JPH0153484B2 - - Google Patents

Info

Publication number
JPH0153484B2
JPH0153484B2 JP57228492A JP22849282A JPH0153484B2 JP H0153484 B2 JPH0153484 B2 JP H0153484B2 JP 57228492 A JP57228492 A JP 57228492A JP 22849282 A JP22849282 A JP 22849282A JP H0153484 B2 JPH0153484 B2 JP H0153484B2
Authority
JP
Japan
Prior art keywords
porous body
moisture
electrode
humidity
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57228492A
Other languages
Japanese (ja)
Other versions
JPS59123121A (en
Inventor
Yutaka Yamamoto
Ichiro Tajima
Jiro Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57228492A priority Critical patent/JPS59123121A/en
Publication of JPS59123121A publication Critical patent/JPS59123121A/en
Publication of JPH0153484B2 publication Critical patent/JPH0153484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質体および吸湿膨潤性樹脂膜電極
から成る感湿スイツチング素子に関する。 近年、温度湿度制御への関心が高まる中で、感
湿素子および湿度を電気的特性に変換する湿度セ
ンサが数多く開発されている。感湿素子材料とし
ては従来、吸湿膨潤性樹脂、電解質、金属酸化
物、セラミツクおよび半導体等が用いられ、電気
的特性としては電気抵抗、静電容量およびインピ
ーダンスが利用されている。 セラミツク或いは金属酸化物等の感湿素子材料
は、その表面および細孔内に吸着および凝縮した
水の解離イオンの抵抗変化を利用するため、相対
湿度の上昇と共に抵抗値は下降する。これらの材
料は一般にプロトン伝導型感湿素子と呼ばれてい
る。 しかし、これらの材料から成る感湿素子は信頼
性を高くし、応答性を良くし、更に感湿度の精度
を高めるために、多種の微量元素を添加する試み
がなされているが、各微量元素の添加量を厳密に
管理する必要がありそして高価な元素を必要とす
る等の問題がある。 これに対して、導電性粉末を吸湿膨潤性樹脂に
分散させた感湿膜も知られている。この種の分散
系樹脂感湿膜は吸湿性なので、環境の湿度が上昇
すると吸湿量が増して体積が膨張し、従つて樹脂
中の導電性粉末間の接触が解かれる。このような
素子は高湿度において抵抗値が急上昇する、いわ
ゆるスイツチング機能を有している。しかし、か
かる感湿素子は耐候性に優れているが感湿精度が
低く、またかなりの高湿度、例えば相対湿度
(RH)90%程度以上、でないとスイツチング機
能を示さない。 従つて、感湿度の精度に優れ、例えば植物栽培
の場合のように、適当な湿度範囲(約60〜90%
RH)にて湿度制御でき、しかも耐候性の良い感
湿素子が求められている。 本発明者等は、適当な湿度範囲にて湿度制御し
得る感湿素子について鋭意研究した結果、実質的
に均一な孔径の細孔を有する多孔質体を感湿素子
材料として使用し、且つ抵抗値上昇型の感湿材料
の膜を少なくとも一方の電極として使用した場合
に感湿度の精度が優れた感湿素子が得られるこ
と、そして前記孔径を変えることにより、スイツ
チング機能を所望の湿度にて出現せしめ得ること
を見出し、本発明を完成した。 本発明の目的は、60%RH程度又はそれ以上の
湿度範囲の所望の湿度にて特異で且つ優れたスイ
ツチング機能を示す感湿スイツチング素子を提供
することにある。 本発明の別の目的は、耐候性に優れ、小型で互
換性の良い感湿スイツチング素子を提供すること
にある。 本発明の感湿スイツチング素子は、孔径が実質
的に均一な毛細管状細孔を有する多孔質体と電極
とから本質的に構成され、少なくとも一方の電極
が導電性粒子を実質的に均一に分散させた吸湿膨
潤性樹脂膜から成る。 本発明の感湿素子は、気体の吸着および凝縮と
細孔との関係について、気体が吸着および凝縮す
る固体構造を円筒モデル細孔構造とした場合の等
式: rk=2γMcosΘ/ρRTloP/Ps (ここで、rk;ケルビン半径、γ;凝縮液の表面
張力、M;凝縮液の分子量、Θ;接触角、ρ;凝
縮液の密度、R;気体定数、T;絶対温度、P/
Ps;吸着平衡圧/飽和蒸気圧、である。) を利用するものである。即ち、気体の毛細管凝縮
は細孔の孔径がrkのときに起る。気体が水蒸気の
場合、相対湿度RHとケルビン半径rkとの関係は
次の表のようになる。
The present invention relates to a moisture-sensitive switching element comprising a porous body and a moisture-swelling resin membrane electrode. In recent years, with increasing interest in temperature and humidity control, many humidity sensing elements and humidity sensors that convert humidity into electrical characteristics have been developed. Hitherto, moisture-swelling resins, electrolytes, metal oxides, ceramics, semiconductors, and the like have been used as moisture-sensitive element materials, and electrical resistance, capacitance, and impedance have been used as electrical properties. Moisture-sensitive element materials such as ceramics or metal oxides utilize resistance changes of dissociated ions of water adsorbed and condensed on their surfaces and in their pores, so their resistance value decreases as relative humidity increases. These materials are generally called proton conductive moisture sensitive elements. However, attempts have been made to add various trace elements to the humidity sensing elements made of these materials in order to improve their reliability, improve responsiveness, and further improve the precision of humidity sensitivity. There are problems such as the need to strictly control the amount of addition and the need for expensive elements. On the other hand, a moisture-sensitive film in which conductive powder is dispersed in a moisture-absorbing and swelling resin is also known. This type of dispersed resin moisture-sensitive membrane is hygroscopic, so when the humidity of the environment increases, the amount of moisture absorbed increases and the volume expands, thus breaking the contact between the conductive powders in the resin. Such an element has a so-called switching function in which the resistance value increases rapidly at high humidity. However, although such a humidity sensing element has excellent weather resistance, its humidity sensing accuracy is low, and it does not exhibit a switching function unless the humidity is considerably high, for example, relative humidity (RH) of about 90% or more. Therefore, it has excellent humidity sensitivity accuracy, and can be used in an appropriate humidity range (approximately 60 to 90%), such as when growing plants.
There is a need for a moisture-sensitive element that can control humidity based on RH) and has good weather resistance. As a result of intensive research into a humidity sensing element that can control humidity within an appropriate humidity range, the present inventors have found that a porous material having pores with a substantially uniform pore size is used as the material for the humidity sensing element, and the resistance is A moisture sensing element with excellent humidity sensitivity accuracy can be obtained when a film of a moisture sensitive material of increasing value type is used as at least one electrode, and by changing the pore size, the switching function can be adjusted to a desired humidity level. The present invention has been completed based on the discovery that this can be achieved. An object of the present invention is to provide a moisture-sensitive switching element that exhibits a unique and excellent switching function at a desired humidity range of about 60% RH or higher. Another object of the present invention is to provide a humidity-sensitive switching element that has excellent weather resistance, is small in size, and has good compatibility. The moisture-sensitive switching element of the present invention essentially consists of a porous body having capillary-like pores with substantially uniform pore diameters and an electrode, wherein at least one electrode has conductive particles dispersed in a substantially uniform manner. It consists of a moisture-absorbing and swelling resin film. Regarding the relationship between gas adsorption and condensation and pores, the humidity sensing element of the present invention has the following equation: r k =2γMcosΘ/ρRTl o P /Ps (where, r k : Kelvin radius, γ : surface tension of condensate, M : molecular weight of condensate, Θ : contact angle, ρ : density of condensate, R : gas constant, T : absolute temperature, P /
Ps: adsorption equilibrium pressure/saturated vapor pressure. ). That is, capillary condensation of gas occurs when the pore diameter is r k . When the gas is water vapor, the relationship between relative humidity RH and Kelvin radius r k is as shown in the table below.

【表】 本発明で使用する前記多孔質体の毛細管状細孔
は、各毛細管がほぼ一様の太さ、即ちほぼ一定の
孔径、を有し、且つ多孔質体全体の孔径分布が狭
い孔径範囲にある。孔径の分布範囲が狭いほど、
感湿度は良い。本発明で使用する多孔質体は、例
えば第1図に示すような狭い孔径分布を有し、従
来の細孔内の吸着・凝縮水による抵抗変化を利用
するプロトン伝導型感湿素子と比べて細孔が実質
的に均一であることを特徴とする。 多孔質体の材料は、孔径が実質的に均一な毛細
管状細孔を有する多孔質体が得られる限り特に限
定されず、公知のプロトン伝導型物質、例えば
Al2O3、SiO2、ホウ珪酸ガラス、TiO2、V2O5
Cr2O3、Fe2O3等の各種セラミツク材料又は金属
酸化物が使用し得る。 本発明にて使用し得る多孔質体の一例として、
硼珪酸ガラスを公知の分相処理により多孔質化し
たものが挙げられる(特公昭53−44580号公報)。
特に好ましい多孔質体は、本出願人による特願昭
57−154823号に記載された方法に従つて、熱処理
することにより高温の酸溶液に溶出する軟相と溶
出しない硬相とに分相する組成(通常SiO2:60
〜80重量%、B2O3:15〜35重量%およびNa2O:
3.5〜12重量%)の硼珪酸ナトリウムガラスを、
通常480〜600℃にて0.25〜300時間熱処理して分
相せしめた後、軟相の溶出処理前又は処理後にフ
ツ素含有化合物(例えばCF4)ガスを含む雰囲気
中にてプラズマエツチング処理することにより得
られた多孔質体である。かかる方法によると、熱
処理温度、熱処理時間および/又はガラス組成を
調節することにより、孔径が数十オングストロー
ムから数千オングストロームの範囲のある所望の
値にあり且つ内部から表面に至るまで実質的に一
様な孔径の多孔質体が得られる。一般に、熱処理
温度が高いほどまたその時間が長いほど、更にガ
ラス組成の成分B2O3、Na2Oが多いほど孔径が大
きくなる。例えば孔径を数十オングストローム程
度に調整する場合は、例えばSiO2:65重量%、
B2O3:30重量%およびNa2O:5重量%の組成の
ガラスを用いて、500℃にて24時間熱処理する。
一方、孔径を数千オングストローム程度にする場
合には、例えばSiO2:62.5重量%、B2O3:32.7重
量%およびNa2O:4.8重量%の組成のガラスを用
いて500℃にて200時間熱処理する。 本発明において好ましい多孔質体の細孔の半径
は10A°ないし500A°の範囲にあり、かかる範囲内
のある一定の値に孔径を制御することにより、
RH60%〜100%の所望の湿度にてスイツチング
機能を示す感湿素子が得られる。孔径を小さくす
るほど低湿度にてスイツチング機能が示される。 多孔質体の形状は特に限定されず、例えば板
状、角又は丸棒状、糸状であり得る。しかし感湿
度を高めるためには表面積が大きい形状のものが
好ましく、例えば中空糸状、中空棒状等が好まし
い。 一方の電極のみが吸湿膨潤性樹脂膜から成る場
合には、他方の電極は特に限定されず、公知の電
極を使用し得る。しかし、感湿度の観点から、多
孔質体の細孔を閉塞しない薄膜であるのが好まし
い。かかる薄膜電極は、例えばAu、Ag、Pt、
Pd等の金属の1種又は2種以上を逆スパツタ法
或いは真空蒸着法により多孔質体上に被覆するこ
とにより製造し得る。上記薄膜は通常厚さ10〜
300A°である。 多孔質体TC極から本質的に構成される感湿素
子は、通常の態様においては細孔内に吸着および
凝縮した水の解離イオンを電気抵抗の変化として
測定するので、湿度の増大に伴い抵抗値が減少す
る抵抗値下降型に属する。しかしながら、電極の
少なくとも一方に抵抗値上昇型の感湿材料を用い
た本発明の感湿素子の場合、ある湿度にて抵抗値
下降型から抵抗値上昇型に変換する特異なスイツ
チング特性を示す感湿素子を得ることができる。
上記抵抗値上昇型感湿材料としての導電性粒子を
実質的に均一に分散させた吸湿膨潤性樹脂膜は、
本発明の目的を達成できる範囲内において例えば
本出願人による出願に係わる特願昭57−154824号
に記載されたような、導電性粒子を表面に実質的
に均一に担持(吸着、付着、収着等)させた吸湿
性繊維、およびその他の公知の抵抗値上昇型感湿
材料を含んでいてもよい。上記の樹脂膜の樹脂に
分散される或いは吸湿性繊維上に担持される導電
性粒子は、例えば黒鉛、カーボンブラツク等の炭
素粒子、銅、銀等の金属粒子である。これらの粒
子を単独で又は2種以上の混合物として使用し得
る。またこれらの粒子は導電性に大きく影響を及
ぼさない量で他の不純物を含んでもよい。該粒子
は通常粒径30〜5000A°の範囲、好ましくは100〜
1000A°の範囲のものが用いられる。またその粒
子の使用量は、吸湿膨潤性樹脂に分散する場合は
通常樹脂重量の約10〜90%、好ましくは50〜90
%、吸湿性繊維表面上に担持する場合は通常10-5
〜10-2mg/mm2であるが、使用する樹脂又は繊維の
種類、所望するスイツチング特性出現湿度に応じ
て変化する。 吸湿膨潤性樹脂は、例えばゼラチン(にかわ)、
セルロース、ポリアミド、ポリビニルアルコール
を挙げることができ、好ましくはゼラチンおよび
ポリアミドである。該樹脂の膜は通常10〜100m
μの範囲にある。 吸湿性繊維は、天然、半合成および合成繊維の
いずれであつてもよいが、20℃、相対湿度95%に
おいて少なくとも1%、好ましくは5%以上の吸
湿度を有するものが用いられる。これらの例とし
ては綿、麻、絹、羊毛、レーヨン等殆んど全ての
天然セルロース繊維、硝酸セルロース、酢酸セル
ロース、トリアセテート等の半合成セルロース繊
維;ポリアミド(ナイロン)アクリル、ポリビニ
ルアルコール(ビニロン)等の合成繊維が挙げら
れる。特にナイロンは、繊維の長さおよび太さを
自由に変えることができ、虫やカビに対する抵抗
性および耐久性を有するので、好ましい。 導電性粒子は吸湿性繊維上に直接又は吸着剤、
接着剤等を用いて担持させることができる。吸着
剤又は接着剤としては、通常の接着剤を使用し得
る。 本発明において、前記の特異なスイツチング特
性を示す素子を得るための抵抗上昇型感湿材料は
導電性粒子分散吸湿膨潤性樹脂膜であり、特に炭
素粒子を分散したにかわ(ゼラチン)から成る膜
が好ましい。炭素粒子分散ゼラチン膜は、多孔質
体に墨液を塗布することによつて簡単に形成し得
る。 更に、導電性粒子分散樹脂膜を電極として使用
した場合、樹脂により分散粒子が多孔質体の細孔
中に侵入するのが防がれるので、ある種の金属電
極を使用した場合に見られる導電性粒子イオンの
侵入による電極間の短絡がないという利点もあ
る。 第2図Aは、本発明の感湿スイツチング素子の
好ましい一態様を示す斜視図であり、毛細管状の
貫通孔4を有する中空糸状多孔質体1、該中空糸
状体の外側表面に設けられた金属薄膜電極2、お
よび該中空糸状体の内側表面に設けられた導電性
粒子分散樹脂膜電極3から成る。第2図Bは該感
湿素子の側面図である。 次に本発明を実施例および参考例をもつて説明
する。 参考例 ガラス中空糸(SiO2:B2O3:Na2O=65:30:
5重量%、外径200μm、長さ3cm、厚さ10μm)
を500℃に4時間又は8時間加熱して分相させ、
次にCF4ガス気流中にて3分間、13.56MHzの高周
波電圧をかけてプラズマエツチング処理した後、
1N HClを用いる酸処理によつて軟相を溶出して
多孔質体を得た。該多孔質体は、走査電子顕微鏡
観察して、ほぼ一様な孔径の毛細管状細孔を有す
ることを確認した。またその細孔分布を調べたと
ころ、第1図に示すグラフを得た。 この中空状多孔質体の外側表面にAu−Pd
(Au:70%、Pd:30%)を逆スパツタ法で細孔
を閉塞しない程度に被覆し、内側表面には銀粒子
をアクリル樹脂中に実質的に均一に分散させた
Agペースト(商品名ドータイト)1.0mgを注入し
て、それぞれ金属薄膜および樹脂膜の電極を形成
し、各電極にリード線を接続した。 次に、得られた感湿スイツチング素子Au−4
−AgおよびAu−8−Ag(それぞれ、ガラス中空
糸の熱処理時間が4時間および8時間の素子)の
感湿特性を測定した。その結果を第3図に示す。
Au−8−Agの抵抗値はRH70〜80%の間で急激
に低下し、この湿度範囲でスイツチング特性を示
す。一方Au−4−Agの抵抗値はRH60〜70%の
間で急激に低下する。 実施例 参考例で使用したものと同じ中空糸状多孔質体
の内側に墨液を注入し、固化して炭素粒子分散に
かわ(ゼラチン)膜(厚さ100μm)を形成せし
める以外は実施例1と同様にして、感湿スイツチ
ング素子Au−4−C(ガラス中空糸の熱処理時間
4時間)を得た。その感湿特性を第4図に示す。 この感湿素子は相対湿度90%付近で抵抗値勾配
が逆転する特異なスイツチング機能を示した。
[Table] The capillary pores of the porous body used in the present invention have a substantially uniform diameter, that is, a substantially constant pore diameter, and the pore size distribution of the entire porous body is narrow. in range. The narrower the pore size distribution range, the more
Humidity sensitivity is good. The porous body used in the present invention has a narrow pore size distribution as shown in FIG. 1, for example, compared to the conventional proton conductive moisture sensing element that utilizes resistance changes due to adsorption and condensed water within the pores. Characterized by substantially uniform pores. The material of the porous body is not particularly limited as long as a porous body having capillary-like pores with substantially uniform pore diameter can be obtained, and known proton-conducting materials such as
Al 2 O 3 , SiO 2 , borosilicate glass, TiO 2 , V 2 O 5 ,
Various ceramic materials such as Cr 2 O 3 , Fe 2 O 3 or metal oxides can be used. As an example of a porous body that can be used in the present invention,
Examples include borosilicate glass made porous by a known phase separation process (Japanese Patent Publication No. 44580/1983).
A particularly preferred porous body is
According to the method described in No. 57-154823, by heat treatment, a composition that separates into a soft phase that dissolves in a high-temperature acid solution and a hard phase that does not dissolve (usually SiO 2 : 60
~80 wt% , B2O3 : 15-35 wt% and Na2O :
3.5~12% by weight) sodium borosilicate glass,
Usually, after heat treatment at 480-600°C for 0.25-300 hours to cause phase separation, plasma etching treatment is performed in an atmosphere containing fluorine-containing compound (e.g. CF 4 ) gas before or after soft phase elution treatment. This is a porous body obtained by According to this method, by adjusting the heat treatment temperature, heat treatment time, and/or glass composition, the pore diameter is set to a desired value in the range of several tens of angstroms to several thousand angstroms, and is substantially uniform from the inside to the surface. Porous bodies with various pore sizes can be obtained. Generally, the higher the heat treatment temperature and the longer the heat treatment time, and the more components B 2 O 3 and Na 2 O in the glass composition, the larger the pore diameter becomes. For example, when adjusting the pore diameter to several tens of angstroms, for example, SiO 2 :65% by weight,
A glass having a composition of 30% by weight of B 2 O 3 and 5% by weight of Na 2 O is heat-treated at 500° C. for 24 hours.
On the other hand, in order to make the pore size approximately several thousand angstroms, for example, using a glass having a composition of 62.5% by weight of SiO 2 , 32.7% by weight of B 2 O 3 and 4.8% by weight of Na 2 O, it is Heat treated for an hour. In the present invention, the radius of the pores of the porous body is preferably in the range of 10A° to 500A°, and by controlling the pore diameter to a certain value within this range,
A moisture-sensitive element is obtained that exhibits a switching function at a desired humidity of RH 60% to 100%. As the pore size becomes smaller, the switching function is exhibited at lower humidity. The shape of the porous body is not particularly limited, and may be, for example, plate-like, square or round rod-like, or thread-like. However, in order to increase humidity sensitivity, it is preferable to use a shape with a large surface area, such as a hollow fiber shape or a hollow rod shape. When only one electrode is made of a hygroscopic swelling resin film, the other electrode is not particularly limited, and any known electrode may be used. However, from the viewpoint of humidity sensitivity, it is preferable to use a thin film that does not block the pores of the porous body. Such thin film electrodes include, for example, Au, Ag, Pt,
It can be produced by coating a porous body with one or more metals such as Pd using a reverse sputtering method or a vacuum evaporation method. The above thin film usually has a thickness of 10~
It is 300A°. Moisture-sensing elements that essentially consist of porous TC electrodes normally measure the dissociated ions of water adsorbed and condensed within the pores as changes in electrical resistance; therefore, as humidity increases, the resistance decreases. It belongs to the decreasing resistance type where the value decreases. However, in the case of the humidity sensing element of the present invention in which a resistance increasing type moisture sensitive material is used for at least one of the electrodes, the moisture sensing element exhibits a unique switching characteristic of converting from a resistance value decreasing type to a resistance value increasing type at a certain humidity. A wet element can be obtained.
The moisture-absorbing and swelling resin film in which conductive particles are substantially uniformly dispersed as the resistance value-increasing moisture-sensitive material is
As long as the object of the present invention can be achieved, conductive particles can be substantially uniformly supported (adsorbed, attached, absorbed, It may also contain hygroscopic fibers (e.g., moisture-absorbing fibers) and other known resistance-increasing moisture-sensitive materials. The conductive particles dispersed in the resin of the resin film or supported on the hygroscopic fibers are, for example, carbon particles such as graphite and carbon black, and metal particles such as copper and silver. These particles can be used alone or as a mixture of two or more. These particles may also contain other impurities in amounts that do not significantly affect conductivity. The particles usually have a particle size in the range of 30 to 5000 A°, preferably 100 to 5000 A°.
A range of 1000A° is used. In addition, the amount of particles used is usually about 10 to 90% of the resin weight, preferably 50 to 90% when dispersed in a moisture-absorbing swelling resin.
%, typically 10 -5 when loaded on hygroscopic fiber surfaces
~10 -2 mg/mm 2 , but it varies depending on the type of resin or fiber used and the humidity at which desired switching characteristics appear. Hygroscopic swelling resins include, for example, gelatin (glue),
Mention may be made of cellulose, polyamide, polyvinyl alcohol, preferably gelatin and polyamide. The resin film is usually 10 to 100m long.
It is in the μ range. The hygroscopic fibers may be natural, semi-synthetic or synthetic fibers, but those having a moisture absorption of at least 1%, preferably 5% or more at 20° C. and 95% relative humidity are used. Examples of these include almost all natural cellulose fibers such as cotton, linen, silk, wool, and rayon; semi-synthetic cellulose fibers such as cellulose nitrate, cellulose acetate, and triacetate; polyamide (nylon) acrylic, polyvinyl alcohol (vinylon), etc. Synthetic fibers include: In particular, nylon is preferred because the length and thickness of the fibers can be freely changed, and it is resistant to insects and mold and is durable. The conductive particles can be placed directly on the hygroscopic fibers or with an adsorbent,
It can be supported using an adhesive or the like. As adsorbent or adhesive, customary adhesives can be used. In the present invention, the resistance-increasing moisture-sensitive material for obtaining an element exhibiting the above-mentioned unique switching characteristics is a hygroscopic swelling resin film in which conductive particles are dispersed, and in particular, a film made of glue (gelatin) in which carbon particles are dispersed is used. preferable. A carbon particle-dispersed gelatin film can be easily formed by applying India ink to a porous body. Furthermore, when a conductive particle-dispersed resin film is used as an electrode, the resin prevents the dispersed particles from penetrating into the pores of the porous body, so the conductivity that is observed when using some types of metal electrodes is reduced. Another advantage is that there is no short circuit between the electrodes due to the intrusion of particle ions. FIG. 2A is a perspective view showing a preferred embodiment of the moisture-sensitive switching element of the present invention, which includes a hollow fiber-like porous body 1 having capillary-like through holes 4, and a hollow fiber-like porous body 1 provided on the outer surface of the hollow fiber-like body. It consists of a metal thin film electrode 2 and a conductive particle dispersed resin film electrode 3 provided on the inner surface of the hollow fiber body. FIG. 2B is a side view of the moisture sensitive element. Next, the present invention will be explained using Examples and Reference Examples. Reference example Glass hollow fiber (SiO 2 :B 2 O 3 :Na 2 O=65:30:
5% by weight, outer diameter 200μm, length 3cm, thickness 10μm)
heating to 500℃ for 4 or 8 hours to separate the phases,
Next, after applying a high frequency voltage of 13.56 MHz for 3 minutes in a CF 4 gas stream and performing plasma etching treatment,
The soft phase was eluted by acid treatment using 1N HCl to obtain a porous body. The porous body was observed using a scanning electron microscope and was confirmed to have capillary pores with a substantially uniform pore diameter. When the pore distribution was investigated, the graph shown in FIG. 1 was obtained. Au-Pd is applied to the outer surface of this hollow porous body.
(Au: 70%, Pd: 30%) was coated using a reverse sputtering method to the extent that the pores were not blocked, and silver particles were substantially uniformly dispersed in the acrylic resin on the inner surface.
1.0 mg of Ag paste (trade name: Dotite) was injected to form metal thin film and resin film electrodes, and lead wires were connected to each electrode. Next, the obtained moisture-sensitive switching element Au-4
The moisture sensitivity characteristics of -Ag and Au-8-Ag (devices whose glass hollow fibers were heat-treated for 4 hours and 8 hours, respectively) were measured. The results are shown in FIG.
The resistance value of Au-8-Ag decreases rapidly between RH70 and 80%, and exhibits switching characteristics in this humidity range. On the other hand, the resistance value of Au-4-Ag rapidly decreases between RH60 and 70%. Example Same as Example 1 except that black ink was injected into the inside of the same hollow fiber porous material used in the reference example and solidified to form a glue (gelatin) film (thickness 100 μm) on the carbon particle dispersion. Thus, a moisture-sensitive switching element Au-4-C (glass hollow fiber heat treatment time: 4 hours) was obtained. Its moisture sensitivity characteristics are shown in FIG. This moisture-sensitive element exhibited a unique switching function in which the resistance gradient reversed at around 90% relative humidity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、参考例および実施例で使用した多孔
質体の細孔の孔径分布を示すグラフ、第2図A
は、本発明の好ましい感湿スイツチング素子の斜
視図、第2図Bは、該素子の側面図、第3図は、
参考例で得られた感湿スイツチング素子の相対湿
度−電気抵抗値の関係を示すグラフ、そして、第
4図は、実施例で得られた感湿スイツチング素子
の相対湿度−電気抵抗値の関係を示すグラフであ
る。 1……中空糸状多孔質体、2……金属薄膜電
極、3……導電性粒子分散樹脂膜電極、4……貫
通孔(毛細管)、5……リード線。
Figure 1 is a graph showing the pore size distribution of the porous bodies used in Reference Examples and Examples, Figure 2A
is a perspective view of a preferred moisture-sensitive switching device of the present invention, FIG. 2B is a side view of the device, and FIG.
FIG. 4 is a graph showing the relationship between relative humidity and electrical resistance of the humidity-sensitive switching element obtained in the reference example, and FIG. 4 shows the relation between relative humidity and electrical resistance of the humidity-sensitive switching element obtained in the example. This is a graph showing. DESCRIPTION OF SYMBOLS 1... Hollow fiber porous body, 2... Metal thin film electrode, 3... Conductive particle dispersed resin membrane electrode, 4... Through hole (capillary tube), 5... Lead wire.

Claims (1)

【特許請求の範囲】 1 孔径が実質的に均一な毛細管状細孔を有する
多孔質体と電極とから本質的に構成され、少なく
とも一方の電極が導電性粒子を実質的に均一に分
散させた吸湿膨潤性樹脂膜から成る感湿スイツチ
ング素子。 2 細孔半径が10A°ないし500A°の範囲内の実質
的に一定の大きさである特許請求の範囲第1項記
載の素子。 3 多孔質体が硼珪酸ガラスを分相処理し、多孔
質化したものである特許請求の範囲第1又は第2
項記載の素子。 4 多孔質体が硼珪酸ナトリウムガラスを分相処
理した後、軟相の酸溶出前又は酸溶出後にフツ素
含有化合物ガス雰囲気中でプラズマエツチング処
理して得た多孔質体である特許請求の範囲第1な
いし第3項のいずれか1項記載の素子。 5 多孔質体が中空糸状の形状にある特許請求の
範囲第1ないし第4項のいずれか1項記載の素
子。 6 一方の電極が導電性粒子を実質的に均一に分
散させた吸湿膨潤性樹脂膜から成り、他方の電極
が多孔質体の細孔を閉塞しない金属薄膜から成る
特許請求の範囲第1ないし第5項のいずれか1項
記載の素子。 7 前記樹脂膜が炭素粒子を分散させたにかわの
膜である特許請求の範囲第1ないし第6項のいず
れか1項記載の素子。
[Scope of Claims] 1. Essentially composed of a porous body having capillary-like pores with a substantially uniform pore size and an electrode, at least one electrode having conductive particles substantially uniformly dispersed therein. A moisture-sensitive switching element made of a moisture-absorbing and swelling resin film. 2. The device according to claim 1, wherein the pore radius has a substantially constant size within the range of 10A° to 500A°. 3. Claim 1 or 2, wherein the porous body is made porous by subjecting borosilicate glass to phase separation treatment.
Elements described in Section. 4. Claims that the porous body is a porous body obtained by subjecting sodium borosilicate glass to phase separation treatment and then subjecting it to plasma etching treatment in a fluorine-containing compound gas atmosphere before or after acid elution of the soft phase. The device according to any one of items 1 to 3. 5. The device according to any one of claims 1 to 4, wherein the porous body has a hollow fiber shape. 6. Claims 1 to 6, in which one electrode is made of a hygroscopic swelling resin film in which conductive particles are substantially uniformly dispersed, and the other electrode is made of a thin metal film that does not block the pores of the porous body. The device according to any one of Item 5. 7. The device according to any one of claims 1 to 6, wherein the resin film is a glue film in which carbon particles are dispersed.
JP57228492A 1982-12-29 1982-12-29 Humidity sensitive switching element Granted JPS59123121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228492A JPS59123121A (en) 1982-12-29 1982-12-29 Humidity sensitive switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228492A JPS59123121A (en) 1982-12-29 1982-12-29 Humidity sensitive switching element

Publications (2)

Publication Number Publication Date
JPS59123121A JPS59123121A (en) 1984-07-16
JPH0153484B2 true JPH0153484B2 (en) 1989-11-14

Family

ID=16877302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228492A Granted JPS59123121A (en) 1982-12-29 1982-12-29 Humidity sensitive switching element

Country Status (1)

Country Link
JP (1) JPS59123121A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364285B2 (en) * 2008-03-31 2013-12-11 コーア株式会社 Electronic component and method for forming exterior film of electronic component
JP6695121B2 (en) * 2015-10-07 2020-05-20 デクセリアルズ株式会社 Switch element and protection element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152204A (en) * 1980-04-25 1981-11-25 Chino Works Ltd Moisture-sensitive element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152204A (en) * 1980-04-25 1981-11-25 Chino Works Ltd Moisture-sensitive element

Also Published As

Publication number Publication date
JPS59123121A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
FI94556B (en) hygrometer
FI72393B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN TUNT ISOLERAD CAPACITIV HYGROMETER OCH ENLIGT DETTA FOERFARANDE FRAMSTAELLD HYGROMETER
US4276128A (en) Humidity sensing element of electric capacitance change type and method of producing same
US4041437A (en) Humidity sensor
US4774129A (en) Gas-sensitive composite material comprising metal and dielectric
JPH0242429B2 (en)
US4635027A (en) Resistance-variation type moisture sensor
US3058079A (en) Hygrometer elements
JPH0153484B2 (en)
US4481813A (en) Dew sensor
US4280115A (en) Humidity sensor
US3916367A (en) Relative humidity sensor
GB2138951A (en) Electrical moisture sensor elements
US4156268A (en) Humidity sensing element and method of manufacture thereof
JPS5999343A (en) Gas detecting element
CN1034769C (en) Non-linear moisture sensor
JPS6015121B2 (en) moisture sensing element
JPS6355847B2 (en)
JPS6122898B2 (en)
JP2719830B2 (en) Moisture sensitive element
JPH0943185A (en) Moisture sensor element
KR910004110B1 (en) Dew senser and its manufacturing method
JPS6151263B2 (en)
JPS6237881B2 (en)
JPS60211346A (en) Dew condensation sensor