JPH01308907A - System for measuring shape of steel pipe using gamma-ray - Google Patents
System for measuring shape of steel pipe using gamma-rayInfo
- Publication number
- JPH01308907A JPH01308907A JP13933588A JP13933588A JPH01308907A JP H01308907 A JPH01308907 A JP H01308907A JP 13933588 A JP13933588 A JP 13933588A JP 13933588 A JP13933588 A JP 13933588A JP H01308907 A JPH01308907 A JP H01308907A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- gamma
- measured
- gamma ray
- ray source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 63
- 239000010959 steel Substances 0.000 title claims abstract description 63
- 230000005251 gamma ray Effects 0.000 title claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 238000005070 sampling Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 description 8
- 238000007689 inspection Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はγ裸鋼管形状計測システムレこ係り、特に継目
無し鋼管製造ラインにおける鋼管の形状寸法計測、鋼管
内在疵め計測などに好適なγ線鋼管形状計測システムに
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gamma bare steel pipe shape measurement system, and is particularly suitable for measuring the shape and dimensions of steel pipes in a seamless steel pipe manufacturing line, and measuring internal flaws in steel pipes. This relates to a steel wire pipe shape measurement system.
従来のこの種鋼管形状計測に関しては、計測技術’87
.12 の大田代(日本鋼管)による「中径シームレス
パイプの品質検査の概要」及び第18回日本アイソトー
プ放射裸線合会議資料’87.11 に沖野代(東芝
)による「鉄鋼用クラウン計」という文献がある。Regarding the conventional shape measurement of this type of steel pipe, measurement technology '87
.. ``Summary of quality inspection of medium-diameter seamless pipes'' by Otashiro (Nippon Kokan) in 12, and ``Crown meter for steel'' by Okinoyo (Toshiba) in the 18th Japan Isotope Radiation Bare Line Conference Materials November 1987. There is literature.
継目無し鋼管製造ラインにおける品質検査において、パ
イプの外径、内径、肉厚、疵に対する検査は、検査項目
のうち最も重要な項目である。これらの検査に対して現
在一般的に用いられている方式を見ると、まず、パイプ
外径の測定には、第3図(a)に示すように、光学式外
径計が用いられている。これは等しく配置された投光器
9より平行光束10が照射されている中をパイプ11が
通過するようになっており、光の明暗を半導体イメージ
センサ(例えば、CCD)12によって検出し電気信号
として取り出し、素子の物理的位置寸法と電気信号の対
応よりパイプ外径を算出するようになっている。In quality inspection on a seamless steel pipe production line, inspection of the outer diameter, inner diameter, wall thickness, and flaws of the pipe are the most important inspection items. Looking at the methods that are currently commonly used for these inspections, first, an optical diameter meter is used to measure the outside diameter of the pipe, as shown in Figure 3 (a). . A pipe 11 passes through a parallel light beam 10 irradiated from equally spaced projectors 9, and the brightness of the light is detected by a semiconductor image sensor (for example, CCD) 12 and extracted as an electrical signal. , the pipe outer diameter is calculated from the correspondence between the physical position dimensions of the elements and the electrical signals.
パイプ肉厚測定には、第3図(b)に示すように、一般
的に超音波式が用いられる。この方式には、パイプ13
に向ってプローブ14より超音波を放射する。音波はパ
イプ13の外表面と内表面より反射して15a、15b
として戻ってくるので、肉厚は超音波の伝播時間を計測
し、その差に超音波の伝播速度を乗じて算出することに
よって計測するようにしている。ただし、この場合、プ
ローブ14とパイプ13面間は水膜16を介して接触式
に計測することが必要で、そのため、水温による伝播速
度の補正などが必要となる。An ultrasonic method is generally used to measure the pipe wall thickness, as shown in FIG. 3(b). This method requires a pipe 13
Ultrasonic waves are emitted from the probe 14 toward. The sound waves are reflected from the outer and inner surfaces of the pipe 13 and are transmitted to 15a and 15b.
Therefore, the wall thickness is measured by measuring the propagation time of the ultrasonic wave and multiplying the difference by the propagation speed of the ultrasonic wave. However, in this case, it is necessary to perform contact measurement between the probe 14 and the surface of the pipe 13 via the water film 16, and therefore it is necessary to correct the propagation velocity depending on the water temperature.
また、鋼管内径は、上記の外径と肉厚の計測値から両者
の差として算出していた。In addition, the inner diameter of the steel pipe was calculated from the measured values of the outer diameter and wall thickness as the difference between the two.
鋼管の疵検査には、やはり超音波式が採用されており、
放射状に多段配列されたプローブをパイプ周辺を回転さ
せるようにして、プローブホルダが1一回転する間に全
表面を走査計測するようにしていた。The ultrasonic method is still used to inspect steel pipes for defects.
Probes arranged radially in multiple stages were rotated around the pipe, and the entire surface was scanned and measured while the probe holder rotated once.
上記従来技術においては、下記に述べるような問題点と
欠点があった。The above conventional technology has the following problems and drawbacks.
(1)測定項目毎に個々の専用装置を用いなければなら
ない。(1) Individual dedicated equipment must be used for each measurement item.
(2)パイプ肉厚測定の場合のように外径の計測値と肉
厚とをそれぞれ別々の装置で計測し、それらの計測値の
差より算出するといったもので、計測方式自体が直接的
でなく、測定精度にも問題があった。(2) As in the case of measuring pipe wall thickness, the outside diameter and wall thickness are measured using separate devices, and calculations are made from the difference between these measurements; the measurement method itself is direct. There were also problems with measurement accuracy.
(3)外径計測においても、光束の明暗部分を電気的に
計測し、素子の物理的配列(ピッチ)の関係を用いて算
出する方式であり、肉厚計においても、超音波の鋼管内
外表面よりの反射波の伝播速度の差より算出するといっ
たもので、かつ、媒質の温度補正を必要とし、計測方式
が2次的で、精度に欠ける傾向があった。(3) In outer diameter measurement, the bright and dark parts of the light beam are electrically measured and calculated using the relationship between the physical arrangement (pitch) of the elements. It is calculated based on the difference in propagation speed of waves reflected from the surface, requires temperature correction of the medium, uses a secondary measurement method, and tends to lack accuracy.
(4)肉厚計、疵検査とも水などの媒質を介して計測す
るもので、非接触計測ではなかった。(4) Both wall thickness gauges and flaw inspections were measured using a medium such as water, and were not non-contact measurements.
本発明の目的は、γ線を用いて非接触式で1つの装置に
て1回の走査で外径、内径、肉厚、疵などを同時計測で
きる継目無し鋼管のγ線鋼管形状計測システムを提供す
ることにある。The purpose of the present invention is to provide a gamma-ray steel pipe shape measurement system for seamless steel pipes that can simultaneously measure outer diameter, inner diameter, wall thickness, flaws, etc. in one scan with one device in a non-contact manner using gamma-rays. It is about providing.
上記目的は、γ線源を収納し、照射口よりある角度で扇
形状にγ線ビームを放射するγ線源部と、このγ線源部
と被測定対象物である鋼管を挟んで相対向する位置に配
置された多チャンネルのγ線検出部と、このγ線検出部
と上記γ線源部を上記被測定対象物を挟んで対向して搭
載し、上記被測定対象物の搬送方向に対して垂直方向に
走行する手段を備えた台車と、上記γ線検出部からの信
号を取り込んで画像処理及びデータ処理を施すデータ処
理部とより構成され、ある間隔でサンプリングにより取
り込まれた各位置での計測データをもとに上記被測定対
象物である鋼管の外径、内径。The above purpose is to house a gamma ray source and emit a gamma ray beam in a fan shape at a certain angle from the irradiation port, and to place the gamma ray source and the steel pipe, which is the object to be measured, in opposite directions. A multi-channel gamma ray detection unit is placed at a position where It is composed of a trolley equipped with a means for traveling in a vertical direction, and a data processing section that takes in the signal from the gamma ray detection section and performs image processing and data processing, and each position is taken in by sampling at a certain interval. The outer diameter and inner diameter of the steel pipe, which is the object to be measured, are determined based on the measurement data.
肉厚、鋼管内に存在する疵などの計測と鋼管断面像など
を再構築できるようにして達成するようにした。This was achieved by making it possible to measure the wall thickness and flaws present in the steel pipe, and to reconstruct the cross-sectional image of the steel pipe.
計測位置を被測定対象物である鋼管が螺旋回転しながら
進行する搬送系を備えているので、鋼管が通過する際サ
ンプリングにより得られるデータを基に鋼管の外径、内
径、肉厚の平均値、最大。Since the steel pipe, which is the object to be measured, is equipped with a conveyance system that moves forward while rotating spirally, the average value of the outer diameter, inner diameter, and wall thickness of the steel pipe is calculated based on the data obtained by sampling as the steel pipe passes. ,maximum.
最小値、設定値に対する偏差、異常値などのオンライン
計測を行うことができ、鋼管内在の疵に対しては、上記
異常値をとらえてその断面像をデイスプレーに描画させ
て探索すると同時に形状2寸法の計測を行うことができ
る。It is possible to perform online measurement of minimum values, deviations from set values, abnormal values, etc., and to detect defects in steel pipes, detect the abnormal values and draw a cross-sectional image on the display to search for them. Dimensions can be measured.
以下本発明の一実施例を第1−図、第2図を用いて詳細
に説明する。An embodiment of the present invention will be described in detail below with reference to FIGS. 1-2.
第1図は本発明の7m鋼管形状計測システムの一実施例
を示す基本構成図である。第1図において、1は透過力
の比較的大きな137Cs、 80G Oといったγ線
源を有するγ線源部、2は互いに独立した多チャンネル
のγ線検出部、3は被測定対象物である鋼管で、−殻内
には図示の紙面方向のある定まった位置を紙面に垂直な
方向に搬送されるようになつ七いる。4はγ線源部1と
γ線検出部2を図示のように対向した位置に取り付けて
鋼管3の長さ方向に対して垂直方向に移動できる台車、
5は検出部2からの信号を受け、画像処理や各種の演算
制御をつかさどるコンピュータを主体としたデータ処理
部で、γ線鋼管形状計測システムはこれらより構成しで
ある。FIG. 1 is a basic configuration diagram showing an embodiment of the 7 m steel pipe shape measuring system of the present invention. In Fig. 1, 1 is a gamma ray source section that has a gamma ray source such as 137Cs and 80G O with relatively large penetrating power, 2 is a mutually independent multi-channel gamma ray detection section, and 3 is a steel pipe that is the object to be measured. - Inside the shell, there is a predetermined position in the direction of the paper shown in the figure, so that it is conveyed in a direction perpendicular to the paper. Reference numeral 4 denotes a cart that can move the gamma ray source section 1 and the gamma ray detection section 2 in opposite positions as shown in the figure and move in a direction perpendicular to the length direction of the steel pipe 3;
Reference numeral 5 denotes a data processing section mainly composed of a computer that receives signals from the detection section 2 and handles image processing and various arithmetic controls, and the gamma ray steel pipe shape measurement system is composed of these.
γ線源部1からはγ線ビーム6が図示のようにある角度
の広がりをもって扇形状に放射される。A gamma ray beam 6 is emitted from the gamma ray source section 1 in a fan shape with a certain angular spread as shown in the figure.
いま、γ線検出部2の1つの検出器に注目すると、検出
器は対向したγ線ビームを受け、中間にある物質が存在
すると、γ線はその物質を経過して、そのうちの一部が
その物質に吸収されることになる。その関係は。Now, focusing on one detector in the gamma ray detection section 2, the detector receives opposing gamma ray beams, and if there is a substance in between, the gamma rays pass through that substance and some of them are detected. It will be absorbed by the substance. What is that relationship?
一μt
■工■。0 ・・・(1)
μt=Qog(Io/I) −(2
)ここに、I;ある物質透過後のγ線計数率(cps)
工o;中間に物質が存在しないときのγ線計数率(cp
s)
μ;中間物質の吸収係数(alt−1)t;中間物質の
厚み(cn)
で表わされる。上式かられかるように、同一物質である
と、工と工0の計数率の比は、その物質の厚み(密度)
に比例したものとなる。すなわち、これを多数の方向か
ら計測すると、その物質を透過するγ線の強度分布が得
られることになる。この蓄積した多数のデータを基に画
像を再構成することができ、鋼管3の断面像や鋼管内部
の疵状態(疵の大きさ、形状)などを求めることができ
る。1 μt ■Work■. 0...(1)
μt=Qog(Io/I) −(2
) Here, I: γ-ray count rate after passing through a certain substance (cps); O: γ-ray count rate when there is no substance in between (cps);
s) μ: Absorption coefficient of intermediate material (alt-1) t: Thickness of intermediate material (cn). As can be seen from the above equation, if the material is the same, the ratio of the counting rate of 0 and 0 is the thickness (density) of the material.
It will be proportional to. That is, by measuring this from multiple directions, the intensity distribution of γ-rays passing through the material can be obtained. An image can be reconstructed based on this large amount of accumulated data, and a cross-sectional image of the steel pipe 3 and the state of flaws inside the steel pipe (flaw size and shape) can be determined.
もち論、このデータから鋼管3の外径、内径、肉厚など
を直接計測することもできる。Of course, the outer diameter, inner diameter, wall thickness, etc. of the steel pipe 3 can also be directly measured from this data.
また、データ量が多いほど、サンプル回数が多いほど画
像再構成時の像が鮮明となり、分解能が向上するため、
被測定対象物に対して360°全周からデータを得るこ
とが一番望ましい条件となる。ただし、製品のコストパ
フォーマンス、実際の装置構成上の制約、要求精度など
の条件から図示のような形態のものが実際的な形となら
う。本形態の装置では、台車4が鋼管3の長さ方向と垂
直な方向に移動し、サンプリングを行うことになる。In addition, the larger the amount of data and the greater the number of samples, the clearer the image will be during image reconstruction and the higher the resolution.
The most desirable condition is to obtain data from the entire 360° circumference of the object to be measured. However, the configuration shown in the figure is a practical configuration based on conditions such as product cost performance, constraints on actual device configuration, and required accuracy. In the apparatus of this embodiment, the cart 4 moves in a direction perpendicular to the length direction of the steel pipe 3 to perform sampling.
一般に製造ラインにおいては、ライン稼動中に測定する
ことが望まれることになる。現用の装置においてもこの
要求は同じである。Generally, on a production line, it is desirable to measure while the line is in operation. This requirement is the same for current equipment.
被測定対象物をライン上に走行させ、計測システムの方
をその周りに1回転させ、長さ方向に螺旋状に走査して
プロフィル測定を行っているが、このようなオンライン
計測の要求に対しては、計測時間をできるだけ短縮でき
るようにすることと、精度よい計測ができることを目的
に第2図に示すような構成をとる。すなわち、γ線検出
部2を3世代のCT形態をとるようにし、チャンネル数
をできるだけ多くとれるようにし、かつ、被測定対象物
である鋼管3に対して測定対象が円のほぼ中心になるよ
うな放射形態とし、被測定対象物である鋼管3がγ線ビ
ーム6内を螺旋状に搬送させるように駆動機構を構築す
る。例えば、その一実施例を第2図によって説明すると
、鋼管3に回転を与えるための駆動ローラ7を鋼管3の
進行方向に対して垂直方向よりある角度斜めに配置する
。このように偏位させたローラ7を回転させると、鋼管
3を前方へ進める力と回転する力とが生じる。Profile measurements are performed by moving the object to be measured on a line, rotating the measurement system around it once, and scanning it in a spiral pattern in the length direction. In order to shorten the measurement time as much as possible and to perform accurate measurements, a configuration as shown in FIG. 2 is adopted. In other words, the gamma ray detection unit 2 is configured to take the form of a third-generation CT, so that the number of channels can be increased as much as possible, and the measurement target is arranged to be approximately at the center of the circle with respect to the steel pipe 3, which is the measurement target. A drive mechanism is constructed so that the steel pipe 3, which is the object to be measured, is conveyed spirally within the γ-ray beam 6. For example, one embodiment will be described with reference to FIG. 2. A driving roller 7 for imparting rotation to the steel pipe 3 is arranged obliquely at a certain angle with respect to the direction perpendicular to the traveling direction of the steel pipe 3. When the rollers 7 displaced in this manner are rotated, a force that moves the steel pipe 3 forward and a force that rotates the steel pipe 3 are generated.
その力の割合は、偏角の大きさによりある範囲に亘って
制御できる。The rate of force can be controlled over a certain range by the magnitude of the deflection angle.
この場合、鋼管3は常に搬送ラインの中央を進行するこ
とが必要で、中央位置からずれぬように搬送駆動機構の
工夫が必要となる。例えば、第2図の8に示すような自
由回転するボールを鋼管3と接する面の両側より配置し
、鋼管3は両者の中央の位置になるように位置決めがな
されると同時に、鋼管3の螺旋式回転運転に対して自由
にしたがう機構を備える。ただし、これは一実施例を提
案したもので1本発明の実施例の主旨は、計測位置を被
測定対象物である鋼管3が螺旋回転しながら進行するよ
うにする駆動機構を備えたものとすればよい。以上記述
した如く、本実施例においでは、鋼管3が通過する際に
サンプリングにより得られるデータを基に鋼管3の外径
、内径、肉厚に対する平約値、最大値、最小値、設定値
に対する偏差、異常差などのオンライン計測が行えるよ
うになる。In this case, the steel pipe 3 must always travel in the center of the conveyance line, and the conveyance drive mechanism must be devised so as not to deviate from the central position. For example, a freely rotating ball as shown at 8 in FIG. Equipped with a mechanism that allows for free rotational operation. However, this is a proposal of one embodiment, and the gist of the embodiment of the present invention is that the steel pipe 3, which is the object to be measured, is equipped with a drive mechanism that moves the measurement position while rotating spirally. do it. As described above, in this embodiment, average values, maximum values, minimum values, and set values for the outer diameter, inner diameter, and wall thickness of the steel pipe 3 are determined based on data obtained by sampling when the steel pipe 3 passes. Online measurement of deviations, abnormal differences, etc. will be possible.
また、鋼管内在の疵に対しては、上記異常値をとらえて
、その断面像をデイスプレーに描画させて探索すると同
時に疵の形状1寸法の計測を行う。In addition, for flaws in steel pipes, the above-mentioned abnormal values are captured and a cross-sectional image thereof is drawn on a display to search for them, and at the same time, one dimension of the flaw shape is measured.
また、鋼管3の製造プロセスにおいて、せん孔はプラグ
と呼ばれているせん孔周のドリルを用いてピアサ−マシ
ンによって行われるが、時々プラグが鋼管3内に残され
ることがあり1次工程のマシン、例えば、エロンゲータ
、マンドレルミル。In addition, in the manufacturing process of the steel pipe 3, drilling is performed by a piercer machine using a drill around the hole called a plug, but sometimes the plug is left inside the steel pipe 3, and the machine in the first process, For example, elongator, mandrel mill.
サイザーなどに障害を及ぼすことのないように、プラグ
検出装置をラインに介在させる。A plug detection device is installed in the line to prevent damage to sizers, etc.
このプラグ検出も、本計測システムは異常値検出として
容易に行うことができる。This plug detection can also be easily performed by this measurement system as an abnormal value detection.
〔発明の効果〕 以上本発明の主なる効果をまとめると次のようになる。〔Effect of the invention〕 The main effects of the present invention can be summarized as follows.
(イ)非接触計測であるので、熱間のオンライン計測に
も適用できる。(b) Since it is a non-contact measurement, it can also be applied to hot online measurement.
(ロ)1つの計測システムで鋼管外径、内径、肉厚。(b) Measure the outside diameter, inside diameter, and wall thickness of steel pipes with one measurement system.
疵またはプラグ検出など多項目の計測ができる。Can measure multiple items such as flaw or plug detection.
(ハ)サンプリングした蓄積データより各種の計測値を
演算表示できるばかりでなく、鋼管断面。(c) Not only can various measured values be calculated and displayed from the sampled accumulated data, but also the cross section of steel pipes can be displayed.
鋼管内在の疵の形状などをビジプル化できて。The shape of flaws inside the steel pipe can be visualized.
直接的である。be direct;
(ニ)放射線にγ線を用いているため、透過力があり、
鋼管の計測に適する。(d) Since gamma rays are used as radiation, it has penetrating power;
Suitable for measuring steel pipes.
一般に中経管の仕様としては、外径100〜500m程
度、肉厚が数I〜数十画程度、長さが数m〜20m程度
といったもので、特に鋼管透過厚さは最大100m程度
は必要となり、X線では計測不可能である。In general, the specifications for medium-length pipes include an outer diameter of about 100 to 500 m, a wall thickness of several meters to several tens of meters, and a length of several meters to 20 m. In particular, the maximum penetration thickness of the steel pipe is required to be about 100 m. Therefore, it cannot be measured with X-rays.
(ホ)本計測システム構成は、熱間用の実績もあり、熱
間の過酷な環境にも強く、メンテナンスも他の計測シス
テムに比較して容易である。(e) This measurement system configuration has a proven track record in hot applications, is resistant to harsh hot environments, and is easier to maintain than other measurement systems.
第1図は本発明のγ線鋼管形状計測システムの一実施例
を示す基本構成図、第2図は第1図の計測システムに鋼
管駆動機構を設けた一実施例を示す説明図、第3図は従
来の鋼管外径計測方式及び鋼管肉厚計測と疵計測方式の
説明図である。Fig. 1 is a basic configuration diagram showing an embodiment of the gamma ray steel pipe shape measurement system of the present invention, Fig. 2 is an explanatory diagram showing an embodiment in which the measurement system of Fig. 1 is provided with a steel pipe drive mechanism, and Fig. 3 The figure is an explanatory diagram of a conventional steel pipe outer diameter measuring method, steel pipe wall thickness measuring method, and flaw measuring method.
Claims (1)
線ビームを放射するγ線源部と、該γ線源部と被測定対
象物である鋼管を挟んで相対向する位置に配置された多
チャンネルのγ線検出部と、該γ線検出部と前記γ線源
部を前記被測定対象物を挟んで対向して搭載し、前記被
測定対象物の搬送方向に対して垂直方向に走行する手段
を備えた台車と、前記γ線検出部からの信号を取り込ん
で画像処理及びデータ処理を施すデータ処理部とより構
成され、ある間隙でサンプリングにより取り込まれた各
位置での計測データをもとに前記被測定対象物である鋼
管の外径、内径、肉厚、鋼管内に存在する疵などの計測
と鋼管断面像などを再構築できるようにしたことを特徴
とするγ線鋼管計測システム。 2、前記被測定対象物の搬送手段として前記γ線ビーム
中を前記被測定対象物が通過する際に回転しながら前記
台車の進行方向と垂直方向に直進される駆動機構を備え
ている特許請求の範囲第1項記載のγ線鋼管計測システ
ム。[Claims] 1. A gamma ray source is housed, and gamma rays are emitted in a fan shape at a certain angle from the irradiation port.
A gamma ray source section that emits a ray beam, a multi-channel gamma ray detection section disposed oppositely to the gamma ray source section across the steel pipe that is the object to be measured, and the gamma ray detection section. a trolley equipped with means for mounting the gamma ray source sections facing each other with the object to be measured in between, and traveling in a direction perpendicular to the conveyance direction of the object to be measured; It consists of a data processing unit that takes in signals and performs image processing and data processing, and calculates the outer diameter and inner diameter of the steel pipe that is the object to be measured based on measurement data at each position taken by sampling at a certain gap. A gamma ray steel pipe measurement system that is capable of measuring wall thickness, flaws existing in steel pipes, etc., and reconstructing cross-sectional images of steel pipes. 2. A claim comprising a drive mechanism as a means for transporting the object to be measured, which rotates when the object to be measured passes through the γ-ray beam and moves straight in a direction perpendicular to the traveling direction of the trolley. The gamma ray steel pipe measurement system according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13933588A JPH01308907A (en) | 1988-06-08 | 1988-06-08 | System for measuring shape of steel pipe using gamma-ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13933588A JPH01308907A (en) | 1988-06-08 | 1988-06-08 | System for measuring shape of steel pipe using gamma-ray |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01308907A true JPH01308907A (en) | 1989-12-13 |
Family
ID=15242928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13933588A Pending JPH01308907A (en) | 1988-06-08 | 1988-06-08 | System for measuring shape of steel pipe using gamma-ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01308907A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100478251B1 (en) * | 2002-06-28 | 2005-03-22 | 한국기계연구원 | Apparatus for measuring corrosion thickness of insulated pipeline |
-
1988
- 1988-06-08 JP JP13933588A patent/JPH01308907A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100478251B1 (en) * | 2002-06-28 | 2005-03-22 | 한국기계연구원 | Apparatus for measuring corrosion thickness of insulated pipeline |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6925145B2 (en) | High speed digital radiographic inspection of piping | |
US9869647B2 (en) | Scanning method | |
US3936638A (en) | Radiology | |
US5351203A (en) | Online tomographic gauging of sheet metal | |
US4785175A (en) | Inspection of buried pipelines | |
CN216284786U (en) | Density and concentration detection device | |
US3109095A (en) | Radiation tubing gauge for computing single-wall thicknesses from plural double-wallthickness measurements | |
JPH01308907A (en) | System for measuring shape of steel pipe using gamma-ray | |
GB2157930A (en) | Radiography apparatus | |
JPS60260807A (en) | Radiation transmission type measuring instrument for wall thickness of tubular material | |
US3683186A (en) | Apparatus for inspecting tubular goods using a radiation-focussing device for producing a substantially uniform composite radiation pattern | |
JPS6073442A (en) | Radiation tomographic measuring device | |
US20230203936A1 (en) | Methods and Means for Measuring Multiple Casing Wall Thicknesses Using X-Ray Radiation in a Wellbore Environment | |
JP7051847B2 (en) | X-ray in-line inspection method and equipment | |
JP3787347B2 (en) | Heat transfer tube group inspection device | |
RU2805167C1 (en) | Method of complexing results of control of fuel column and component parts in fuel electron by gamma absorption and x-ray methods | |
JPS61161481A (en) | Measuring device of radioactivity | |
WO2018092256A1 (en) | Inline x-ray inspection system and imaging method for inline x-ray inspection system | |
KR100907240B1 (en) | A nondestructive inspection apparatus for arbitrary shape structures using radiation source | |
JPS6122239A (en) | Method for inspecting flaw of pipe | |
JPS58144742A (en) | Ultrasonic flaw-detecting method for round material and device thereof | |
Eucot | Flaw detection in window glass | |
IT9009501A1 (en) | DEVICE WITH DIE OF RADIATION DETECTORS RANGE FOR MEASUREMENT OF THICKNESS AND DEFECTS OF DENSE MATERIALS | |
JPS6073443A (en) | Radiation tomographic device | |
MANN | N DT using Compton scattering |