JPH0198123A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPH0198123A JPH0198123A JP25655587A JP25655587A JPH0198123A JP H0198123 A JPH0198123 A JP H0198123A JP 25655587 A JP25655587 A JP 25655587A JP 25655587 A JP25655587 A JP 25655587A JP H0198123 A JPH0198123 A JP H0198123A
- Authority
- JP
- Japan
- Prior art keywords
- film
- bobbin
- recording medium
- polymer film
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229920006254 polymer film Polymers 0.000 claims abstract description 38
- 239000010408 film Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- 230000037303 wrinkles Effects 0.000 abstract description 14
- 238000001704 evaporation Methods 0.000 abstract description 13
- 230000008020 evaporation Effects 0.000 abstract description 13
- 208000028659 discharge Diseases 0.000 description 26
- 229920001721 polyimide Polymers 0.000 description 15
- 239000007789 gas Substances 0.000 description 8
- 238000007738 vacuum evaporation Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- -1 Co-Ni- 0r Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910020516 Co—V Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高分子フィルム上に金属薄膜より成る磁性層
を形成する磁気記録媒体の製造方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium in which a magnetic layer made of a thin metal film is formed on a polymer film.
従来の技術
従来、磁気記録媒体とし−ては高分子フィルム等の非磁
性基板上に磁性粉を塗布した塗布型のものが使用されて
来たが、よ)高い記録密度を達成するために、非磁性基
板上に金属薄膜をスパッタ法や真空蒸着法で形成した薄
膜型が実用化されつつある。薄膜磁気記録媒体の中でも
、特に、垂直磁気異方性を持ったCo基合金磁性薄膜を
磁性層として形成した垂直磁気記録媒体が、優れた短波
長記録特性のゆえに注目を集めている。Co基合金の垂
直磁気異方性膜としては、Co−Cr 、Co−Ni−
0r 、 Co −V 、 Co−0r −W 、 C
o −Cr −Mo 、 Co −Cr−Nb、Co−
Cr−Ta等の合金薄膜が主に検討されている。これら
のCo基合金垂直磁気異方性膜はスパッタ法や真空蒸着
法(イオンブレーティング法のように蒸発原子の一部を
イオン化して膜を堆積する方法も含む)により作製され
るが、特に後者の方法によれば数1000人/秒以上と
いう高い堆積速度が達成でき、量産に適している。Conventional technology Conventionally, coated magnetic recording media have been used, in which magnetic powder is coated on a non-magnetic substrate such as a polymer film, but in order to achieve high recording density, A thin film type, in which a metal thin film is formed on a nonmagnetic substrate by sputtering or vacuum evaporation, is being put into practical use. Among thin-film magnetic recording media, perpendicular magnetic recording media in which a Co-based alloy magnetic thin film with perpendicular magnetic anisotropy is formed as a magnetic layer are attracting attention because of their excellent short wavelength recording characteristics. Co-based alloy perpendicular magnetic anisotropy films include Co-Cr, Co-Ni-
0r, Co-V, Co-0r-W, C
o -Cr-Mo, Co-Cr-Nb, Co-
Alloy thin films such as Cr-Ta are mainly being studied. These Co-based alloy perpendicular magnetic anisotropy films are produced by sputtering or vacuum deposition (including methods such as ion blating, in which a part of evaporated atoms is ionized to deposit the film), but in particular According to the latter method, a high deposition rate of several thousand people/second or more can be achieved and is suitable for mass production.
非磁性基板として高分子フィルムを用いて、真空蒸着法
により金属薄膜型磁気記録媒体を製造する方法としては
、高分子フィルムを円筒状キャンの周面に沿わせて走行
させつつ磁性層を蒸着する方法が最も優れている。第2
図にこのような方法を用いた真空蒸着装置の内部構造の
概略を示す。A method of manufacturing a metal thin film magnetic recording medium by vacuum evaporation using a polymer film as a non-magnetic substrate involves depositing a magnetic layer while running the polymer film along the circumferential surface of a cylindrical can. method is the best. Second
The figure schematically shows the internal structure of a vacuum evaporation apparatus using this method.
高分子フィルム1は円筒状キャン2の周面に沿って走行
する。この高分子フィルム1上に蒸発源6によって磁性
層が形成される。3,4は高分子フィルム1を巻くボビ
ンである。蒸発源5としては、抵抗加熱蒸発源、誘導加
熱蒸発源、電子ビーム蒸発源等が考えられるが、高融点
金属であるCo基合金を高速で蒸発させるためには、電
子ビーム蒸発源を採用する必要がある。蒸発源6と円筒
状キャン2との間には、蒸発源6から蒸発する蒸気7が
不要な部分に付着するのを防止するために、遮蔽板6が
配置されている。遮蔽板8は、第2図Sで示されるよう
に開口しておシ、この開口部Sを通過した蒸気が高分子
フィルム1上に付着する。The polymer film 1 runs along the circumferential surface of the cylindrical can 2. A magnetic layer is formed on this polymer film 1 by an evaporation source 6. 3 and 4 are bobbins around which the polymer film 1 is wound. As the evaporation source 5, a resistance heating evaporation source, an induction heating evaporation source, an electron beam evaporation source, etc. can be considered, but in order to evaporate the Co-based alloy, which is a high melting point metal, at high speed, an electron beam evaporation source is adopted. There is a need. A shielding plate 6 is arranged between the evaporation source 6 and the cylindrical can 2 in order to prevent the vapor 7 evaporated from the evaporation source 6 from adhering to unnecessary parts. The shielding plate 8 is opened as shown in FIG.
高分子フィルム上にCo基合金より成る垂直磁気異方性
膜を形成する場合に、高分子フィルム上に直接でなく、
膜厚が約100〜300AのTi。When forming a perpendicular magnetic anisotropic film made of a Co-based alloy on a polymer film, it is necessary to
Ti with a film thickness of about 100 to 300A.
Ge、Si等の薄膜より成る下地層を介して、垂直磁気
異方性膜を蒸着すると、垂直磁気異方性エネルギーが高
くなり、短波長記録特性が改善されることが知られてい
る。このような下地層の形成も、第2図を用いて説明し
た磁性層の形成と全く同様に行われる。。It is known that when a perpendicular magnetic anisotropy film is deposited via an underlayer made of a thin film of Ge, Si, etc., the perpendicular magnetic anisotropy energy increases and short wavelength recording characteristics are improved. The formation of such an underlayer is also performed in exactly the same manner as the formation of the magnetic layer explained using FIG. .
発明が解決しようとする問題点
CO基合金薄膜垂直磁気記録媒体をVTR用等の磁気テ
ープとして実用化する場合には、高分子フィルムの膜厚
を約16μm以下に薄くする必要がある。特に家庭用V
TRを考えると、10μm前後の非常に薄い高分子フィ
ルムを使用しなければならない。このような薄い高分子
フィルム上に、第2図に示した真空蒸着装置を用いて、
下地層を介してCO基合金薄膜を形成すると以下の問題
が生じた。Problems to be Solved by the Invention When a CO-based alloy thin film perpendicular magnetic recording medium is put to practical use as a magnetic tape for a VTR or the like, it is necessary to reduce the thickness of the polymer film to about 16 μm or less. Especially household V
Considering TR, a very thin polymer film of around 10 μm must be used. On such a thin polymer film, using the vacuum evaporation apparatus shown in Fig. 2,
When a CO-based alloy thin film was formed through an underlayer, the following problems occurred.
高分子フィルムとして、膜厚8μmのポリイミドフィル
ムを用い、この高分子フィルム上に下地層としてのTi
膜を形成し、さらにこのTi膜上にGo−Cx垂直磁気
異方性膜を形成した。なお、いずれの膜も電子ビーム蒸
発源により、蒸着材料を蒸発させた。また、いずれの膜
の蒸着時にも、膜と円筒状キャン2の周面との間に電位
差を設けた。この電位差を設けるためには、第3図に示
すように蒸着膜に接しているフリーローラ8と円筒状キ
ャン2との間に電源9を設置すれば良い。なお図には直
流電源を示しであるが、交流電源でも差しつかえない。A polyimide film with a thickness of 8 μm was used as the polymer film, and a Ti base layer was formed on the polymer film.
A Go-Cx perpendicular magnetic anisotropy film was further formed on the Ti film. In addition, in both films, the evaporation material was evaporated using an electron beam evaporation source. Further, when depositing any film, a potential difference was provided between the film and the circumferential surface of the cylindrical can 2. In order to provide this potential difference, a power source 9 may be installed between the free roller 8 and the cylindrical can 2 which are in contact with the vapor deposited film, as shown in FIG. Although the figure shows a DC power supply, an AC power supply may also be used.
また、電源を使用せずに、高分子フィルムに電子を打ち
込んで帯電させても良い。Alternatively, the polymer film may be charged by injecting electrons into it without using a power source.
このようにすると静電引力により高分子フィルム1が円
筒状キャン2に強く接触する。その結果、蒸着時に蒸発
源からの輻射熱や蒸着原子の凝縮熱等により高分子フィ
ルムが受ける熱が、円筒状キャンに移動し易くなシ、高
分子フィルムの熱的ダメージを減少させることが出来る
。この電位差としては、高分子フィルムの膜厚が10μ
m前後の場合には、約60〜300Vが適している。In this way, the polymer film 1 comes into strong contact with the cylindrical can 2 due to electrostatic attraction. As a result, the heat received by the polymer film during vapor deposition due to radiant heat from the evaporation source, condensation heat of vapor-deposited atoms, etc. does not easily transfer to the cylindrical can, and thermal damage to the polymer film can be reduced. As for this potential difference, the film thickness of the polymer film is 10 μm.
When the voltage is around m, approximately 60 to 300V is suitable.
ところが、上記の方法で磁気記録媒体を作製すると、C
o−Cr膜形成時にしわが発生した。しわが発生すると
磁気テープとして使用することは不可能であシ、何らか
の解決策が必要である。However, when a magnetic recording medium is manufactured using the above method, C
Wrinkles occurred during the formation of the o-Cr film. If wrinkles occur, it is impossible to use the tape as a magnetic tape, and some solution is required.
問題点を解決するための手段
本発明においては、円筒状キャンの周面に沿って走行し
つつある高分子フィルム上に、下地層を介して金属薄膜
より成る磁性層が形成された構造を有する磁気記録媒体
の゛真空蒸着法による製造方法において、前記下地層が
蒸着された高分子フィルムがボビンに巻き取られる際、
あるいは前記磁性層蒸着時に高分子フィルムがボビンか
ら巻き出される際に、前記磁性層が形成されない高分子
フィルムの面に対向して前記ボビンの近傍に配置された
放電用電極によりグロー放電を発生させておく。Means for Solving the Problems The present invention has a structure in which a magnetic layer made of a thin metal film is formed on a polymer film running along the circumferential surface of a cylindrical can with an underlying layer interposed therebetween. In a method for producing a magnetic recording medium by vacuum evaporation, when the polymer film on which the underlayer is evaporated is wound around a bobbin,
Alternatively, when the polymer film is unwound from the bobbin during the magnetic layer deposition, a glow discharge is generated by a discharge electrode placed near the bobbin facing the surface of the polymer film on which the magnetic layer is not formed. I'll keep it.
作 用
本発明の製造方法によれば、下地層蒸着後に下地層の表
面状態を変化させることなく、高分子フィルムの帯電を
除去出来、その結果、しわがなく磁気特性の優れた垂直
磁気記録媒体が得られる。Effect: According to the manufacturing method of the present invention, the charge on the polymer film can be removed without changing the surface condition of the underlayer after the underlayer is deposited, and as a result, a perpendicular magnetic recording medium with no wrinkles and excellent magnetic properties can be obtained. is obtained.
実施例
第1図を用いて本発明の実施例について説明する。膜厚
8μmのポリイミドフィルム上に、第1図に示される真
空蒸着装置にて、下地層としてのTi膜を蒸着し、その
上にC!o−Or垂直磁気異方性膜を形成した。なおい
ずれの膜を蒸着する際にも、電源9により蒸着膜と円筒
状キャン2との間に200Vの電位差を設けた。Ti膜
及びGo −Cτ垂直磁気異方性膜の膜厚は、それぞれ
2oO人及び2000人とした。Embodiment An embodiment of the present invention will be described with reference to FIG. A Ti film as a base layer is deposited on a polyimide film with a film thickness of 8 μm using the vacuum deposition apparatus shown in FIG. 1, and C! An o-Or perpendicular magnetic anisotropy film was formed. In addition, when depositing either film, a potential difference of 200 V was provided between the deposited film and the cylindrical can 2 by a power source 9. The film thicknesses of the Ti film and the Go-Cτ perpendicular magnetic anisotropy film were 2000 and 2000, respectively.
従来の方法、すなわちグロー放電を発生させない方法で
媒体を作製する場合の例を説明する。まず、蒸着膜の形
成されていないポリイミドフィルムをボビン3に巻き、
ボビン4に向かって走行させてTi膜を蒸着した。Ti
膜の形成されたポリイミドフィルムには、しわは発生し
なかった。An example in which a medium is manufactured using a conventional method, that is, a method that does not generate glow discharge will be described. First, a polyimide film on which no vapor deposited film is formed is wound around the bobbin 3.
It was run toward the bobbin 4 to deposit a Ti film. Ti
No wrinkles were observed in the polyimide film on which the membrane was formed.
次に、このTi膜の形成されたポリイミドフィルムをボ
ビン4から、ボビン3に向かって走行させてCo−Cr
膜を蒸着した。本工程では、円筒状キャン2上でポリイ
ミドフィルムにしわが発生した。Next, the polyimide film on which the Ti film was formed was run from the bobbin 4 toward the bobbin 3, and the Co-Cr
A film was deposited. In this step, wrinkles occurred in the polyimide film on the cylindrical can 2.
本発明を実施することにより、上記のしわを防止するこ
とが可能となる。以下にこのことを説明する。本発明を
実施するために、第1図に示すようにボビン4の近傍に
、高分子フィルムの磁性層が形成されない面に対向して
放電用電極1oを配置する。放電用電極10は、高周波
電源11に接続されている。なお、この電源は高周波電
源に限ったものではなく、交流電源あるいは直流電源で
も差しつかえない。放電用電極1oの近傍にガス導入口
12を配置し、グロー放電を発生させるために、ここか
らAr、N2.N2.He等のガスを真空槽内に導入す
る。このような構成にすることにより、第1図の斜線1
3で示される領域にグロー放電が発生する。By implementing the present invention, it is possible to prevent the above wrinkles. This will be explained below. In order to carry out the present invention, as shown in FIG. 1, a discharge electrode 1o is placed near the bobbin 4, facing the surface of the polymer film on which the magnetic layer is not formed. The discharge electrode 10 is connected to a high frequency power source 11. Note that this power source is not limited to a high frequency power source, and may be an alternating current power source or a direct current power source. A gas inlet 12 is arranged near the discharge electrode 1o, and Ar, N2, . N2. A gas such as He is introduced into the vacuum chamber. By adopting such a configuration, the diagonal line 1 in FIG.
Glow discharge occurs in the area indicated by 3.
以下に本発明の実施例を上記の従来例と比較しつつ具体
的に説明する。Embodiments of the present invention will be specifically described below while comparing them with the above-mentioned conventional examples.
まず、蒸着膜の形成されていないポリイミドフィルムを
ボビン3に巻き、ボビン4に向かって走行させてTi膜
を蒸着した。この際にボビン4の近傍に、放電用電極1
oによりグロー放電を発生させた。なお、放電用電極に
供給する電力は300Wとした。また、グロー放電を発
生させるためのガスとしては、Arを使用し、ボビン4
近傍のガス圧を4X10 Torrとした。この時の
蒸発源近傍のガス圧は6X10 Torrであった。First, a polyimide film on which no vapor-deposited film was formed was wound around a bobbin 3 and moved toward a bobbin 4 to vapor-deposit a Ti film. At this time, the discharge electrode 1 is placed near the bobbin 4.
Glow discharge was generated by o. Note that the power supplied to the discharge electrode was 300W. In addition, Ar is used as the gas for generating glow discharge, and the bobbin 4
The nearby gas pressure was 4×10 Torr. At this time, the gas pressure near the evaporation source was 6×10 Torr.
T1膜の形成されたポリイミドフィルムには、しわは発
生しなかった。No wrinkles were observed in the polyimide film on which the T1 film was formed.
次に、このTi膜の形成されたポリイミドフィルムをボ
ビン4から、ボビン3に向かって走行させてCo−Cr
膜を蒸着した。この際に、上記の従来例と異なりしわは
発生しなかった。Next, the polyimide film on which the Ti film was formed was run from the bobbin 4 toward the bobbin 3, and the Co-Cr
A film was deposited. At this time, unlike the conventional example described above, no wrinkles were generated.
以上のように本願発明の方法が、しわに関して、従来法
に比べ顕著な改善効果が見られる原因は、グロー放電処
理による、高分子フィルムにおける磁性層が形成されな
い面(ベース面)の帯電の除去にあるものと考えられる
。このことを詳しく説明する。T1蒸着時にポリイミド
フィルムと円筒状キャンが強く接触するために、接触帯
電によってポリイミドフィルムのベース面が帯電する。As mentioned above, the reason why the method of the present invention has a remarkable improvement effect on wrinkles compared to the conventional method is that the glow discharge treatment removes the charge on the surface (base surface) on which the magnetic layer is not formed in the polymer film. It is thought that there is. This will be explained in detail. Since the polyimide film and the cylindrical can are in strong contact during T1 deposition, the base surface of the polyimide film is charged by contact charging.
特に、Ti膜と円筒状キャンとの間に電位差を設けて蒸
着する場合に帯電が強い。従来の方法では、帯電したま
まボビン4に巻き取られる。この後に、逆方向に走行し
Co−Cr膜が蒸着されるが、ポリイミドフィルムのベ
ース面が帯電しているために、円筒状キャン2あ周面へ
のはシ付きが不均一になυ、しわが発生する。In particular, when the Ti film and the cylindrical can are deposited with a potential difference between them, the electrification is strong. In the conventional method, the wire is wound onto the bobbin 4 while being electrically charged. After this, the Co-Cr film is deposited by traveling in the opposite direction, but because the base surface of the polyimide film is electrically charged, it adheres unevenly to the circumferential surface of the cylindrical can 2. Wrinkles occur.
これに対し本発明の方法では、Ti膜が蒸着されたポリ
イミドフィルムがボビン4に巻き取られる時に、グロー
放電によってベース面の帯電が除去される。その結果、
Co−Cr模膜蒸着時、ポリイミドフィルムが、円筒状
キャン2の周面に均一にはシ付き、しわの発生を防止出
来るものと考えられる。In contrast, in the method of the present invention, when the polyimide film on which the Ti film is deposited is wound onto the bobbin 4, the charge on the base surface is removed by glow discharge. the result,
It is thought that the polyimide film is uniformly attached to the circumferential surface of the cylindrical can 2 during deposition of the Co--Cr mock film, thereby preventing the occurrence of wrinkles.
なお、Ti蒸着時のグロー放電処理を第1図に示される
ようなボビン4の近傍ではなく、第4図に示すように、
ボビン4から離れた部分で行なっても、ベース面の帯電
の除去は可能であシ、C。Note that the glow discharge treatment during Ti vapor deposition was performed not near the bobbin 4 as shown in FIG. 1, but as shown in FIG.
Even if it is done in a part away from the bobbin 4, it is possible to remove the charge on the base surface.C.
−Cr 蒸着時にしわは発生しない。ところがこの構
成ではCo−0r膜の磁気特性が劣化するという問題が
生じた。Co−Cr膜の磁気特性は、稠密六方構造にお
けるC軸の膜面垂直方向に対する分散角Δθ に強く依
存する。Δθ。が小さい程、C軸の膜面垂直方向への配
向が鋭く、垂直磁気異方性の高い膜となる。放電用電極
が第1図に示される位置に配置されている場合には、作
製されたGo−Cr膜のΔθ。は4〜7 であるが、第
4図に示される位置の場合には、Δθ。は10以上であ
シ、垂直磁気記録媒体用として垂直磁気異方性が不充分
であった。-Cr No wrinkles occur during vapor deposition. However, with this configuration, a problem arose in that the magnetic properties of the Co-0r film deteriorated. The magnetic properties of a Co--Cr film strongly depend on the dispersion angle Δθ of the C axis in the direction perpendicular to the film surface in the dense hexagonal structure. Δθ. The smaller the value, the sharper the orientation of the C-axis in the direction perpendicular to the film surface, resulting in a film with higher perpendicular magnetic anisotropy. When the discharge electrode is arranged at the position shown in FIG. 1, the Δθ of the produced Go-Cr film. is 4 to 7, but in the case of the position shown in FIG. 4, Δθ. was 10 or more, and the perpendicular magnetic anisotropy was insufficient for use in perpendicular magnetic recording media.
放電用電極の位置によってCo−0r膜のΔθ。Δθ of the Co-0r film depends on the position of the discharge electrode.
が変化する原因は、下地層としてのTi膜の表面状態に
グロー放電が影響を及ぼすためと考えられる。すなわち
放電用電極が第1図に示される位置に配置されている場
合には、Ar及び残留ガス中の窒素や酸素等のイオンや
励起原子が蒸着膜表面に殆ど到達しないために、Ti膜
表面は蒸着直後の状態を保っている。このようなTi膜
上にC。The reason for the change in is considered to be that the glow discharge affects the surface condition of the Ti film as the underlayer. In other words, when the discharge electrode is placed at the position shown in Figure 1, most of the ions and excited atoms of nitrogen and oxygen in Ar and residual gas do not reach the surface of the deposited film. remains in the state immediately after evaporation. C on such a Ti film.
−Or 膜を形成すると、Δθ。の小さな膜が得られる
。これに対し、放電用電極が第4図に示される位置にあ
ると、Ti膜表面がAr及び残留ガス中の窒素や酸素等
のイオンや励起原子にさらされるために、表面状態が変
化する。このようなTi膜上にCo−Cr膜を形成する
と、Δθ6゜が10以上になってしまう。従って、放電
用電極の位置は、第1図に示される様なボビン4の近傍
すなわち、ボビンに巻かれである高分子フィルムのベー
ス面に対向させることが必要である。-Or When a film is formed, Δθ. A small film is obtained. On the other hand, when the discharge electrode is located at the position shown in FIG. 4, the surface state of the Ti film changes because it is exposed to Ar and ions and excited atoms such as nitrogen and oxygen in the residual gas. When a Co--Cr film is formed on such a Ti film, Δθ6° becomes 10 or more. Therefore, the discharge electrode needs to be positioned near the bobbin 4 as shown in FIG. 1, that is, to face the base surface of the polymer film wound around the bobbin.
以上の実施例では、Ti模膜蒸着時、Ti膜が形成され
た高分子フィルムがボビン4に巻き取られる際のグロー
放電処理の効果について説明したが、T1膜蒸着時では
なく、Ti膜薫蒸着後C。In the above embodiments, the effect of glow discharge treatment was explained when the polymer film on which the Ti film was formed was wound up on the bobbin 4 during the deposition of the Ti simulated film. C after vapor deposition.
−Cr模膜蒸着時高分子フィルムがボビン4から巻き出
される際に、第1図に示される位置に配置された放電用
電極によりグロー放電処理を施しても、T1膜蒸着時と
全く同様の効果が得られる。- When the polymer film is unwound from the bobbin 4 during vapor deposition of the Cr mock film, even if glow discharge treatment is performed using the discharge electrodes arranged at the positions shown in FIG. Effects can be obtained.
また下地層としてTi膜ではな(Ge膜やSt膜、磁性
層としてCo−Cr膜膜外外垂直磁気異方性を有するC
O基合金薄膜であっても、上記の実施例と全く同様の結
果が得られた。また高分子フィルムとしてポリイミドフ
ィルムではなく、ポリアミドフィルムやポリエチレンテ
レフタレートフィルム等を用いた場合も、上記と同様で
ある。In addition, the underlayer is not a Ti film (Ge film or St film), and the magnetic layer is a Co-Cr film.
Even with the O-based alloy thin film, the same results as in the above example were obtained. Further, the same applies when a polyamide film, a polyethylene terephthalate film, or the like is used instead of a polyimide film as the polymer film.
発明の効果
本発明によれば、膜厚1011m程度の薄い高分子フィ
ルムを基板として使用した垂直磁気記録媒体を、しわの
発生なしに安定に作製出来るので、ディジタルVTR用
等の超高記録密度の垂直磁気テープの実現が可能である
。Effects of the Invention According to the present invention, a perpendicular magnetic recording medium using a thin polymer film with a film thickness of about 1011 m as a substrate can be stably manufactured without wrinkles, so it can be used for ultra-high recording densities such as those for digital VTRs. It is possible to realize perpendicular magnetic tape.
第1図は本発明を実施するための真空蒸着装置内部の一
例を示す図、第2図は従来の真空蒸着装置内部の概略を
示す図、第3図は蒸着膜と円筒状キャン周面との間に電
位差を設けるだめの方法を説明するための図、第4図は
放電用電極の位置の影響を説明するための図である。
1・・・・・・高分子フィルム、2・・・・・・円筒状
キャン、3.4・・・・・・ボビン、6・・・・・・蒸
発源、6・・・・・・遮蔽板、7・・・・・・蒸気、8
・・・・・・フリーローラ、9・・・・・・電源、10
・・・・・・放電用電極、11・・・・・・高周波電源
、12・・・・・・ガス導入口、13・・・・・・グロ
ー放電発生領域、S・・・・・・開口部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図
第4図FIG. 1 is a diagram showing an example of the inside of a vacuum evaporation apparatus for carrying out the present invention, FIG. 2 is a diagram showing an outline of the inside of a conventional vacuum evaporation apparatus, and FIG. FIG. 4 is a diagram for explaining the method of creating a potential difference between the two electrodes, and FIG. 4 is a diagram for explaining the influence of the position of the discharge electrode. 1... Polymer film, 2... Cylindrical can, 3.4... Bobbin, 6... Evaporation source, 6... Shielding plate, 7... Steam, 8
...Free roller, 9...Power supply, 10
...Discharge electrode, 11...High frequency power source, 12...Gas inlet, 13...Glow discharge generation area, S... Aperture. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 4
Claims (4)
子フィルム上に、下地層を介して金属薄膜より成る磁性
層が形成された構造を有する磁気記録媒体の真空蒸着法
による製造方法において、前記下地層が蒸着された高分
子フィルムがボビンに巻き取られる際、あるいは前記磁
性層蒸着時に高分子フィルムがボビンから巻き出される
際に、前記磁性層が形成されない高分子フィルムの面に
対向して前記ボビンの近傍に配置された放電用電極によ
りグロー放電を発生させておくことを特徴とする磁気記
録媒体の製造方法。(1) A method for producing a magnetic recording medium using a vacuum evaporation method, which has a structure in which a magnetic layer made of a thin metal film is formed on a polymer film running along the circumferential surface of a cylindrical can with an underlying layer interposed therebetween. When the polymer film on which the underlayer is deposited is wound onto a bobbin, or when the polymer film is unwound from the bobbin during the deposition of the magnetic layer, the surface of the polymer film on which the magnetic layer is not formed is A method of manufacturing a magnetic recording medium, characterized in that a glow discharge is generated by discharge electrodes arranged near the bobbin so as to face each other.
筒状キャンとの間に電位差を設けることを特徴とする特
許請求の範囲第1項記載の磁気記録媒体の製造方法。(2) The method for manufacturing a magnetic recording medium according to claim 1, wherein a potential difference is provided between the underlayer and the cylindrical can when depositing the underlayer.
薄膜であることを特徴とする特許請求の範囲第1項ある
いは第2項記載の磁気記録媒体の製造方法。(3) The method for manufacturing a magnetic recording medium according to claim 1 or 2, wherein the magnetic layer is a Co-based alloy thin film having perpendicular magnetic anisotropy.
膜であることを特徴とする特許請求の範囲第1項記載の
磁気記録媒体の製造方法。(4) The base layer is a Ti film, a Ge film, or a Si film.
2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25655587A JPH0198123A (en) | 1987-10-12 | 1987-10-12 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25655587A JPH0198123A (en) | 1987-10-12 | 1987-10-12 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0198123A true JPH0198123A (en) | 1989-04-17 |
Family
ID=17294266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25655587A Pending JPH0198123A (en) | 1987-10-12 | 1987-10-12 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0198123A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009539667A (en) * | 2006-06-21 | 2009-11-19 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Tire status identification method |
-
1987
- 1987-10-12 JP JP25655587A patent/JPH0198123A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009539667A (en) * | 2006-06-21 | 2009-11-19 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Tire status identification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4382110A (en) | Magnetic recording medium | |
EP0122030B1 (en) | A magnetic recording member and a manufacturing method for such a member | |
JPH061551B2 (en) | Method of manufacturing magnetic recording medium | |
JPH0198123A (en) | Production of magnetic recording medium | |
JPH0318253B2 (en) | ||
JPS5814328A (en) | Production of magnetic recording medium | |
JPS63300429A (en) | Production of magnetic recording medium | |
JPS59172163A (en) | Production of vertical magnetic recording medium | |
JPH01102734A (en) | Manufacture of magnetic recording medium | |
JPS61196430A (en) | Production of magnetic recording medium | |
JPH0196823A (en) | Production of magnetic recording medium | |
JPH0528487A (en) | Production of magnetic recording medium | |
JPH059849B2 (en) | ||
JPS63308729A (en) | Production of magnetic recording medium | |
JPS6131529B2 (en) | ||
JPS59129944A (en) | Method and device for manufacturing magnetic recording medium | |
JPS63310960A (en) | Production of thin metal film | |
JPS63292423A (en) | Production of magnetic recording medium | |
JPH04356728A (en) | Production of magnetic recording medium | |
JPS63310959A (en) | Production of thin metal film | |
JPS6089828A (en) | Manufacture of vertical magnetic recording medium | |
JPS6236285B2 (en) | ||
JPS63169374A (en) | Production of thin metal film | |
JPH0742586B2 (en) | Thin film manufacturing method | |
JPH06306602A (en) | Production of thin film |