JPH02106079A - Electricity heat conversion element - Google Patents
Electricity heat conversion elementInfo
- Publication number
- JPH02106079A JPH02106079A JP63259714A JP25971488A JPH02106079A JP H02106079 A JPH02106079 A JP H02106079A JP 63259714 A JP63259714 A JP 63259714A JP 25971488 A JP25971488 A JP 25971488A JP H02106079 A JPH02106079 A JP H02106079A
- Authority
- JP
- Japan
- Prior art keywords
- low thermal
- type semiconductor
- heat
- conductivity
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 9
- 230000005611 electricity Effects 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 150000004770 chalcogenides Chemical class 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 229910052714 tellurium Inorganic materials 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 abstract description 14
- 239000011247 coating layer Substances 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 4
- 230000020169 heat generation Effects 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用した熱変換素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to a heat conversion element that utilizes the Peltier effect.
従来の技術及び発明が解決しようとする問題点従来、ペ
ルチェ効果を利用した熱変換素子としてP形半導体とN
形半導体を接合したものが広く知られているが、各半導
体における発熱端から吸熱端への熱伝導により効率が低
下するという問題があり、このため、半導体を構成する
カルコゲナイド系材料の非晶質バルク材を用いて熱伝導
を低下させたらのが使用されているが、必ずしも十分な
効果をあげていない。Conventional techniques and problems to be solved by the invention Conventionally, P-type semiconductors and N-type semiconductors have been used as heat conversion elements using the Peltier effect.
Although it is widely known that semiconductors are made by bonding shaped semiconductors, there is a problem in that the efficiency decreases due to heat conduction from the heat generating end to the heat absorbing end of each semiconductor. The use of bulk materials to reduce heat conduction has been used, but this is not always effective.
問題点を解決するための手段
本発明はこのような問題点を解決することを目的とする
ものであって、第1の発明は、ビスマス・テルル、鉛・
テルル等のカルコゲナイド系材料等からなるP形半導体
とN形半導体を接合した電熱変換素子において、P形半
導体及びN形半導体の通電方向の途中に導電率が高くか
つ熱伝導率の低い材料からなる低熱伝導層を形成した構
成とし、また、第2の発明は、ガラス、セラミックス等
の低熱伝導材料の周りをカルコゲナイド系材料で被覆し
た粒子を結合したP形半導体及びN形半導体を接合した
構成とした。Means for Solving the Problems The present invention aims to solve such problems, and the first invention is based on bismuth tellurium, lead and lead.
In an electrothermal conversion element in which a P-type semiconductor and an N-type semiconductor made of a chalcogenide material such as tellurium are joined, a material with high electrical conductivity and low thermal conductivity is made of a material in the middle of the current flow direction of the P-type semiconductor and N-type semiconductor. The second invention has a structure in which a low thermal conductivity layer is formed, and a second invention has a structure in which a P-type semiconductor and an N-type semiconductor in which particles of a low thermal conductivity material such as glass or ceramics are coated with a chalcogenide-based material are bonded. did.
発明の作用及び効果
本発明は上記構成になり、第1の発明は、半導体の通電
方向の途中に低熱伝導層を形成したから発熱端から吸熱
端への熱伝導が妨げられ、かつ、この層の導電率は十分
に高いから、熱成績係数が高く、効率が向上する効果が
あり、また、第2の発明は、半導体全体の熱伝導率が低
く、導電率は十分に高く維持されるから、上記第1の発
明と同様の効果を奏する。Functions and Effects of the Invention The present invention has the above configuration, and the first invention is that since a low thermal conductivity layer is formed in the middle of the semiconductor in the current direction, heat conduction from the heat generating end to the heat absorbing end is prevented, and this layer Because the conductivity of the semiconductor is sufficiently high, the coefficient of thermal performance is high and the efficiency is improved.The second invention is because the thermal conductivity of the entire semiconductor is low and the conductivity is maintained sufficiently high. , the same effects as the first invention described above are achieved.
実施例 以下、本発明の実施例を添付図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.
発明の第■の発明の一実施例を第1図及び第2図に基づ
いて説明すると、■はP形半導体、2はN形半導体であ
って、両者の間に銅等の導電率の高い材料からなる接合
板3が、P形半導体l及びN形半導体2と図示しない隣
り合うN形及びP形半導体の間に接合板4が夫々接続さ
れている。上記は従来公知の電熱変換素子であって、接
合板4.4間に電流を通ずると、一方の接合板4.4が
発熱し、他方の接合板3が吸熱して冷却されるのである
が、本実施例では、P形及びN形半導体112の通電方
向の中間に低熱伝導層5が形成されている。この低熱伝
導層5は、第2図に拡大して示すように、ガラス、セラ
ミックあるいはこれらの多孔質体等の低熱伝導材料から
なる粒子6の周りに銅、ニッケル等の導電率の高い金属
材料からなる被覆層7をメツキ、融着等の手段により形
成し、これを焼結したものである。An embodiment of the invention No. 2 of the invention will be explained based on FIGS. A bonding plate 3 made of a material is connected between a P-type semiconductor 1 and an N-type semiconductor 2, and a bonding plate 4 between adjacent N-type and P-type semiconductors (not shown). The above is a conventionally known electrothermal conversion element, and when a current is passed between the bonding plates 4.4, one of the bonding plates 4.4 generates heat, and the other bonding plate 3 absorbs heat and is cooled. In this embodiment, a low thermal conductivity layer 5 is formed between the P-type and N-type semiconductors 112 in the current direction. As shown in an enlarged view in FIG. 2, this low thermal conductivity layer 5 is made of a highly conductive metal material such as copper or nickel surrounding particles 6 made of a low thermal conductive material such as glass, ceramic, or a porous material thereof. A covering layer 7 consisting of the above is formed by plating, fusing, etc., and then sintered.
本実施例は上記構成になり、低熱伝導層5は、導電率の
高い被覆層7同士の接合により通電性は妨げられないも
のの、熱伝導率の低い粒子が介在するため発熱側の端部
から吸熱側の端部への熱の伝導が抑制されて発熱と吸熱
が効率良く行われる。The present embodiment has the above-mentioned configuration, and although the conductivity is not hindered due to the bonding between the coating layers 7 with high conductivity, the low thermal conductivity layer 5 does not disturb the conductivity from the end of the heat generating side due to the presence of particles with low thermal conductivity. Heat conduction to the end on the heat absorption side is suppressed, and heat generation and heat absorption are performed efficiently.
次に、本発明の第2の発明の一実施例を第3.4、図に
基づいて説明すると、本実施例は、上記実施例と同様に
、P形半導体■とN形半導体2が接合板3.4によって
接合された構成になるが、本実施例においてはP形半導
体!とN形半導体2の全体が、第4図に拡大して示すよ
うに、ガラス、セラミック、あるいはこれらの多孔質体
等の低熱伝導材料からなる粒子8の周りに、半導体を構
成するビスマス・テルル、鉛・テルル等のカルコゲナイ
ド系材料からなる被覆層9をメツキまたは融着等の手段
によって形成し、焼結により結合した構成になり、カル
コゲナイド系材料からなる被覆層9が半導体としての機
能を果たすととらに、低熱伝導材料からなる粒子の介在
によって全体の熱伝導率が低下し、発熱端から吸熱端へ
の熱伝導が抑制されて発熱と吸熱が効率良く行われる。Next, an embodiment of the second invention of the present invention will be explained based on Section 3.4 and Figures. In this embodiment, as in the above embodiment, the P-type semiconductor Although the structure is joined by plates 3 and 4, in this example, it is a P-type semiconductor! As shown in an enlarged view in FIG. 4, the entirety of the N-type semiconductor 2 is surrounded by particles 8 made of a low thermal conductivity material such as glass, ceramic, or a porous material thereof. A coating layer 9 made of a chalcogenide material such as lead or tellurium is formed by plating or fusion, and is bonded by sintering, so that the coating layer 9 made of a chalcogenide material functions as a semiconductor. In addition, the presence of particles made of a low thermally conductive material lowers the overall thermal conductivity, suppressing heat conduction from the heat generating end to the heat absorbing end, and efficiently generating and absorbing heat.
第1図は第1の発明の一実施例の側面図、第2図はその
低熱伝導層の部分拡大図、第3図は第2の発明の一実施
例の側面図、第4図はその半導体の部分拡大図。
l:P形半導体 2:N形半導体 3:(吸熱側)接合
側 4:(発熱側)接合板 5:低熱伝導層 6.8:
(低熱伝導材料からなる) ti。
子 7:(高導電材料からなる)被覆層 9:(カルコ
ゲナイド系材料からなる)被覆層宵1面
箸20FIG. 1 is a side view of an embodiment of the first invention, FIG. 2 is a partially enlarged view of a low thermal conductivity layer, FIG. 3 is a side view of an embodiment of the second invention, and FIG. 4 is a side view of the embodiment of the second invention. Partially enlarged view of a semiconductor. l: P-type semiconductor 2: N-type semiconductor 3: (heat absorption side) bonding side 4: (heat generation side) bonding plate 5: low thermal conductivity layer 6.8:
(made of low thermal conductivity material) ti. 7: Covering layer (made of a highly conductive material) 9: Covering layer (made of a chalcogenide material) 20
Claims (1)
系材料等からなるP形半導体とN形半導体を接合した電
熱変換素子において、P形半導体及びN形半導体の通電
方向の途中に導電率が高くかつ熱伝導率の低い材料から
なる低熱伝導層を形成したことを特徴とする電熱変換素
子 2 ガラス、セラミックス等の低熱伝導材料の周りをカ
ルコゲナイド系材料で被覆した粒子を結合したP形半導
体及びN形半導体を接合したことを特徴とする電熱変換
素子[Scope of Claims] 1. In an electrothermal conversion element in which a P-type semiconductor and an N-type semiconductor made of a chalcogenide material such as bismuth-tellurium or lead-tellurium are joined together, an electrothermal conversion element is provided in the middle of the P-type semiconductor and the N-type semiconductor in the direction of current flow. Electrothermal conversion element 2 characterized by forming a low thermal conductivity layer made of a material with high electrical conductivity and low thermal conductivity 2 P that combines particles of a low thermal conductive material such as glass or ceramics coated with a chalcogenide material Electrothermal conversion element characterized by joining a type semiconductor and an N type semiconductor
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63259714A JPH02106079A (en) | 1988-10-14 | 1988-10-14 | Electricity heat conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63259714A JPH02106079A (en) | 1988-10-14 | 1988-10-14 | Electricity heat conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02106079A true JPH02106079A (en) | 1990-04-18 |
Family
ID=17337922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63259714A Pending JPH02106079A (en) | 1988-10-14 | 1988-10-14 | Electricity heat conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02106079A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455051A2 (en) * | 1990-04-20 | 1991-11-06 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel |
WO1994014200A1 (en) * | 1992-12-11 | 1994-06-23 | Joel Miller | Laminated thermoelement |
US5439528A (en) * | 1992-12-11 | 1995-08-08 | Miller; Joel | Laminated thermo element |
US6103968A (en) * | 1994-02-28 | 2000-08-15 | White Eagle International Technologies Group, Inc. | Thermal generator and method of producing same |
WO2000073712A3 (en) * | 1999-06-01 | 2001-08-23 | Vtv Verfahrenstech Verwaltung | Method and device for forming thermobranches containing a foam structure |
JP2005294478A (en) * | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
WO2006043514A1 (en) * | 2004-10-18 | 2006-04-27 | Meidensha Corporation | Structure of peltier element or seebeck element and its manufacturing method |
JP2010130002A (en) * | 2008-11-26 | 2010-06-10 | Korea Electronics Telecommun | Thermoelectric element, thermoelectric element module, and its thermoelectric element forming method |
JP2011014862A (en) * | 2009-07-06 | 2011-01-20 | Korea Electronics Telecommun | Thermoelectric device, and method for fabricating the same |
JP2012109335A (en) * | 2010-11-16 | 2012-06-07 | Nec Corp | Thermoelectric conversion module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086286A (en) * | 1973-11-30 | 1975-07-11 | ||
JPS5729171B2 (en) * | 1978-05-22 | 1982-06-21 |
-
1988
- 1988-10-14 JP JP63259714A patent/JPH02106079A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086286A (en) * | 1973-11-30 | 1975-07-11 | ||
JPS5729171B2 (en) * | 1978-05-22 | 1982-06-21 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455051A2 (en) * | 1990-04-20 | 1991-11-06 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel |
USRE35441E (en) * | 1990-04-20 | 1997-02-04 | Matsushita Electrical Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors |
EP0834930A2 (en) * | 1990-04-20 | 1998-04-08 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors |
EP0834930A3 (en) * | 1990-04-20 | 1998-04-29 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors |
WO1994014200A1 (en) * | 1992-12-11 | 1994-06-23 | Joel Miller | Laminated thermoelement |
US5439528A (en) * | 1992-12-11 | 1995-08-08 | Miller; Joel | Laminated thermo element |
US6103968A (en) * | 1994-02-28 | 2000-08-15 | White Eagle International Technologies Group, Inc. | Thermal generator and method of producing same |
WO2000073712A3 (en) * | 1999-06-01 | 2001-08-23 | Vtv Verfahrenstech Verwaltung | Method and device for forming thermobranches containing a foam structure |
JP2005294478A (en) * | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
WO2006043514A1 (en) * | 2004-10-18 | 2006-04-27 | Meidensha Corporation | Structure of peltier element or seebeck element and its manufacturing method |
JP4850070B2 (en) * | 2004-10-18 | 2012-01-11 | 義臣 近藤 | Method for manufacturing Peltier element or Seebeck element |
JP2010130002A (en) * | 2008-11-26 | 2010-06-10 | Korea Electronics Telecommun | Thermoelectric element, thermoelectric element module, and its thermoelectric element forming method |
JP2011014862A (en) * | 2009-07-06 | 2011-01-20 | Korea Electronics Telecommun | Thermoelectric device, and method for fabricating the same |
US8940995B2 (en) | 2009-07-06 | 2015-01-27 | Electronics And Telecommunications Research Institute | Thermoelectric device and method for fabricating the same |
JP2012109335A (en) * | 2010-11-16 | 2012-06-07 | Nec Corp | Thermoelectric conversion module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6812395B2 (en) | Thermoelectric heterostructure assemblies element | |
US6700053B2 (en) | Thermoelectric module | |
JP6350817B2 (en) | Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material. | |
JPH02106079A (en) | Electricity heat conversion element | |
JP3245793B2 (en) | Manufacturing method of thermoelectric conversion element | |
KR20240081457A (en) | Thermo electric element | |
JP2004273489A (en) | Thermoelectric conversion module and its manufacturing method | |
US3037065A (en) | Method and materials for thermoelectric bodies | |
JP2016157843A (en) | Thermoelectric conversion device | |
JP2022535751A (en) | thermoelectric element | |
JPS60127770A (en) | Thermoelectric generating element | |
US10897001B2 (en) | Thermoelectric conversion module | |
US20140360549A1 (en) | Thermoelectric Module and Method of Making Same | |
KR102366388B1 (en) | Thermo electric element | |
JP7513403B2 (en) | Thermoelectric Module | |
JP3469811B2 (en) | Line type thermoelectric conversion module | |
JP3482094B2 (en) | Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element | |
KR102368960B1 (en) | Thermoelectric element and thermoelectric conversion device comprising the same | |
JP3451456B2 (en) | Thermoelectric generator, method of manufacturing the same, and thermoelectric generator | |
TW202135347A (en) | Thermo electric element | |
JPH1084140A (en) | Thermo-electric converter and manufacture thereof | |
KR20220010937A (en) | Thermo electric element | |
JP3007904U (en) | Thermal battery | |
JPH09162448A (en) | Thermoelectric element | |
JPH1022531A (en) | Thermoelectric converter element |