and stabilizes and improves process characteristics.

また、例えば、特開昭60−158627号公報、特開
昭61−187238号公報、特開昭61−24063
5号公報等に記載の技術では、試料は、0℃以下の温度
、例えば、液体窒素により冷却されている試料台に設置
されて間接的に冷却され、プラズマを利用してエツチン
グ処理される。
Also, for example, JP-A-60-158627, JP-A-61-187238, JP-A-61-24063.
In the technique described in Publication No. 5 and the like, a sample is placed on a sample stage that is cooled at a temperature of 0° C. or lower, for example, with liquid nitrogen, is indirectly cooled, and is etched using plasma.

これにより、ラジカルによる等方性エツチングが抑制さ
れ、^方性エツチングの向上が図られる。
This suppresses isotropic etching caused by radicals and improves lateral etching.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

例えば、半導体デバイスの高集積化に件なって回路パタ
ーン幅もサブミクロン領域に達している。
For example, as semiconductor devices become more highly integrated, circuit pattern widths have reached the submicron range.

このような、微細パターンをマスク通りに異方性良くエ
ツチングする技術としては、例えば、特開昭56−12
5838号公権や特開昭60−50923号公報等に記
載のように、半導体素子基板の被エツチング膜の側壁に
保護膜を形成する、いわゆる側壁保護型プロセスが、現
在、主流となっている。二の場合、被エツチング膜の側
壁に保護膜を形成するために、エツチング処理にデポジ
ション性の強いガスが添加される。この他に、マスク材
であるレジストから発生する成分による等の方法もめる
。このような場合、保護膜となるデポジション物質(以
下、デポ物と略)は、目的とする被エツチング膜側壁以
外に、処理室内壁面や処理室内に存在する部品にも0看
する。
As a technique for etching such a fine pattern with good anisotropy according to a mask, for example, Japanese Patent Laid-Open No. 56-12
As described in Publication No. 5838 and Japanese Unexamined Patent Publication No. 60-50923, a so-called sidewall protection type process, in which a protective film is formed on the sidewall of a film to be etched on a semiconductor element substrate, is currently mainstream. In the second case, a gas with strong deposition properties is added to the etching process in order to form a protective film on the sidewalls of the film to be etched. Other methods include using components generated from resist, which is a mask material. In such a case, the deposition material (hereinafter abbreviated as "deposited material") that becomes a protective film is applied not only to the side wall of the target film to be etched but also to the inner wall surface of the processing chamber and to the components present within the processing chamber.

このように処理室内壁面や処理室内に存在する部品に付
着したテ′ボ物は、試料の非処理時に徐々にではあるが
それらより脱離し、冷却されている試料台に再付肴する
ようになる。冷却されている試料台へのデポ物の封着に
よりプロセス特性が変動し、試料処理の再現性、信頼性
が低下するといった不都合を生じる。
In this way, the debris adhering to the walls of the processing chamber and the parts present in the processing chamber are gradually detached from them when the sample is not being processed, and are then reapplied to the cooled sample stage. Become. The sealing of the deposit onto the cooled sample stage causes fluctuations in process characteristics, resulting in disadvantages such as reduced reproducibility and reliability of sample processing.

しかし、上記従来技術では、このような点についての配
慮がなされておらず、また、認識を有していない。
However, the above-mentioned prior art does not consider or recognize such points.

本発明の目的は、試料処理の再現性、信頼性の低下を防
止できるプラズマ処理方法及びMlを提供することにあ
る。
An object of the present invention is to provide a plasma processing method and Ml that can prevent deterioration of reproducibility and reliability of sample processing.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記目的は、プラズマ処理方法を、冷却された試料台に
減圧下で設置された試料をプラズマを利用して処理する
工程と、前記試料の非処理時における前記試料台の温度
なデボ部の付置温度以上に上昇させる工程とを有する方
法とし、プラズマ処理装置を、処理室と、該処理室内を
減圧排気する手段と、前記処理室内に処理ガスを導入す
る手段と、1′ff配処理室内に導入さnた処理ガスを
プラズマ化する手段と、曲配処理室内で試料が設置され
る試料台と、該試料台を冷却する手段と、冷却された前
に2試料台をデポ物の付着潤度以上の温度に加温する手
段とを具備したものとすることにより、達成される。
The above purpose is to provide a plasma processing method that includes a step of processing a sample placed under reduced pressure on a cooled sample stage using plasma, and a process of attaching a temperature-depleted portion of the sample stage when the sample is not being processed. The plasma processing apparatus includes a processing chamber, a means for evacuating the processing chamber under reduced pressure, a means for introducing a processing gas into the processing chamber, and a 1'ff distribution processing chamber. a means for converting the introduced processing gas into plasma; a sample stand on which the sample is placed in the curved processing chamber; a means for cooling the sample stand; This can be achieved by providing a means for heating the temperature to a temperature higher than 30°F.

〔作   用〕[For production]

処理室内は、減圧排気手段により減圧排気される。処理
室内には、処理ガス導入手段により処理ガスが導入され
る。処理ガスが導入されている処理室内の圧力は、減圧
排気手段により所定の処理圧力に調節される。この状態
で、処理室内の処理ガスは、プラズマ化手段によりプラ
ズマ化される。
The inside of the processing chamber is depressurized and exhausted by a decompression exhaust means. A processing gas is introduced into the processing chamber by a processing gas introducing means. The pressure inside the processing chamber into which the processing gas is introduced is adjusted to a predetermined processing pressure by a depressurizing exhaust means. In this state, the processing gas in the processing chamber is converted into plasma by the plasma conversion means.

一方、処理室内に設けられた試料台は、冷却手段により
冷却される。該冷却された試料台には、処理室内に搬入
された試料が設置され、該試料は、間接的に冷却される
。試料台に設置され冷却された状態で、試料は、プラズ
マを利用して処理される。試料のプラズマ処理時に処理
室内壁面および内部量には、デポ物が付着する。試料の
非処理時には、処理室内壁面および内部量に付着したテ
゛ポ物は、それらから脱離し、冷却されている試料台に
付着するようになる。そこで、試料の非処理時には、冷
却されている試料台は、加温手段により加温され、その
温度なデポ物の付着潤度以上の温度に上昇させられる。
On the other hand, the sample stage provided in the processing chamber is cooled by a cooling means. A sample carried into the processing chamber is placed on the cooled sample stage, and the sample is indirectly cooled. The sample is placed on the sample stage and cooled, and then processed using plasma. During plasma processing of a sample, deposits adhere to the inner wall surface and interior of the processing chamber. When the sample is not being processed, the chips adhering to the inner wall surface and internal volume of the processing chamber are detached from them and become attached to the sample stage which is being cooled. Therefore, when the sample is not being processed, the cooled sample stage is heated by the heating means, and the temperature is raised to a temperature higher than the moisture content of the deposit.

これにより、試料の非処理時における試料台へのデポ物
の付着が防止され、試料台は清浄に保たれる。
This prevents deposits from adhering to the sample stage when the sample is not being processed, and keeps the sample stage clean.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図で、処理室lo内には、電極20.30が所定間
隔を有し対向して設けられている。処理室10は、ステ
ンレス鋼で形成されている。電極加、30は、ステンレ
ス鋼やアルミニウム等で形成されている。
In FIG. 1, electrodes 20 and 30 are provided facing each other with a predetermined interval in the processing chamber lo. The processing chamber 10 is made of stainless steel. The electrode member 30 is made of stainless steel, aluminum, or the like.

電榛加、30は、略円形の平板である。電極軸21は、
その上端部を処理室lo外に突出し、また、その下端部
を処理室10内に突出し、処理室1oの軸心な中心軸と
して七〇頂壁に気密に設けられている。電極軸21は、
電気絶縁材により処理室1oと電気的に電線されている
。電!I!20は、′@極軸21の中心軸を中心として
その下宿に略水平に設けられている。
The electric conductor 30 is a substantially circular flat plate. The electrode shaft 21 is
Its upper end protrudes outside the processing chamber 10, and its lower end projects into the processing chamber 10, and is airtightly provided on the 70-degree top wall as a central axis of the processing chamber 1o. The electrode shaft 21 is
It is electrically connected to the processing chamber 1o using an electrically insulating material. Electric! I! 20 is installed approximately horizontally in the boarding house with the central axis of the polar axis 21 as the center.

電極軸31は、その上端部を処理室lo内に突出し、ま
た、その下端部を処理室10外に突出し、処理室10の
軸心を中心軸としてその底壁に気密に設けられている。
The electrode shaft 31 has its upper end protruding into the processing chamber lo and its lower end protruding outside the processing chamber 10, and is airtightly provided on the bottom wall of the processing chamber 10 with its central axis as its central axis.

電極軸31は、電気絶縁材により処理室10と電気的に
絶縁されている。X130は、電極軸31の中心軸を中
心としてその上端に略水平に設けられている。電極Iと
電極軸21並びに電極刀と電極軸31は、それぞれ電気
的に導通させられている。
The electrode shaft 31 is electrically insulated from the processing chamber 10 by an electrically insulating material. X130 is provided substantially horizontally at the upper end of the electrode shaft 31 with its center axis as its center. The electrode I and the electrode shaft 21 and the electrode blade and the electrode shaft 31 are electrically connected to each other.

1jL極軸21.31は、’I襖I、加と同一材料で形
成されている。電極軸21.31は、略円柱形状である
The 1jL polar axis 21.31 is made of the same material as the 'I sliding door I and addition. The electrode shaft 21.31 has a substantially cylindrical shape.

なお、電極加と電極軸21並びに′@匝(至)と電極軸
31をそれぞれに一体に形成しても良い。また、電極加
を処理室100頂壁の構成部材とし、電極(9)を処理
室10のに壁の構成部材としても良い。また、電極(9
)、30の配設姿勢およびその形状は、上記のような配
設姿勢および形状に特に限定されない。例えば、電極加
、30を略垂直姿勢で対向して配設しても良いし、例え
ば、[620として、わん曲形状のものや凸形形状のも
のを用いても良い。
Note that the electrode shaft 21 and the electrode shaft 31 may be formed integrally with each other. Alternatively, the electrode (9) may be a component of the top wall of the processing chamber 100, and the electrode (9) may be a component of the wall of the processing chamber 10. In addition, the electrode (9
), 30 and its shape are not particularly limited to the above-described orientation and shape. For example, the electrodes 30 may be disposed facing each other in a substantially vertical position, or, for example, the electrodes 30 may be curved or convex.

第1図で、電源、例えば、高周波VlL源4oが、処理
室10外に設置tされている。1!極軸31の下端部は
、高周波電源切に接続されている。処理室10および高
周波電1lj4oは、それぞれ接地されている。電極田
は、電極軸21を介して接地されている。なお、電源と
しては、この他に、直流電源、高周波域外の交流II[
が使用される。
In FIG. 1, a power source, for example a high frequency VIL source 4o, is installed outside the processing chamber 10. 1! The lower end of the polar shaft 31 is connected to a high frequency power source. The processing chamber 10 and the high frequency electric generator 1lj4o are each grounded. The electrode field is grounded via the electrode shaft 21. In addition, as a power source, in addition to this, a DC power supply, an AC II [outside the high frequency range]
is used.

第1図で、真空排気装置i50が、処理室10外に設置
されている。排気管51の一端は、処理室10の底壁に
形成された排気口(図示省略)に連結され、その他端は
、真空排気*IW5Gの吸入口(図示省略)に連結され
ている。圧力調節弁、例えば、可変抵抗弁(図示省略)
が、排気管51に設けらnている。
In FIG. 1, a vacuum evacuation device i50 is installed outside the processing chamber 10. One end of the exhaust pipe 51 is connected to an exhaust port (not shown) formed in the bottom wall of the processing chamber 10, and the other end is connected to an inlet (not shown) of the vacuum exhaust *IW5G. Pressure regulating valve, e.g. variable resistance valve (not shown)
are provided in the exhaust pipe 51.

′!51図で、亀櫓渇内部には、ガス分散路(図示省略
)が形成されている。tIL極加には、電極(資)と対
向する面に開口し、かつ、ガス分散路と連通してガス放
出孔(図示省略)が形成されている。電極軸4内部には
、ガス分散路と連通してガス導入路(図示省略)が形成
されている。処理ガス源印が処理室10外に設置されて
いる。ガス導入管61の一端は、処理ガス#ωに連結さ
れ、その他端は、ガス導入路と連通して電極軸乙に連結
されている。
′! In Figure 51, a gas dispersion path (not shown) is formed inside the turtle tower. A gas discharge hole (not shown) is formed in the tIL pole, which is open on the surface facing the electrode and communicates with the gas distribution path. A gas introduction path (not shown) is formed inside the electrode shaft 4 and communicates with the gas distribution path. A processing gas source mark is installed outside the processing chamber 10. One end of the gas introduction pipe 61 is connected to the processing gas #ω, and the other end communicates with the gas introduction path and is connected to the electrode shaft B.

ガスak調節器(図示省略)および弁(図示省略)が、
ガス導入管61にそれぞれ設けられている。なお、ガス
導入管61の他端を処理室lO内と直接連通して処理室
10に連結するようにしても良い。いずれにしても、処
理ガス導入手・段は、処理室lO内に処理ガスを導入す
る機能を有するものである。
A gas ak regulator (not shown) and a valve (not shown) are
They are provided in the gas introduction pipes 61, respectively. Note that the other end of the gas introduction pipe 61 may be connected to the processing chamber 10 by directly communicating with the inside of the processing chamber IO. In any case, the processing gas introducing means/means has the function of introducing the processing gas into the processing chamber IO.

@1図で、この場合、第極寞が、試料台となる。In Figure 1, in this case, the first pole becomes the sample stage.

電極(9)は、電極刃との対向面に試料設置面を有して
いる。電極関内部曇こは、試料設置面に対応して熱媒体
流路(図示省略)が形成されている。電極軸31内部に
は、熱媒体供給路(図示省略)と熱媒体排出路(図示省
略)がそれぞれ形成されている。
The electrode (9) has a sample installation surface on the surface facing the electrode blade. A heat medium flow path (not shown) is formed in the electrode compartment internal fog corresponding to the sample installation surface. A heat medium supply path (not shown) and a heat medium discharge path (not shown) are formed inside the electrode shaft 31, respectively.

熱媒体供給路は、熱媒体流路の入口を介して熱媒体流路
に連通させられている。熱媒体排出路は、熱媒体流路の
出口を介して熱媒体流路に連通させられている。冷却媒
体供給袋W170が、処理室10外に設置されている。
The heat medium supply path is communicated with the heat medium flow path via the inlet of the heat medium flow path. The heat medium discharge path is communicated with the heat medium flow path via the outlet of the heat medium flow path. A cooling medium supply bag W170 is installed outside the processing chamber 10.

冷却媒体供給管71の一端は、冷却媒体供給装置70に
連結され、その他端は、熱媒体供給路に連通して電極軸
31に連結されている。
One end of the cooling medium supply pipe 71 is connected to the cooling medium supply device 70, and the other end is connected to the electrode shaft 31 through a heat medium supply path.

弁72が、冷却媒体供@%f71に設けられている。冷
却媒体回収管73の一端は、熱媒体排出路に連通して電
極軸31に連結され、その他端は、冷却媒体供給装置7
0に連結されている。弁74が、冷却媒体回収管nに設
けられている。なお、冷却媒体供給装置70としては、
液体またはガスを冷却し、または、ガスを冷却液化して
冷却媒体供給管71に供給し、冷却媒体を液体またはガ
スまたは気液混相で回収する機能を有するものが使用さ
れる。冷却媒体供給装置四としては、この他に、冷却さ
れた液体またはガスが注入され、該注入された冷却媒体
を冷却媒体供給管71に供給するものが使用される。こ
の場合、冷却媒体回収管nの他端は、冷却媒体供給装置
70に連結されることなく、例えば、大気開放させられ
る。また、例えば、ヘリウム冷凍機のようにコールドス
テージ四ンを存するものを冷却媒体供給装置として使用
する場合には、電極Iをコールドステージオンに直接積
層して設けるか、または、コールドステージ冒ν自体が
電f30として用いられる。このような場合、*m(9
)への熱媒体rIL路の形成および電極軸31への熱媒
体供給路、熱媒体排出路の形成は、それぞれ不要である
。また、これと共に、熱媒体供給路に連結される熱媒体
供給管および熱媒体排出路に連結される熱媒体回収管も
不用である。なお、第1図に示すような構成においては
、11t極Iの試料設置面以外の部分や電極軸31も冷
却される。従って、ml極Iの試料設置面以外の部分や
1tai軸31は余分な冷却面となり、これらに処理ガ
スや反応生成物が吸着されるようになる。このため、処
理室内での圧力を処理圧力に調節、維持することが困難
になり試料の処理が不安定、不良となったり、また、余
分な冷却面での吸着物が該冷却面からはく離し真空排見
系性能に悪影響を及ぼす等の不都合を生じる。この不都
合を解除するには、電極(9)の試料設置面以外の部分
や電極軸31を断熱、つまり、これらの処理室10内に
露呈される面を非冷却面とするといった構成をとること
が必要である。しかし、電極萄をコールドステーシーン
に直接積層して設けるか、または、コールドステーシロ
ン自体を電極刃として用いた場合、電極間の試料設置面
付近のみが所定湯度に冷却されるので、特に上記のよう
な構成を採る必要がなく構成を簡単化できる。
A valve 72 is provided at the coolant supply @%f71. One end of the cooling medium recovery pipe 73 communicates with the heat medium discharge path and is connected to the electrode shaft 31, and the other end communicates with the cooling medium supply device 7.
Connected to 0. A valve 74 is provided in the coolant recovery pipe n. In addition, as the cooling medium supply device 70,
A device having the function of cooling a liquid or gas, or cooling and liquefying the gas and supplying it to the cooling medium supply pipe 71, and recovering the cooling medium as a liquid, a gas, or a gas-liquid mixed phase is used. In addition to this, the cooling medium supply device 4 may be one in which cooled liquid or gas is injected and the injected cooling medium is supplied to the cooling medium supply pipe 71 . In this case, the other end of the cooling medium recovery pipe n is not connected to the cooling medium supply device 70 and is, for example, opened to the atmosphere. For example, when using a helium refrigerator that has four cold stages as a cooling medium supply device, the electrode I can be directly stacked on the cold stage, or the cold stage itself can be used as a cooling medium supply device. is used as electric f30. In such a case, *m(9
), and the formation of a heat medium supply path and a heat medium discharge path to the electrode shaft 31 are unnecessary. Additionally, a heat medium supply pipe connected to the heat medium supply path and a heat medium recovery pipe connected to the heat medium discharge path are also unnecessary. In the configuration shown in FIG. 1, the portion of the 11t pole I other than the sample installation surface and the electrode shaft 31 are also cooled. Therefore, the portions of the ml pole I other than the sample installation surface and the 1tai shaft 31 become extra cooling surfaces, and the processing gas and reaction products are adsorbed on these. As a result, it becomes difficult to adjust and maintain the pressure in the processing chamber to the processing pressure, resulting in unstable or defective sample processing, and excess adsorbed substances on the cooling surface are peeled off from the cooling surface. This causes inconveniences such as adversely affecting the performance of the vacuum evacuation system. In order to eliminate this inconvenience, the portions of the electrode (9) other than the sample installation surface and the electrode shaft 31 should be insulated, that is, the surfaces exposed in the processing chamber 10 should be configured as non-cooled surfaces. is necessary. However, when the electrode stems are directly stacked on the cold stay scene or when the cold stay scene itself is used as an electrode blade, only the area near the sample installation surface between the electrodes is cooled to a predetermined hot water temperature. There is no need to adopt a configuration like this, and the configuration can be simplified.

第1図で、加温媒体供給袋![80が処理室10外に設
置されている。加温媒体供給装置間の加温媒体供給口に
は、加温媒体供給管81の一端が連結されている。加I
i!媒体供給管81の他端は、この場合、電極軸31と
弁72との間で冷却媒体供給管71に合流連結されてい
る。弁82が、加温媒体供給管81に設けられている。
In Figure 1, the heating medium supply bag! [80 is installed outside the processing chamber 10. One end of a heating medium supply pipe 81 is connected to the heating medium supply port between the heating medium supply devices. Canada
i! In this case, the other end of the medium supply pipe 81 is connected to the coolant supply pipe 71 between the electrode shaft 31 and the valve 72 . A valve 82 is provided on the heating medium supply pipe 81 .

加温媒体回収管部の一端は、この場合、電極軸31と弁
74との間で冷却媒体回収管73に合流連結されている
。加温媒体回収管部の他端は、加温媒体供給装置soの
加温媒体回収口に連結されている1、弁あが、加温媒体
回収管部に設けられている。なお、加m媒体供給装置(
資)としては、液体またはガスを加温して加湿媒体供給
管81に供給し、加温後排出された液体またはガスを回
収する機能を有するものが使用される。加温媒体供給装
置1I81Jとしては、この他に、冷却されている電極
30、4極軸31を、これらにデボ物が0諭しない温度
に加温可能な液体またはガスな加7Ji媒体供給管81
−こ単に供給するものが使用される。このような加温媒
体供給!1kidは、例えば、加温用液体またはガスを
加温媒体供給管811こ送給するボシプを具備している
。この場合、加温媒体回収管部の他端は、加温媒体供給
装置(資)に連結されることなく、例えば、大気回数さ
せられる。また、電熱器等の発熱手段を電極間内部また
は電極(9)に設け、試料の非処理時における電極(資
)の温度なデボ物が付着しない温度に加温するように構
成しても良い。このような構成を採用した場合、上記の
ような加淘媒体供給装鑵、加温媒体供給管、加温媒体回
収管およびそれらの弁が不用になり、処理室10外にお
4する装段構成をM素化できる。また、電極I内部に加
温媒体流路を形成すると共に、i+を極軸31内部に加
温媒体流路と連通して加温媒体供給路と加湿媒体排出路
を形成し、加21!媒体供給管81の他端を加温媒体供
給路と連通して電極軸31に連結し、加温媒体回収管&
の一端を加21!媒体排出路と連通して電極軸31に連
結しても艮い。このようにした場合、電極30# 電通
軸31の内部構成はやや複雑になるが、しかし、冷却媒
体の給排と加温媒体の給排との切替えが不要になり、操
作が簡単化される。また、冷却媒体の給排と加温媒体の
給排とを独立して行うことができるので、例えば、冷却
媒体および加湿媒体の供給崖を調節することで、電極I
の温度つまり処理される試料の濃度を所定範囲内および
プロセス、ステージに対応して任意に調節することがで
きる。また、二の場合、加湿媒体流路となる配管を重&
30に設け、該配管に加温媒体供給路81の他端および
加温媒体回収管&の一端をそれぞれ連結するようにして
も上記と同様の作用効果が得られる。また、このような
作用効果は、上記のように電熱器等の発熱手段を電極(
9)内部または電極(資)に設けるようにした場合にお
いても同様に得られる。
In this case, one end of the heating medium recovery pipe section is connected to the cooling medium recovery pipe 73 between the electrode shaft 31 and the valve 74 . The other end of the heating medium recovery pipe section is connected to the heating medium recovery port of the heating medium supply device so, and a valve 1 is provided in the heating medium recovery pipe section. In addition, the addition medium supply device (
The material used is one that has the function of heating a liquid or gas, supplying it to the humidifying medium supply pipe 81, and recovering the liquid or gas discharged after heating. In addition to this, the heating medium supply device 1I81J includes a liquid or gas heating medium supply pipe 81 that can heat the cooled electrodes 30 and quadrupole shaft 31 to a temperature at which no debris will be present thereon.
- The one supplied by the manufacturer is used. Such a heating medium supply! 1KID includes, for example, a boss that supplies heating liquid or gas to the heating medium supply pipe 811. In this case, the other end of the heating medium recovery pipe section is not connected to the heating medium supply device (equipment) and is, for example, exposed to the atmosphere. Alternatively, a heat generating means such as an electric heater may be provided inside the space between the electrodes or on the electrode (9) to heat the electrode (material) to a temperature at which debris does not adhere to it when the sample is not being processed. . When such a configuration is adopted, the above-mentioned modification medium supply device, heating medium supply pipe, heating medium recovery pipe, and their valves become unnecessary, and the equipment installed outside the processing chamber 10 becomes unnecessary. The configuration can be made into M elements. Further, a heating medium flow path is formed inside the electrode I, and i+ is communicated with the heating medium flow path inside the polar axis 31 to form a heating medium supply path and a humidifying medium discharge path. The other end of the medium supply pipe 81 is connected to the heating medium supply path and connected to the electrode shaft 31, and the heating medium recovery pipe &
Add one end of 21! It is also possible to communicate with the medium discharge path and connect to the electrode shaft 31. In this case, the internal configuration of the electrode 30# and the electrical shaft 31 becomes a little complicated, but it becomes unnecessary to switch between supplying and discharging the cooling medium and supplying and discharging the heating medium, which simplifies the operation. . In addition, since the supply and discharge of the cooling medium and the supply and discharge of the heating medium can be performed independently, for example, by adjusting the supply slope of the cooling medium and the humidifying medium, the electrode I
The temperature, that is, the concentration of the sample to be processed, can be arbitrarily adjusted within a predetermined range and in accordance with the process and stage. In the second case, the piping that serves as the humidifying medium flow path should be
30, and the other end of the heating medium supply path 81 and one end of the heating medium recovery pipe & are respectively connected to the piping, the same effect as described above can be obtained. In addition, such effects can be achieved by connecting the heat generating means such as an electric heater to the electrode (
9) The same effect can be obtained even when it is provided inside or on the electrode.

?!41図で、処理室10内は、真空排気装置間および
圧力調節弁の作動により減圧排気さnる。処理室10円
には、処理ガス、例えば、テ゛ボジシ四ン性の強いガス
が添加されたエツチングガスが導入される。例えば、試
料がゲート材料である場合、SFg+炭化水素のフルオ
ル−クロル置換体(C2Cl3F5s C2C12F4
* CzCIF3+ CC1a等)が、また、アルミニ
ウムの場合、C12+ CC1!4+ S iCI!4
が処理ガスとして用いられる。
? ! In FIG. 41, the inside of the processing chamber 10 is evacuated under reduced pressure by the operation of a vacuum exhaust device and a pressure control valve. A processing gas, for example, an etching gas to which a gas with strong structural properties is added, is introduced into the processing chamber. For example, if the sample is a gate material, SFg+fluoro-chloro substituted hydrocarbon (C2Cl3F5s C2C12F4
*CzCIF3+ CC1a, etc.), and in the case of aluminum, C12+ CC1!4+ SiCI! 4
is used as the processing gas.

この場合、処理ガス源ωの処理ガスは、ガス流量調節器
および弁を介しガス導入管61.電極軸とのガス導入路
、電極(支)のガス分散路を順次経て電[20のガス放
出孔から電極刃に向って放出つまり処理室lO内に導入
される。処理室10内への処理ガスの導入流社は、ガス
流m詞節器により調節される。処理ガスが導入されてい
る処理室lO内の圧力は、圧力調節弁により所定の処理
圧力に調節される。一方、処理室10内には、試料、例
えば、サブミクロン領域の回路パターン幅でのエツチン
グ加工が要求される半導体素子基板が公知の搬送手段(
図示省略)により、この場合、la船入される。
In this case, the processing gas from the processing gas source ω is supplied to the gas inlet pipe 61. The gas passes sequentially through the gas introduction path with the electrode shaft and the gas dispersion path of the electrode (support), and is emitted from the gas discharge hole of the electrode 20 toward the electrode blade, that is, introduced into the processing chamber IO. The rate of introduction of the process gas into the process chamber 10 is regulated by a gas flow regulator. The pressure within the processing chamber IO into which the processing gas is introduced is adjusted to a predetermined processing pressure by a pressure regulating valve. On the other hand, in the processing chamber 10, a sample, for example, a semiconductor element substrate that requires etching processing with a circuit pattern width in the submicron region, is carried by a known transporting means (
(not shown), in this case it is shipped by la.

該搬入された試料時は、搬送手段から電極刃に渡されて
電極菊の試料設置面に設置される。試料時を電極30G
−渡した搬送手段は、試料□の処理を阻害しない場所に
退避させられる。また、弁72.74が開弁され、弁羽
、84が閉弁される。これにより、冷却媒体供給装置n
からは、冷却媒体、例えば、冷却水、アルコ−9,−1
?s系体、液体宣素や低温ガス(冷却媒体は、試料冷却
の目的により選択される)が、冷却媒体供給管71.電
極軸31の熱媒体供給路を通って1! [30の熱媒体
流路に導入される。該導入された冷却媒体は、熱媒体流
路を出口に向って流通させられる。これにより電極(9
)は、冷却される。電極(9)の熱媒体流路から!極軸
31の熱媒体排出路に入った冷却媒体は、冷却媒体回収
管nを通って冷却媒体回収管!170に回収され、ここ
で、再冷却されて使用される。このような、電極美の冷
却は、試料美の設置前または設ffi後に実施される。
When the sample is carried in, it is passed from the transport means to the electrode blade and placed on the sample installation surface of the electrode chrysanthemum. Electrode 30G during sample
- The transferred transport means is evacuated to a place where it does not interfere with the processing of the sample □. Also, valves 72, 74 are opened and valve blades 84 are closed. As a result, the cooling medium supply device n
From the cooling medium, for example, cooling water, alcohol-9,-1
? The cooling medium supply pipe 71. 1 through the heat medium supply path of the electrode shaft 31! [Introduced into the heat medium flow path of 30]. The introduced cooling medium is made to flow through the heat medium flow path toward the outlet. This allows the electrode (9
) is cooled. From the heat medium flow path of the electrode (9)! The cooling medium that has entered the heat medium discharge path of the polar axis 31 passes through the cooling medium recovery pipe n to the cooling medium recovery pipe! 170, where it is recooled and used. Such cooling of the electrode is performed before or after the sample is installed.

また、このような、電@(資)の冷却は、試料美の処理
時において引続き実施される。電極(9)の試料設置面
に設置された試料時は、冷却された電極刃を介して所定
温度に間接的に冷却される。
In addition, such cooling of the electricity is continued during the processing of the sample. When a sample is placed on the sample installation surface of the electrode (9), it is indirectly cooled to a predetermined temperature via the cooled electrode blade.

この状態で、高周波電源切が作動させられ、電極(至)
には、1!極軸31を介して所定の高周波電力が印加さ
れる。これにより処理室10内では、グロー放電が生じ
処理室10内の処理ガスはプラズマ化される。電極間の
試料設置面に設置され、冷却されている試料匍の被処理
面は、プラズマを利用して、この場合、エツチング処理
される。つまり、試料頭の被エツチング膜の側壁に保護
膜が形成されながらエツチング処理が進行する。このよ
うな試料匍のエツチング処理時にデボ物が目的とする被
エツチング膜側壁以外に、処理室lO内壁面や処理室】
0内に存在する部品にも付着する。試料頭のエツチング
処理が完了した時点で、高周波電源切からの電極(至)
への高周波電力の印加が停止され、また、処理室10内
への処理ガスの導入が停止される。その後、処理済みの
試料(ト)は、電極間から除去されて搬送手段に渡され
る。搬送手段に渡された処理済みの試料頭は、搬送手段
により処理室10外へ搬出される。その後、処理室10
内には、搬送手段により新規な試料頭が搬入されて、電
極(9)の試料設置面に設置される。その債、上記操作
が繰り返して実施される。
In this state, the high frequency power off is activated and the electrode (to) is turned off.
1! A predetermined high frequency power is applied via the polar axis 31. As a result, glow discharge occurs within the processing chamber 10, and the processing gas within the processing chamber 10 is turned into plasma. In this case, the surface to be processed of the sample spool, which is placed on the sample installation surface between the electrodes and cooled, is etched using plasma. That is, the etching process progresses while a protective film is formed on the side wall of the film to be etched on the sample head. During the etching process of such a sample, in addition to the side wall of the film to be etched, which is the target of the debris, the inner wall surface of the processing chamber 10 and the processing chamber]
It also adheres to parts that exist within 0. When the etching process of the sample head is completed, turn off the high frequency power and turn off the electrode.
The application of high frequency power to the processing chamber 10 is stopped, and the introduction of processing gas into the processing chamber 10 is also stopped. Thereafter, the processed sample (g) is removed from between the electrodes and transferred to the transport means. The processed sample head delivered to the transport means is carried out of the processing chamber 10 by the transport means. After that, the processing chamber 10
A new sample head is carried into the chamber by a transport means and placed on the sample installation surface of the electrode (9). Then, the above operation is repeated.

試料匍の非処理時に、処理室lO内壁面や処理室10内
に存在する部品に付着したデボ物は、徐々にではあるが
それらより離脱する。この離脱したデボ物は、冷却され
ているt極間に付着するようになる。電極間は、冷却さ
れているため、電極間に付着したデボ物は電極(至)か
ら離脱しにくく電極間に徐々に堆積されていく。このよ
うな電極(資)へのデボ物の付111#堆積、特に電極
間の試料設置面へのデボ物の付着、堆積により、試料匍
のエツチング特性が変動し、試料匍のエツチング処理の
再現性、信相性が低下するといった不都合が生じる。
When the sample sac is not being processed, the debris attached to the inner wall surface of the processing chamber 10 or the parts present in the processing chamber 10 gradually separates from them. This detached debris comes to adhere to the cooled t-electrode gap. Since the space between the electrodes is cooled, debris attached between the electrodes is difficult to separate from the electrodes and gradually accumulates between the electrodes. Due to the deposition of debris on the electrodes, especially the attachment and accumulation of debris on the sample installation surface between the electrodes, the etching characteristics of the sample will change, making it difficult to reproduce the etching process of the sample. Inconveniences such as a decrease in reliability and credibility may occur.

この原因としては、11L極Iの試料設置面と試料匍の
裏面との間のデボ物の存在により、高周波電源切によっ
て印加される高周波の伝わり方が変化してプラズマ状態
が変化するためと考えられる。このような電wA30へ
のデボ物の付着、堆積による試料美のエツチング特性の
変動は、試料美の非処理時に、つまり、冷却されている
電極(資)の試料設置面に試料特が設値されていないと
きに、電&30の温度、特に電極□□□の試料設置面の
温度なデボ物が付着しない程度の温度にiA′w1シて
保持することによって防止される。
The reason for this is thought to be that due to the presence of debris between the sample installation surface of 11L pole I and the back of the sample holder, the propagation method of the high frequency applied when the high frequency power is turned off changes and the plasma state changes. It will be done. Changes in the etching characteristics of the sample due to the adhesion and accumulation of debris on the electrode wA30 occur when the sample is not being processed, that is, when the sample special value is set on the sample mounting surface of the cooled electrode (material). This can be prevented by maintaining the temperature of the electrode, especially the temperature of the sample mounting surface of the electrode, at a temperature that does not allow deposits to adhere when the sample is not attached.

第1図で、試料(資)のエツチング処理工程間の試料美
の非処理時、つまり、冷却されている電i30の試料設
置面に試料匍が設置されていないとき、冷却媒体供給装
置70からの冷却媒体の供給が停止され、弁72.ハが
閉弁される。その後、弁間、84が開弁される。加温媒
体供給装置閃で、所定温度、つまり、1適I、特に電極
(資)の試料設置面の温度をデボ物が付着しない程度の
温度として保持するために必要な温度に加m調節された
加温媒体は、加温媒体供給袋Hsoから加温媒体供給管
81.冷却媒体供給管71.熱媒体供給路を順次通って
熱媒体流路に入れられる。熱媒体流路に入った加温媒体
は、該流路をその出口に向って流通させられる。
In FIG. 1, when the sample is not being processed during the sample etching process, that is, when the sample is not placed on the sample installation surface of the cooled electric i30, the cooling medium supply device 70 The supply of cooling medium to valve 72. is stopped. C is closed. Thereafter, the valve 84 is opened. The temperature of the heating medium supply device is adjusted to a predetermined temperature, that is, the temperature required to maintain the temperature of the sample installation surface of the electrode (material) at a temperature that does not allow debris to adhere. The heating medium is supplied from the heating medium supply bag Hso to the heating medium supply pipe 81. Coolant supply pipe 71. The heat medium is sequentially passed through the heat medium supply path and introduced into the heat medium flow path. The heating medium that has entered the heat medium flow path is caused to flow through the flow path toward its outlet.

これにより、電極Iは、デボ物が付着しない程度の温度
に加温調節され、該温度は、電極間の試料設置面に試料
匍が設置されるときまで保持される。
Thereby, the temperature of the electrode I is adjusted to a temperature that does not allow debris to adhere, and this temperature is maintained until the sample spool is placed on the sample placement surface between the electrodes.

熱媒体iiqを流通させられた加温媒体は、熱媒体排出
路を通って排出され、更に、冷却媒体回収管n、加湿媒
体回収管閏を順次通って加m媒体供給装置80に回収さ
れる。該回収された加温媒体は、加温媒体供給装置11
i80で上記所定温度に加温調節されて電極間の加温に
再び使用される。電極(資)の試料設置面への試料匍の
設置により、加温媒体供給袋[80からの加温媒体の供
給が停止され、弁82゜あが閉弁される。その後、弁7
2.74が開弁され、電極Iは上記操作により冷却され
る。これにより試料頭も冷却され、該冷却された試料%
は、上記のようにプラズマを利用してエツチング処理さ
れる。
The heating medium that has been passed through the heating medium iiq is discharged through the heating medium discharge path, and further passes through the cooling medium recovery pipe n and the humidifying medium recovery pipe in order to be collected by the heating medium supply device 80. . The recovered heating medium is supplied to the heating medium supply device 11
At i80, the temperature is adjusted to the predetermined temperature and used again for heating between the electrodes. When the sample holder is placed on the sample installation surface of the electrode, the supply of the heating medium from the heating medium supply bag [80 is stopped, and the valve 82A is closed. Then valve 7
2.74 is opened, and electrode I is cooled by the above operation. This also cools the sample head, and the cooled sample %
is etched using plasma as described above.

なお、上記一実施例では、試料が設置される電極に電源
を接続しているが、該電源を試料が設置されない電極に
接続しても良い。二の場合、試料が設置される電極は接
地される。また、上記一実施例の装置において、磁場を
併用、つまり、対向する電極間に生成される電界と直交
または平行な磁場を生成し、これによりプラズマ密度を
増大させるタイプの装置に適用しても同様の作用効果を
奏することができる。
In the above embodiment, a power source is connected to the electrode on which the sample is placed, but the power source may be connected to an electrode on which the sample is not placed. In the second case, the electrode on which the sample is placed is grounded. Furthermore, the apparatus of the above embodiment may be applied to a type of apparatus that uses a magnetic field in combination, that is, generates a magnetic field perpendicular or parallel to the electric field generated between opposing electrodes, thereby increasing the plasma density. Similar effects can be achieved.

第2図は、本九明の第2の実施例を示すものである。FIG. 2 shows a second embodiment of this invention.

第2図で、この場合、頂壁に開口100を有する真空容
器101には、放電管110が気密に構設されている。
In FIG. 2, in this case, a discharge tube 110 is airtightly constructed in a vacuum vessel 101 having an opening 100 in the top wall.

真空容器101の開口100と放電管110の關放端開
口とは、略一致する寸法、形状となっている。真空容器
101内と放電管110内とで気密な空間120が形成
される。真空容器101は、例えば、ステンレス鋼で形
成される。放電管110は、例えば、石英等の絶縁物で
形成される。放電管110の外側には、放電管110を
内部に含み導波管第30が放電管110と略同−軸心を
有し設けられている。
The opening 100 of the vacuum vessel 101 and the discharge end opening of the discharge tube 110 have substantially the same size and shape. An airtight space 120 is formed between the vacuum container 101 and the discharge tube 110. The vacuum container 101 is made of stainless steel, for example. The discharge tube 110 is made of, for example, an insulator such as quartz. A waveguide 30 is provided on the outside of the discharge tube 110 and includes the discharge tube 110 therein and has approximately the same axis as the discharge tube 110 .

導波管130とマイクロ波発振手段であるマグ木トロン
140とは、導波管131で連結されている。磁場生成
手段である電磁コイル150は、導波管130の外側に
環装されている。
The waveguide 130 and the magtron 140, which is a microwave oscillation means, are connected by a waveguide 131. An electromagnetic coil 150 serving as a magnetic field generating means is arranged around the outside of the waveguide 130 .

第2図で、真空排気装置Wが、空間120外および導波
管130.131外に設置されている。排気管51′の
一端は、真空容器101の底壁に形成された排気口(図
示省略)に連結され、その他端は、真空排気*f50’
の吸入口(図示省略)に連結されている。
In FIG. 2, an evacuation device W is installed outside the space 120 and outside the waveguides 130 and 131. One end of the exhaust pipe 51' is connected to an exhaust port (not shown) formed in the bottom wall of the vacuum container 101, and the other end is connected to the exhaust port *f50'.
The intake port (not shown) is connected to the intake port (not shown).

圧力調節弁、例えば、可変抵抗弁(図示省略)が。A pressure regulating valve, for example a variable resistance valve (not shown).

排気管51′に設けられている。It is provided in the exhaust pipe 51'.

第2図で、処理ガス源ぽか、空間120外および導波管
130.131外に設置されている。ガス導入管61’
の一端は、処理ガス源Wに連結され、その他端は、この
場合、真空容器101の側壁に形成されたガス導入口(
図示省略)に連結されている。ガスItjI#調節器(
図示省略)および弁(図示省略)が、ガス導入管61’
にそれぞれ設けられている。このような処理ガス導入手
段は、空間120に処理ガスを導入する機能を有するも
のである。
In FIG. 2, the processing gas source is installed outside the space 120 and outside the waveguides 130 and 131. Gas introduction pipe 61'
One end is connected to a processing gas source W, and the other end is connected to a gas inlet (
(not shown). Gas ItjI# Regulator (
(not shown) and a valve (not shown) are gas inlet pipe 61'
are provided in each. Such processing gas introducing means has a function of introducing processing gas into the space 120.

第2図で、試料台160が、空間120に設けられてい
る。つまり、試料台軸161は、その上端部を空間12
0に突出し、また、その下端部を空間120外に突出し
、関口100の中心な略軸心として真空容器101の底
壁に気密に設けられている。試料台160は、試料台軸
161の軸心を略中心としてその上端に略水平に設けら
れている。試料台16Gの形状は、この場合、路内段形
であり、その寸法は、この場合、開口100よりも小さ
曵なりでいる。試料台160は、ステンレス鋼やアルミ
ニウム等で形成され、その表面に試料設置面を有してい
る。試料台軸161は、試料台160と同一材料で形成
され、その形状は、略円柱形状である。なお、試料台1
60と試料台軸161 とを一体に形成しても良い。ま
た、試料台160に試料台軸161を介してバイアス電
圧印加用の電源を接続しても良い。該電源としては、交
流電源や直流電源が使用される。この場合、試料台軸1
61は、電気的絶縁材を介して真空容器101と電気的
に絶縁される。
In FIG. 2, a sample stage 160 is provided in the space 120. In other words, the sample stand shaft 161 has its upper end connected to the space 12.
0, and its lower end protrudes outside the space 120, and is airtightly provided on the bottom wall of the vacuum vessel 101, approximately at the center of the entrance 100. The sample stage 160 is provided substantially horizontally at its upper end with the axis of the sample stage shaft 161 as its center. In this case, the shape of the sample stage 16G is a step-like shape, and its dimensions are smaller than the opening 100 in this case. The sample stage 160 is made of stainless steel, aluminum, or the like, and has a sample mounting surface on its surface. The sample stand shaft 161 is made of the same material as the sample stand 160, and has a substantially cylindrical shape. In addition, sample stage 1
60 and the sample stage shaft 161 may be formed integrally. Further, a power source for applying a bias voltage may be connected to the sample stand 160 via the sample stand shaft 161. As the power source, an AC power source or a DC power source is used. In this case, sample stand axis 1
61 is electrically insulated from the vacuum container 101 via an electrically insulating material.

第2図で、試料台160内部には、試料設置面に対応し
て冷却媒体流路(図示省略)が形成されている。試料台
軸161内部には、冷却媒体供給路(図示省略)と冷却
媒体排出路(図示省略)がそれぞれ形成されている。冷
却媒体供給路は、冷却媒体流路の入口を介して冷却媒体
流路に連通させられている。冷却媒体排出路は、冷却媒
体流路の出口を介して冷却媒体流路に連通させられてい
る。
In FIG. 2, a cooling medium flow path (not shown) is formed inside the sample stage 160 in correspondence with the sample installation surface. A cooling medium supply path (not shown) and a cooling medium discharge path (not shown) are formed inside the sample stage shaft 161, respectively. The coolant supply path is communicated with the coolant flow path via the inlet of the coolant flow path. The coolant discharge path is communicated with the coolant flow path via the outlet of the coolant flow path.

冷却媒体供給装置170’が、空間120外および導波
管130.131外に設置されている。冷却媒体供給管
n′の一端は、冷却媒体供給装置70’に連結され、そ
の他端は、冷却媒体供給路に連通して試料台軸161に
連結されている。冷却媒体回収管n′の一端は、冷却媒
体排出路に連通して試料台軸161に連結され、その他
端は、冷却媒体供給装置70′に連結されている。冷却
媒体供給管n′および冷却媒体回収管n′には、弁が設
けられていてもいな鳴ともどちらでも良い。
A cooling medium supply device 170' is installed outside the space 120 and outside the waveguides 130, 131. One end of the coolant supply pipe n' is connected to the coolant supply device 70', and the other end communicates with the coolant supply path and is connected to the sample stage shaft 161. One end of the coolant recovery pipe n' communicates with the coolant discharge path and is connected to the sample stage shaft 161, and the other end is connected to the coolant supply device 70'. The cooling medium supply pipe n' and the cooling medium recovery pipe n' may or may not be provided with valves.

第2図で、電熱ヒータ170が、試料台160および試
料台軸161内部に埋設されている。電熱ヒータ170
は、電源に接続され、通電量調節可能となっている。
In FIG. 2, an electric heater 170 is embedded inside the sample stage 160 and the sample stage shaft 161. Electric heater 170
is connected to a power source, and the amount of electricity supplied can be adjusted.

132図で、試料替のエプチング処理工程間の試料の非
処理時、つまり、冷却されている試料台160の試料設
置面に試料(資)が設置されていないとき、例えば、冷
却媒体供給装置7ぽからの冷却媒体の供給が停止される
。その後、電熱ヒータ170への通電が開始される。こ
れによる電熱ヒータ1700発熱により試料台160.
特に試料台160の試料設置面の温度は、デポ物が付着
しない程度の4度に加a調節され、該温度は、試料台1
60の試料設置面に試料匍が設置されるときまで保持さ
れる。なお、この場合、上記一実施例に比べ、プラズマ
の生成現象等が異なるのみで、その他、例えば、試料冷
却操作等は、同一である。従って、上記一実施例での説
明と重複する部分についての説明は省略するものとする
In FIG. 132, when the sample is not being processed between the sample replacement etching process steps, that is, when the sample (material) is not placed on the sample installation surface of the cooled sample stage 160, for example, the cooling medium supply device 7 The supply of cooling medium from the port is stopped. Thereafter, power supply to the electric heater 170 is started. Due to the heat generated by the electric heater 1700, the sample stage 160.
In particular, the temperature of the sample mounting surface of the sample stage 160 is adjusted to 4 degrees to prevent deposits from adhering to the sample stage 160.
It is held until the sample spool is installed on the sample installation surface of 60. In this case, compared to the above embodiment, only the plasma generation phenomenon and the like are different, and other aspects such as the sample cooling operation are the same. Therefore, description of parts that overlap with the description of the above embodiment will be omitted.

本実施例では、上記−実施例での効果と同様の効果を奏
することができる。
In this embodiment, the same effects as those in the above-mentioned embodiments can be achieved.

なお、上記第2の実施例では、いわゆる有磁場型のマイ
クロ波プラズマ処理装置に適用した場合について説明し
たが、いわゆる無磁場型のマイクロ波プラズマ処理装置
にも同様に適用できる。
Although the second embodiment described above is applied to a so-called magnetic field type microwave plasma processing apparatus, it can be similarly applied to a so-called non-magnetic field type microwave plasma processing apparatus.

上記一実施例および第2の実施例においては、エツチン
グ特性の変動防止を主眼として説明したが、その他に、
次のような効果が得られる。
In the above embodiment and second embodiment, the explanation focused on preventing fluctuations in etching characteristics, but in addition,
The following effects can be obtained.

(1)電極(試料台)の試料設置面に付着、堆積するデ
ポ物が熱的絶縁物若しくはその不良導体である場合には
、冷却されている電極(試料台)を介しての試料の冷却
効率が低下し、試料の所定温度への冷却が不充分なもの
となる。このため、例えば、マスク材であるレジストの
変質防止を目的としたものにおいては、この目的を達成
できなくなり、また1例えば、試料を0℃以下の温度に
冷却してサブミクロン領域の異方性エツチングを行うこ
とを目的としたものにおいては、この目的を達成するこ
とが困難となる。しかし、このような不都合は、電極(
試料台)の試料設置面へのデポ物の付着、堆積を防止す
ることで、充分に解消できる。
(1) If the deposit that adheres or accumulates on the sample mounting surface of the electrode (sample stage) is a thermal insulator or its poor conductor, the sample should be cooled via the cooled electrode (sample stage). Efficiency is reduced and the sample is insufficiently cooled to the desired temperature. For this reason, for example, when the purpose is to prevent deterioration of the resist, which is a mask material, this purpose cannot be achieved. If the purpose is to perform etching, it is difficult to achieve this purpose. However, such inconvenience is caused by the electrode (
This problem can be sufficiently resolved by preventing deposits from adhering to or accumulating on the sample installation surface of the sample stand.

(2)  電1i(試料台)の試料設置面に静電気力を
利用して試料を吸着させるものにおいては、電極(試料
台)の試料設置面にテ゛ポ物が付着、堆積した場合、該
デポ物が障害となり充分な静電吸着力が得られな(なり
、このため、電極(試料台)の試料設置面での試料の設
置が不安定なものとなる。
(2) In the case where the sample is adsorbed to the sample installation surface of the electrode 1i (sample stage) using electrostatic force, if a deposit adheres or accumulates on the sample installation surface of the electrode (sample stage), the deposit This becomes a hindrance, making it impossible to obtain sufficient electrostatic adsorption force, and as a result, the placement of the sample on the sample placement surface of the electrode (sample stage) becomes unstable.

このような試料の設置不安定により、冷却されている電
極(試料台)を介しての試料の冷却効率が低下して試料
の所定温度への冷却が不充分なものとなり、上記(1)
に記載したような不都合を生じる。
Due to such unstable sample installation, the cooling efficiency of the sample via the cooled electrode (sample stage) decreases, and the sample is insufficiently cooled to a predetermined temperature.
This will cause inconveniences as described in .

また、例えば、試料の冷却効率を向上させるために電極
(試料台)の試料設置面と試料の裏面との間に熱伝導性
の良いガスを供給するタイプのものにおいては、該ガス
の圧力による試料の浮上り等により電極(試料台)の試
料設置面と試料の裏面との間を所定間隔に保持する二と
が困難、つまり、核間におけるガス圧を所定圧力(範囲
)に維持する二とが困難となる。従って、この場合も冷
却されている電極(試料台)を介しての試料の冷却効率
が低下して試料の所定温度への冷却が不充分なものとな
り、上記のような不都合を生じる。しかし、これらの不
都合は、電極(試料台)の試料設置面へのデポ物の付着
、堆積を防止することで、充分に解消できる。
In addition, for example, in a type that supplies a gas with good thermal conductivity between the sample installation surface of the electrode (sample stage) and the back surface of the sample in order to improve the cooling efficiency of the sample, the pressure of the gas Due to levitation of the sample, etc., it is difficult to maintain a specified distance between the sample mounting surface of the electrode (sample stage) and the back surface of the sample.In other words, it is difficult to maintain the gas pressure between the nuclei at a specified pressure (range). becomes difficult. Therefore, in this case as well, the cooling efficiency of the sample via the cooled electrode (sample stage) decreases, and the sample is insufficiently cooled to a predetermined temperature, resulting in the above-mentioned inconvenience. However, these inconveniences can be sufficiently overcome by preventing deposits from adhering to and accumulating on the sample mounting surface of the electrode (sample stage).

なお、上記一実施例および第2の実施例において、プラ
ズマは、放電または磁場を併用した放電により生成させ
られているが、この他のエネルギ、例えば、光エネルギ
を用いて生成させられるタイプのものにも同様に適用で
きる。また、処理される試料の電気的ダメージを抑制す
るために、中性粒子を用いて処理するタイプのものや、
更に、例えば、分子線エピタキシャル(特に低4MBE
)装置のように、プラズマを利用しないで処理するタイ
プのものへの適用も効果的である。
In the above embodiment and second embodiment, plasma is generated by electric discharge or electric discharge using a magnetic field, but plasma of a type generated using other energy such as light energy may also be used. The same applies to In addition, in order to suppress electrical damage to the sample being processed, there are types that process using neutral particles,
Furthermore, for example, molecular beam epitaxial
) It is also effective to apply this method to devices that do not use plasma for processing, such as devices that do not use plasma.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料の非処N時における試料台へのデ
ポ物の付着を防止できるので、プロセス特性の変動を防
止でき試料処理の再境性、信頼性を向上できる効果があ
る。
According to the present invention, since it is possible to prevent deposits from adhering to the sample stage when the sample is not being treated with nitrogen, it is possible to prevent fluctuations in process characteristics and to improve the reproducibility and reliability of sample treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の平行平板型プラズマ処理
装置の要部構成図、第2図は、本発明の第2の実施例の
有磁場型マイクロ波プラズマ処理装置の要部構成図であ
る。 10・・・・・・処理室、加、30・・・・・・電極、
21,31・・・・・・電極軸、ψ・・・・・・菖周波
亀諒、父、W・・・・・・真空排気装置、51.51’
・・・・・・排気管、印、60′・・・・・・処理ガス
源、61、61’・・・・・・ガス導入管、70. T
O’・・・・・・冷却媒体供給装置、71.71’・・
・・・・冷却媒体供給管、 n、 ?4.82゜あ・・
−・・弁、 73.73’・・−・・冷却媒体回収管、
(資)・・・・・・加潅媒体供給装置、81・・・・・
・加温媒体供給管、お・・・・・・加温媒体回収管、匍
・・・・・・試料、100・・・・・・開口、101・
・・・・・真空容器、110・・・・・・放電管、13
0,131・・・導波管、140・・・・・・マグネト
ロン、150・・・・・・電磁コイル、160・・・・
・・試料台、161・・・・・・試料台軸、170イ1
FIG. 1 is a configuration diagram of main parts of a parallel plate type plasma processing apparatus according to an embodiment of the present invention, and FIG. 2 is a main part configuration diagram of a magnetic field type microwave plasma processing apparatus according to a second embodiment of the invention. It is a diagram. 10...processing chamber, addition, 30...electrode,
21, 31...Electrode axis, ψ...Iris frequency turtle, father, W...Vacuum exhaust device, 51.51'
...Exhaust pipe, mark, 60'...Processing gas source, 61, 61'...Gas introduction pipe, 70. T
O'... Cooling medium supply device, 71.71'...
...Cooling medium supply pipe, n, ? 4.82゜ah...
-...Valve, 73.73'...Cooling medium recovery pipe,
(Capital)...Irrigation medium supply device, 81...
・Heating medium supply pipe, oh...Heating medium recovery tube, 卍...sample, 100...opening, 101...
...Vacuum container, 110 ...Discharge tube, 13
0,131... Waveguide, 140... Magnetron, 150... Electromagnetic coil, 160...
...Sample stand, 161...Sample stand axis, 170i1
figure

Claims (1)

【特許請求の範囲】 1、減圧下で試料台に設置された試料をプラズマを利用
して処理する工程と、前記試料の非処理時における前記
試料台の温度をデポジション物質の付着温度以上の温度
にする工程とを有することを特徴とするプラズマ処理方
法。 2、0℃以下の温度に冷却された試料台に減圧下で設置
されて冷却された試料をプラズマを利用して処理し、前
記試料の非処理時における前記試料台の温度をデポジシ
ョン物質の付着温度以上の温度にする第1請求項に記載
のプラズマ処理方法。 3、デポジション性ガスが添加されたエッチングガスを
減圧下でプラズマ化し、0℃以下の温度に冷却された試
料台に減圧下で設置されて冷却された試料を前記プラズ
マを利用してエッチング処理し、前記試料の非エッチン
グ処理時における前記試料台の温度をデポジション物質
の付着温度以上の温度にする第2請求項に記載のプラズ
マ処理方法。 4、前記試料台が設けられ前記試料がプラズマを利用し
て処理される処理室内で前記試料の非処理時の脱離した
デポジション物質の再付着温度以上の温度に前記試料の
非処理時における前記試料台の温度を上昇させる第3項
記載のプラズマ処理方法。 5、処理室と、該処理室内を減圧排気する手段と、前記
処理室内に処理ガスを導入する手段と、前記処理室内に
導入された処理ガスをプラズマ化する手段と、前記処理
室内で試料が設置される試料台と、該試料台を冷却する
手段と、冷却された前記試料台をデポジション物質の付
着温度以上の温度に加温する手段とを具備したことを特
徴とするプラズマ処理装置。 6、前記加温手段を、前記試料の非処理時に前記処理室
内壁および内部部品より脱離した前記デポジション物質
の再付着温度以上の温度に前記試料台を加温する手段と
した第5請求項に記載のプラズマ処理装置。 7、処理室と、該処理室内を減圧排気する手段と、処理
ガスをプラズマ化する手段と、該プラズマを前記処理室
内に導入する手段と、前記処理室内に設けられた試料台
と、該試料台を冷却する手段と、冷却された前記試料台
をデポジション物質の付着温度以上の温度に加温する手
段とを具備したことを特徴とするプラズマ処理装置。
[Claims] 1. Processing a sample placed on a sample stage under reduced pressure using plasma, and controlling the temperature of the sample stage when the sample is not being processed to a temperature higher than the adhesion temperature of the deposition material. A plasma processing method characterized by comprising a step of increasing the temperature. 2. The cooled sample is placed under reduced pressure on a sample stand cooled to a temperature below 0°C, and then the cooled sample is processed using plasma, and the temperature of the sample stand when the sample is not being processed is equal to that of the deposition material. The plasma processing method according to claim 1, wherein the temperature is higher than the deposition temperature. 3. The etching gas to which a deposition gas has been added is turned into plasma under reduced pressure, and the sample is placed under reduced pressure on a sample stage cooled to a temperature of 0° C. or less, and the cooled sample is etched using the plasma. 2. The plasma processing method according to claim 2, wherein the temperature of the sample stage during the non-etching process of the sample is set to a temperature equal to or higher than the adhesion temperature of the deposition material. 4. In a processing chamber in which the sample stage is provided and the sample is processed using plasma, the sample is heated to a temperature higher than the redeposition temperature of the deposited substance that was desorbed during the non-processing of the sample during the non-processing of the sample. 4. The plasma processing method according to claim 3, wherein the temperature of the sample stage is increased. 5. A processing chamber, a means for evacuating the inside of the processing chamber, a means for introducing a processing gas into the processing chamber, a means for converting the processing gas introduced into the processing chamber into plasma, and a means for evacuating the inside of the processing chamber under reduced pressure. A plasma processing apparatus comprising: a sample stand to be installed; means for cooling the sample stand; and means for heating the cooled sample stand to a temperature equal to or higher than the deposition temperature of a deposition substance. 6. A fifth aspect of the present invention, wherein the heating means is a means for heating the sample stage to a temperature equal to or higher than the re-deposition temperature of the deposition substance detached from the inner wall and internal parts of the processing chamber when the sample is not processed. The plasma processing apparatus described in . 7. A processing chamber, a means for evacuating the inside of the processing chamber, a means for converting the processing gas into plasma, a means for introducing the plasma into the processing chamber, a sample stage provided in the processing chamber, and the sample. A plasma processing apparatus comprising: means for cooling a stage; and means for heating the cooled sample stage to a temperature equal to or higher than the deposition temperature of a deposition material.
JP27298088A 1988-10-31 1988-10-31 Plasma processing and device therefor Pending JPH02121330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27298088A JPH02121330A (en) 1988-10-31 1988-10-31 Plasma processing and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27298088A JPH02121330A (en) 1988-10-31 1988-10-31 Plasma processing and device therefor

Publications (1)

Publication Number Publication Date
JPH02121330A true JPH02121330A (en) 1990-05-09

Family

ID=17521473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27298088A Pending JPH02121330A (en) 1988-10-31 1988-10-31 Plasma processing and device therefor

Country Status (1)

Country Link
JP (1) JPH02121330A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525999A (en) * 2004-12-21 2008-07-17 アプライド マテリアルズ インコーポレイテッド In-situ chamber cleaning process to remove byproduct deposits from chemical vapor deposition etch chambers
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
KR20150055579A (en) 2013-11-13 2015-05-21 가부시키가이샤 니프코 Lid lock structure
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10593539B2 (en) 2004-02-26 2020-03-17 Applied Materials, Inc. Support assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230329A (en) * 1985-07-31 1987-02-09 Toshiba Corp Dry etching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230329A (en) * 1985-07-31 1987-02-09 Toshiba Corp Dry etching device

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593539B2 (en) 2004-02-26 2020-03-17 Applied Materials, Inc. Support assembly
JP2012256942A (en) * 2004-12-21 2012-12-27 Applied Materials Inc In-situ chamber cleaning process for removing deposit of by-product from chemical vapor deposition etching chamber
JP2008525999A (en) * 2004-12-21 2008-07-17 アプライド マテリアルズ インコーポレイテッド In-situ chamber cleaning process to remove byproduct deposits from chemical vapor deposition etch chambers
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
KR20150055579A (en) 2013-11-13 2015-05-21 가부시키가이샤 니프코 Lid lock structure
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Similar Documents

Publication Publication Date Title
JPH02121330A (en) Plasma processing and device therefor
US7048869B2 (en) Plasma processing apparatus and a plasma processing method
US4918031A (en) Processes depending on plasma generation using a helical resonator
JP3426040B2 (en) Plasma etching apparatus with heated scavenging surface
KR940010502B1 (en) Forming method of interlayer isulating film and apparatus therefor
KR100238625B1 (en) High-frequency power supplying means for plasma processing apparatus
US6155200A (en) ECR plasma generator and an ECR system using the generator
US4911812A (en) Plasma treating method and apparatus therefor
JP2512783B2 (en) Plasma etching method and apparatus
JPH0740569B2 (en) ECR plasma deposition method
JPH03218627A (en) Method and device for plasma etching
JP3172759B2 (en) Plasma processing method and plasma processing apparatus
JP3323928B2 (en) Plasma processing equipment
KR100518615B1 (en) Method for treating surface of substrate and method for etching
JP2741906B2 (en) Vacuum processing method and device
JP2005150606A (en) Plasma treatment apparatus
JPH05275376A (en) Dry-etching device and dry-etching method
JP2574899B2 (en) Plasma etching equipment
JP2000164563A (en) Plasma processing device
JP3085427B2 (en) Plasma etching method
JP2002083798A (en) Surface-processing method
JP3950494B2 (en) Method for producing titanium nitride thin film
JPH02308527A (en) Method and device for vacuum treatment
JPS594849B2 (en) Microwave plasma processing equipment
JPH02130822A (en) Method for plasma etching