JPH02106079A - Electricity heat conversion element - Google Patents

Electricity heat conversion element

Info

Publication number
JPH02106079A
JPH02106079A JP63259714A JP25971488A JPH02106079A JP H02106079 A JPH02106079 A JP H02106079A JP 63259714 A JP63259714 A JP 63259714A JP 25971488 A JP25971488 A JP 25971488A JP H02106079 A JPH02106079 A JP H02106079A
Authority
JP
Japan
Prior art keywords
low thermal
type semiconductor
heat
conductivity
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259714A
Other languages
Japanese (ja)
Inventor
Tatsuya Kato
達也 加藤
Koei Aoki
青木 弘栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Chubu Electric Power Co Inc
Original Assignee
CKD Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp, Chubu Electric Power Co Inc filed Critical CKD Corp
Priority to JP63259714A priority Critical patent/JPH02106079A/en
Publication of JPH02106079A publication Critical patent/JPH02106079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable the heat generation and the heat absorption to be effected efficiently by a method wherein low thermal conductive layers comprising materials in high conductivity and low thermal conductivity are formed halfway in the conductive directions of a P type semiconductor and an N type semiconductor. CONSTITUTION:Low thermal conductive layers 5 are formed on intermediate parts in the conductive directions of P type and N type semiconductors 1, 2. The low thermal conductive layers 5 are composed of grains comprising low thermal conductive material as well as coating layers 7 comprising metallic material in high conductivity such as copper, nickel etc. around the grains 6 sintered with one another. Consequently, the conductivity can be assured by the coating layers 7 in high conductivity bonded with one another however the thermal conduction from the ends of heat generating side to the ends of heat absorbing side is restricted by the grains 6 in low thermal conductivity laid between the coating layers 7. Through these procedures, the heat generation and the heat absorption can be effected efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用した熱変換素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to a heat conversion element that utilizes the Peltier effect.

従来の技術及び発明が解決しようとする問題点従来、ペ
ルチェ効果を利用した熱変換素子としてP形半導体とN
形半導体を接合したものが広く知られているが、各半導
体における発熱端から吸熱端への熱伝導により効率が低
下するという問題があり、このため、半導体を構成する
カルコゲナイド系材料の非晶質バルク材を用いて熱伝導
を低下させたらのが使用されているが、必ずしも十分な
効果をあげていない。
Conventional techniques and problems to be solved by the invention Conventionally, P-type semiconductors and N-type semiconductors have been used as heat conversion elements using the Peltier effect.
Although it is widely known that semiconductors are made by bonding shaped semiconductors, there is a problem in that the efficiency decreases due to heat conduction from the heat generating end to the heat absorbing end of each semiconductor. The use of bulk materials to reduce heat conduction has been used, but this is not always effective.

問題点を解決するための手段 本発明はこのような問題点を解決することを目的とする
ものであって、第1の発明は、ビスマス・テルル、鉛・
テルル等のカルコゲナイド系材料等からなるP形半導体
とN形半導体を接合した電熱変換素子において、P形半
導体及びN形半導体の通電方向の途中に導電率が高くか
つ熱伝導率の低い材料からなる低熱伝導層を形成した構
成とし、また、第2の発明は、ガラス、セラミックス等
の低熱伝導材料の周りをカルコゲナイド系材料で被覆し
た粒子を結合したP形半導体及びN形半導体を接合した
構成とした。
Means for Solving the Problems The present invention aims to solve such problems, and the first invention is based on bismuth tellurium, lead and lead.
In an electrothermal conversion element in which a P-type semiconductor and an N-type semiconductor made of a chalcogenide material such as tellurium are joined, a material with high electrical conductivity and low thermal conductivity is made of a material in the middle of the current flow direction of the P-type semiconductor and N-type semiconductor. The second invention has a structure in which a low thermal conductivity layer is formed, and a second invention has a structure in which a P-type semiconductor and an N-type semiconductor in which particles of a low thermal conductivity material such as glass or ceramics are coated with a chalcogenide-based material are bonded. did.

発明の作用及び効果 本発明は上記構成になり、第1の発明は、半導体の通電
方向の途中に低熱伝導層を形成したから発熱端から吸熱
端への熱伝導が妨げられ、かつ、この層の導電率は十分
に高いから、熱成績係数が高く、効率が向上する効果が
あり、また、第2の発明は、半導体全体の熱伝導率が低
く、導電率は十分に高く維持されるから、上記第1の発
明と同様の効果を奏する。
Functions and Effects of the Invention The present invention has the above configuration, and the first invention is that since a low thermal conductivity layer is formed in the middle of the semiconductor in the current direction, heat conduction from the heat generating end to the heat absorbing end is prevented, and this layer Because the conductivity of the semiconductor is sufficiently high, the coefficient of thermal performance is high and the efficiency is improved.The second invention is because the thermal conductivity of the entire semiconductor is low and the conductivity is maintained sufficiently high. , the same effects as the first invention described above are achieved.

実施例 以下、本発明の実施例を添付図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

発明の第■の発明の一実施例を第1図及び第2図に基づ
いて説明すると、■はP形半導体、2はN形半導体であ
って、両者の間に銅等の導電率の高い材料からなる接合
板3が、P形半導体l及びN形半導体2と図示しない隣
り合うN形及びP形半導体の間に接合板4が夫々接続さ
れている。上記は従来公知の電熱変換素子であって、接
合板4.4間に電流を通ずると、一方の接合板4.4が
発熱し、他方の接合板3が吸熱して冷却されるのである
が、本実施例では、P形及びN形半導体112の通電方
向の中間に低熱伝導層5が形成されている。この低熱伝
導層5は、第2図に拡大して示すように、ガラス、セラ
ミックあるいはこれらの多孔質体等の低熱伝導材料から
なる粒子6の周りに銅、ニッケル等の導電率の高い金属
材料からなる被覆層7をメツキ、融着等の手段により形
成し、これを焼結したものである。
An embodiment of the invention No. 2 of the invention will be explained based on FIGS. A bonding plate 3 made of a material is connected between a P-type semiconductor 1 and an N-type semiconductor 2, and a bonding plate 4 between adjacent N-type and P-type semiconductors (not shown). The above is a conventionally known electrothermal conversion element, and when a current is passed between the bonding plates 4.4, one of the bonding plates 4.4 generates heat, and the other bonding plate 3 absorbs heat and is cooled. In this embodiment, a low thermal conductivity layer 5 is formed between the P-type and N-type semiconductors 112 in the current direction. As shown in an enlarged view in FIG. 2, this low thermal conductivity layer 5 is made of a highly conductive metal material such as copper or nickel surrounding particles 6 made of a low thermal conductive material such as glass, ceramic, or a porous material thereof. A covering layer 7 consisting of the above is formed by plating, fusing, etc., and then sintered.

本実施例は上記構成になり、低熱伝導層5は、導電率の
高い被覆層7同士の接合により通電性は妨げられないも
のの、熱伝導率の低い粒子が介在するため発熱側の端部
から吸熱側の端部への熱の伝導が抑制されて発熱と吸熱
が効率良く行われる。
The present embodiment has the above-mentioned configuration, and although the conductivity is not hindered due to the bonding between the coating layers 7 with high conductivity, the low thermal conductivity layer 5 does not disturb the conductivity from the end of the heat generating side due to the presence of particles with low thermal conductivity. Heat conduction to the end on the heat absorption side is suppressed, and heat generation and heat absorption are performed efficiently.

次に、本発明の第2の発明の一実施例を第3.4、図に
基づいて説明すると、本実施例は、上記実施例と同様に
、P形半導体■とN形半導体2が接合板3.4によって
接合された構成になるが、本実施例においてはP形半導
体!とN形半導体2の全体が、第4図に拡大して示すよ
うに、ガラス、セラミック、あるいはこれらの多孔質体
等の低熱伝導材料からなる粒子8の周りに、半導体を構
成するビスマス・テルル、鉛・テルル等のカルコゲナイ
ド系材料からなる被覆層9をメツキまたは融着等の手段
によって形成し、焼結により結合した構成になり、カル
コゲナイド系材料からなる被覆層9が半導体としての機
能を果たすととらに、低熱伝導材料からなる粒子の介在
によって全体の熱伝導率が低下し、発熱端から吸熱端へ
の熱伝導が抑制されて発熱と吸熱が効率良く行われる。
Next, an embodiment of the second invention of the present invention will be explained based on Section 3.4 and Figures. In this embodiment, as in the above embodiment, the P-type semiconductor Although the structure is joined by plates 3 and 4, in this example, it is a P-type semiconductor! As shown in an enlarged view in FIG. 4, the entirety of the N-type semiconductor 2 is surrounded by particles 8 made of a low thermal conductivity material such as glass, ceramic, or a porous material thereof. A coating layer 9 made of a chalcogenide material such as lead or tellurium is formed by plating or fusion, and is bonded by sintering, so that the coating layer 9 made of a chalcogenide material functions as a semiconductor. In addition, the presence of particles made of a low thermally conductive material lowers the overall thermal conductivity, suppressing heat conduction from the heat generating end to the heat absorbing end, and efficiently generating and absorbing heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の一実施例の側面図、第2図はその
低熱伝導層の部分拡大図、第3図は第2の発明の一実施
例の側面図、第4図はその半導体の部分拡大図。 l:P形半導体 2:N形半導体 3:(吸熱側)接合
側 4:(発熱側)接合板 5:低熱伝導層 6.8:
(低熱伝導材料からなる) ti。 子 7:(高導電材料からなる)被覆層 9:(カルコ
ゲナイド系材料からなる)被覆層宵1面 箸20
FIG. 1 is a side view of an embodiment of the first invention, FIG. 2 is a partially enlarged view of a low thermal conductivity layer, FIG. 3 is a side view of an embodiment of the second invention, and FIG. 4 is a side view of the embodiment of the second invention. Partially enlarged view of a semiconductor. l: P-type semiconductor 2: N-type semiconductor 3: (heat absorption side) bonding side 4: (heat generation side) bonding plate 5: low thermal conductivity layer 6.8:
(made of low thermal conductivity material) ti. 7: Covering layer (made of a highly conductive material) 9: Covering layer (made of a chalcogenide material) 20

Claims (1)

【特許請求の範囲】 1 ビスマス・テルル、鉛・テルル等のカルコゲナイド
系材料等からなるP形半導体とN形半導体を接合した電
熱変換素子において、P形半導体及びN形半導体の通電
方向の途中に導電率が高くかつ熱伝導率の低い材料から
なる低熱伝導層を形成したことを特徴とする電熱変換素
子 2 ガラス、セラミックス等の低熱伝導材料の周りをカ
ルコゲナイド系材料で被覆した粒子を結合したP形半導
体及びN形半導体を接合したことを特徴とする電熱変換
素子
[Scope of Claims] 1. In an electrothermal conversion element in which a P-type semiconductor and an N-type semiconductor made of a chalcogenide material such as bismuth-tellurium or lead-tellurium are joined together, an electrothermal conversion element is provided in the middle of the P-type semiconductor and the N-type semiconductor in the direction of current flow. Electrothermal conversion element 2 characterized by forming a low thermal conductivity layer made of a material with high electrical conductivity and low thermal conductivity 2 P that combines particles of a low thermal conductive material such as glass or ceramics coated with a chalcogenide material Electrothermal conversion element characterized by joining a type semiconductor and an N type semiconductor
JP63259714A 1988-10-14 1988-10-14 Electricity heat conversion element Pending JPH02106079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259714A JPH02106079A (en) 1988-10-14 1988-10-14 Electricity heat conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259714A JPH02106079A (en) 1988-10-14 1988-10-14 Electricity heat conversion element

Publications (1)

Publication Number Publication Date
JPH02106079A true JPH02106079A (en) 1990-04-18

Family

ID=17337922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259714A Pending JPH02106079A (en) 1988-10-14 1988-10-14 Electricity heat conversion element

Country Status (1)

Country Link
JP (1) JPH02106079A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455051A2 (en) * 1990-04-20 1991-11-06 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
WO1994014200A1 (en) * 1992-12-11 1994-06-23 Joel Miller Laminated thermoelement
US5439528A (en) * 1992-12-11 1995-08-08 Miller; Joel Laminated thermo element
US6103968A (en) * 1994-02-28 2000-08-15 White Eagle International Technologies Group, Inc. Thermal generator and method of producing same
WO2000073712A3 (en) * 1999-06-01 2001-08-23 Vtv Verfahrenstech Verwaltung Method and device for forming thermobranches containing a foam structure
JP2005294478A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Thermoelectric transduction element
WO2006043514A1 (en) * 2004-10-18 2006-04-27 Meidensha Corporation Structure of peltier element or seebeck element and its manufacturing method
JP2010130002A (en) * 2008-11-26 2010-06-10 Korea Electronics Telecommun Thermoelectric element, thermoelectric element module, and its thermoelectric element forming method
JP2011014862A (en) * 2009-07-06 2011-01-20 Korea Electronics Telecommun Thermoelectric device, and method for fabricating the same
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086286A (en) * 1973-11-30 1975-07-11
JPS5729171B2 (en) * 1978-05-22 1982-06-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086286A (en) * 1973-11-30 1975-07-11
JPS5729171B2 (en) * 1978-05-22 1982-06-21

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455051A2 (en) * 1990-04-20 1991-11-06 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
USRE35441E (en) * 1990-04-20 1997-02-04 Matsushita Electrical Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
EP0834930A2 (en) * 1990-04-20 1998-04-08 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
EP0834930A3 (en) * 1990-04-20 1998-04-29 Matsushita Electric Industrial Co., Ltd. Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
WO1994014200A1 (en) * 1992-12-11 1994-06-23 Joel Miller Laminated thermoelement
US5439528A (en) * 1992-12-11 1995-08-08 Miller; Joel Laminated thermo element
US6103968A (en) * 1994-02-28 2000-08-15 White Eagle International Technologies Group, Inc. Thermal generator and method of producing same
WO2000073712A3 (en) * 1999-06-01 2001-08-23 Vtv Verfahrenstech Verwaltung Method and device for forming thermobranches containing a foam structure
JP2005294478A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Thermoelectric transduction element
WO2006043514A1 (en) * 2004-10-18 2006-04-27 Meidensha Corporation Structure of peltier element or seebeck element and its manufacturing method
JP4850070B2 (en) * 2004-10-18 2012-01-11 義臣 近藤 Method for manufacturing Peltier element or Seebeck element
JP2010130002A (en) * 2008-11-26 2010-06-10 Korea Electronics Telecommun Thermoelectric element, thermoelectric element module, and its thermoelectric element forming method
JP2011014862A (en) * 2009-07-06 2011-01-20 Korea Electronics Telecommun Thermoelectric device, and method for fabricating the same
US8940995B2 (en) 2009-07-06 2015-01-27 Electronics And Telecommunications Research Institute Thermoelectric device and method for fabricating the same
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
US6812395B2 (en) Thermoelectric heterostructure assemblies element
US6700053B2 (en) Thermoelectric module
JP6350817B2 (en) Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material.
JPH02106079A (en) Electricity heat conversion element
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
KR20240081457A (en) Thermo electric element
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
US3037065A (en) Method and materials for thermoelectric bodies
JP2016157843A (en) Thermoelectric conversion device
JP2022535751A (en) thermoelectric element
JPS60127770A (en) Thermoelectric generating element
US10897001B2 (en) Thermoelectric conversion module
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
KR102366388B1 (en) Thermo electric element
JP7513403B2 (en) Thermoelectric Module
JP3469811B2 (en) Line type thermoelectric conversion module
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
KR102368960B1 (en) Thermoelectric element and thermoelectric conversion device comprising the same
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
TW202135347A (en) Thermo electric element
JPH1084140A (en) Thermo-electric converter and manufacture thereof
KR20220010937A (en) Thermo electric element
JP3007904U (en) Thermal battery
JPH09162448A (en) Thermoelectric element
JPH1022531A (en) Thermoelectric converter element