JPH01306548A - Formation of titanium nitride - Google Patents

Formation of titanium nitride

Info

Publication number
JPH01306548A
JPH01306548A JP13422388A JP13422388A JPH01306548A JP H01306548 A JPH01306548 A JP H01306548A JP 13422388 A JP13422388 A JP 13422388A JP 13422388 A JP13422388 A JP 13422388A JP H01306548 A JPH01306548 A JP H01306548A
Authority
JP
Japan
Prior art keywords
heating furnace
metal
titanium nitride
titanium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13422388A
Other languages
Japanese (ja)
Inventor
Kiyomitsu Suga
須賀 清光
Koji Hirose
広瀬 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP13422388A priority Critical patent/JPH01306548A/en
Publication of JPH01306548A publication Critical patent/JPH01306548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To stably form an attractive gold-colored TiN film free from TiO2 on a Ti surface by disposing a metal more easily oxidizable than Ti at least on the upper-stream side of an N2 gas stream in a heating furnace at the time of forming a gold-colored titanium nitride film by allowing an N2 gas to flow while heating metallic Ti. CONSTITUTION:A quartz tube 2 is disposed in a heating furnace 1 and metallic Ti 9 is placed in a ceramic boat 11 in the above tube 2, and further, a powder 10 of Ta more easily oxidizable than Ti is disposed on the periphery of the above metallic Ti 9 or at least in the position near to an N2 gas-introducing hole 3. In the above state, an N2 gas is supplied through an inlet hole 3 into the quartz tube 2, allowed to flow through the quartz tube 2, and discharged via an exhaust port 5. Even if a slight amount of O2 exists in the N2 gas, it is allowed to react with the Ta 10 by heating the inside of the quartz tube 2, simultaneously, up to 750-850 deg.C by means of a heater 8 in the heating furnace 1, and, as a result, O2-free N2 is brought into contact with the metallic Ti 9 and a gold-colored TiN film having superior color tone can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化チタン形成方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming titanium nitride.

〔従来技術とその問題点] 従来より、窒化チタンは所定の条件で形成した被膜が金
色を呈することから、金メツキの代替として装飾品のコ
ーテイング材とじてに用いられている。
[Prior art and its problems] Titanium nitride has been used as a coating material for decorative items as an alternative to gold plating because the film formed under certain conditions exhibits a golden color.

窒化チタン波膜の形成方法の一例としては、従来から金
属チタンを窒素ガス雰囲気中で加熱して、窒化チタン形
成する方法が知られている。しかしながら、金色を呈す
る窒化チタンを得るためには、金属チタンと窒素とを常
に一定の固溶比で固溶させなければならない上、反応雰
囲気中に微量の酸素が含まれていると、金属チタンと酸
素とが反応して酸化チタンを形成し、所望の組成の被膜
を得ることができず、色調が大きく変化してしまう。
As an example of a method for forming a titanium nitride wave film, a method is conventionally known in which titanium metal is heated in a nitrogen gas atmosphere to form titanium nitride. However, in order to obtain titanium nitride that exhibits a golden color, metallic titanium and nitrogen must always be dissolved in solid solution at a constant solid solution ratio, and if the reaction atmosphere contains a trace amount of oxygen, metallic titanium and oxygen react to form titanium oxide, making it impossible to obtain a film with the desired composition and resulting in a significant change in color tone.

そのため、一般の加熱炉などで所定の色調の窒化チタン
を安定して得ることは困難であり、装飾被膜用の窒化チ
タンの形成は、反応性スパッタリングなとのPVD法に
よっているのが実状である。
Therefore, it is difficult to stably obtain titanium nitride of a predetermined color using a general heating furnace, etc., and the actual situation is that titanium nitride for decorative coatings is formed by PVD methods such as reactive sputtering. .

しかしながらPVD法は条件設定が難しく、作業に手間
がかり、さらには高価な高純度窒素ガスやガス精製装置
などを必要とするため、製造コストが高くなってしまう
という欠点がある。
However, the PVD method has the disadvantage that it is difficult to set conditions, is laborious, and requires expensive high-purity nitrogen gas and gas purification equipment, resulting in high manufacturing costs.

[発明の目的] そこで本発明の目的は、極めて簡単に安定した色調を得
ることができ、かつ製造コストの低い窒化チタンの形成
方法を提供することにある。
[Object of the Invention] Therefore, an object of the present invention is to provide a method for forming titanium nitride which can extremely easily obtain a stable color tone and which is inexpensive to produce.

[課題を解決するための手段] 本発明の特徴は、少なくとも表面に金属チタンよりなる
被処理材と、金属チタンより酸化し易い金属とを加熱炉
内に配置し、ついで上記加熱炉内に窒素ガスを導入して
加熱するところにある。
[Means for Solving the Problems] A feature of the present invention is that a material to be treated made of metallic titanium at least on the surface and a metal that is more easily oxidized than metallic titanium are placed in a heating furnace, and then nitrogen is introduced into the heating furnace. This is where gas is introduced and heated.

他の特徴は、加熱温度を780℃〜830℃とするとこ
ろにある。
Another feature is that the heating temperature is 780°C to 830°C.

さらに他の特徴は、窒素ガスを上記加熱炉の一端部側か
ら供給しかつ他端部側から排出し、上記被処理材に対し
て少なくとも上流側に上記金属を配置するところにある
Still another feature is that nitrogen gas is supplied from one end of the heating furnace and discharged from the other end, and the metal is disposed at least upstream of the material to be treated.

[作用] 被処理材と、金属チタンより酸化し易い金属とを加熱炉
内に配置して、窒素ガス雰囲気内で加熱すると、該雰囲
気内の酸素が該金属と優先的に反応して金属酸化物を生
成し、酸化チタンの生成が防止される。
[Function] When the material to be treated and a metal that is more easily oxidized than metal titanium are placed in a heating furnace and heated in a nitrogen gas atmosphere, oxygen in the atmosphere preferentially reacts with the metal, causing metal oxidation. This prevents the production of titanium oxide.

[実施例] 以下、図面に基づいて本発明の実施例について説明する
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図において、加熱炉1の石英管2の一端部には窒素
ガス導入用の管状突起3が形成しである。
In FIG. 1, a tubular projection 3 for introducing nitrogen gas is formed at one end of a quartz tube 2 of a heating furnace 1.

石英管2の他端部には開口2aが形成してあり、蓋体4
は石英管2の他端部と密着嵌合しかつ着脱自在になって
いる。蓋体4には窒素ガス排出用の管状突起5が形成し
である。管状突起3には市販の窒素ガスボンベ(図示せ
ず。)に連結されている耐熱性の窒素ガス導入用チュー
ブ6が連結してあり、管状突起5には同様の素材の窒素
ガス排出用チューブ7が連結しである。なお8は加熱用
のヒータである。
An opening 2a is formed at the other end of the quartz tube 2, and the lid body 4
is closely fitted to the other end of the quartz tube 2 and is detachable. A tubular projection 5 for discharging nitrogen gas is formed on the lid body 4. A heat-resistant nitrogen gas introduction tube 6 connected to a commercially available nitrogen gas cylinder (not shown) is connected to the tubular projection 3, and a nitrogen gas exhaust tube 7 made of the same material is connected to the tubular projection 5. is connected. Note that 8 is a heater for heating.

次に処理手順について説明する。Next, the processing procedure will be explained.

先ず、被処理材としての金属チタン9および金属チタン
より酸化され易い金属としてのタンクル10をセラミッ
クボード11上に載置し、タンタル10にて金属チタン
9を取り囲むように配置する。ついで蓋体4を取り外し
、開口2aを介して金属チタン9とタンタル10とを加
熱炉1内に挿入し、ヒータ8との対向部に位置させる。
First, metal titanium 9 as a material to be treated and tankle 10 as a metal that is more easily oxidized than metal titanium are placed on a ceramic board 11, and tantalum 10 is arranged so as to surround metal titanium 9. Next, the lid 4 is removed, and the metal titanium 9 and tantalum 10 are inserted into the heating furnace 1 through the opening 2a and positioned opposite to the heater 8.

そして蓋体4を閉じた後、チューブ6、管状突起3を介
して窒素ガスボンベから窒素ガスを導入し、石英管2内
を窒素ガス雰囲気とする。その後、窒素ガスを導入しつ
つ、780℃〜830℃で約1時間加熱する。なお窒素
ガスは、ガスボンベからの圧力により、管状突起5.チ
ューブ7を介して自然に排出される。
After the lid body 4 is closed, nitrogen gas is introduced from a nitrogen gas cylinder through the tube 6 and the tubular protrusion 3 to create a nitrogen gas atmosphere inside the quartz tube 2. Thereafter, the mixture is heated at 780° C. to 830° C. for about 1 hour while introducing nitrogen gas. Note that the nitrogen gas is supplied to the tubular protrusion 5 due to the pressure from the gas cylinder. It is naturally drained via tube 7.

以上の処理によって、金属チタン9の表面に金色を呈す
る窒化チタン被膜12(第2図示)を形成することがで
きた。この窒化チタン被膜12は第3図示のX線回折試
験の結果から、第2図に示すようにTiN層12 a、
T t2 N層12b。
Through the above treatment, a gold-colored titanium nitride coating 12 (shown in the second figure) could be formed on the surface of the metal titanium 9. From the results of the X-ray diffraction test shown in FIG. 3, this titanium nitride coating 12 has a TiN layer 12a, as shown in FIG.
T t2 N layer 12b.

T ia N層12cの31所からなるものであること
が確認された。
It was confirmed that the T ia N layer 12c consisted of 31 locations.

下表に、金属チタン9の近傍にタンタル10を配置して
窒化チタン被膜を形成した場合と、タンタル10を用い
ずに窒化チタン被膜を形成した場合の実験結果を示す。
The table below shows experimental results when a titanium nitride film was formed by arranging tantalum 10 near metal titanium 9 and when a titanium nitride film was formed without using tantalum 10.

なお試料としては金属チタン薄板を用い、加熱時間は1
時間とし、窒素ガスの流量は5000 ml/ min
とした。
The sample used was a metal titanium thin plate, and the heating time was 1.
time, and the nitrogen gas flow rate is 5000 ml/min.
And so.

久 上表に示すように、タンタルを用いずに処理したものは
一部に酸化物が観察されるのに対し、タンタルを加熱炉
内に配置したものは酸化物が観察されず均一な窒化チタ
ン被膜が得られる。これは加熱炉内に配置したタンタル
が窒素ガス雰囲気中の酸素と優先的に反応して金属酸化
物を生成し、それによって酸化チタンの生成が防止され
るからである。なお所望の金色を呈する窒化チタン被膜
を?1ノるには、750°C〜850℃の範囲で加熱す
ることか望ましく、この加熱温度範囲内では窒化チタン
被膜の表面硬度をビッカース硬度で450HV〜750
HVとすることができ、チタン薄板にもソリなどが生じ
ないことが確認された。
As shown in the Kugami table, oxides are observed in some parts of the products treated without using tantalum, whereas oxides are not observed in the products treated with tantalum in the heating furnace, resulting in uniform titanium nitride. A coating is obtained. This is because the tantalum placed in the heating furnace preferentially reacts with oxygen in the nitrogen gas atmosphere to produce metal oxides, thereby preventing the production of titanium oxide. Also, is there a titanium nitride coating that exhibits the desired gold color? 1, it is desirable to heat in the range of 750°C to 850°C, and within this heating temperature range, the surface hardness of the titanium nitride coating will be 450HV to 750 on Vickers hardness.
It was confirmed that the titanium thin plate could be made into an HV and that warping did not occur in the titanium thin plate.

上述の実施例では、被処理材とともに加熱炉内に配置す
る金属としてタンタルを用いた例について説明したが、
該金属は金属チタンより酸化し易い金属、すなわち、酸
化物の生成自由エネルギーか酸化チタンの生成自由エネ
ルギーよりも小さな金属ならば良く、ニオブやクロムな
どを用いた場合にも同トlな効果がjすられる。
In the above embodiment, an example was explained in which tantalum was used as the metal placed in the heating furnace together with the material to be treated.
The metal should be a metal that is more easily oxidized than metallic titanium, that is, a metal whose free energy of formation of the oxide is smaller than the free energy of formation of titanium oxide, and the same effect can be obtained when using niobium, chromium, etc. j will be ignored.

また本実施例のように窒素ガスを一端部側から導入し、
他端部側から排出するようにした場合には、小メ(°1
の加熱炉を用いた場合でも窒素ガスが不足することがな
く、常に一定の窒素固溶比を白−する窒化チタン波膜を
得ることができる。またこの場合には金属チタンより酸
化され易い金属を被処理材を取囲むように配置せず、被
処理材に対して上流側のみに配置するようにしても同様
な効果か得られる。
Also, as in this example, nitrogen gas is introduced from one end side,
When discharging from the other end, use a small
Even when using a heating furnace, there is no shortage of nitrogen gas, and it is possible to obtain a titanium nitride wave film that always maintains a constant nitrogen solid solution ratio. Further, in this case, the same effect can be obtained even if the metal, which is more easily oxidized than metal titanium, is not arranged so as to surround the material to be treated, but is arranged only on the upstream side with respect to the material to be treated.

また上述の実施例では、被処理材として金属チタンを用
いた例を示したが、被処理材は表面が金属チタンで形成
されているものであれば良く、例えば鉄鋼など表面に金
属チタンを被覆したものであってもよい。
Further, in the above embodiment, an example was shown in which titanium metal was used as the material to be treated, but the material to be treated may be any material whose surface is made of titanium metal, such as steel whose surface is coated with titanium metal. It may be something that has been done.

[効用] 以1−詳細に説明したように本発明によれば、スパッタ
リングなどの煩雑な処理を要することなく、一般の加熱
炉を用いて、組成比が一定で安定した色調の窒化チタン
波膜を容易に形成することかでき、4産に適する。しか
も高純度の窒素ガスを要することなく、安価な市販の窒
素ガスを用いることかできるため、製造コストの低減に
極めて角効ある。
[Efficacy] As described in detail below, according to the present invention, a titanium nitride wave film with a constant composition ratio and a stable color tone can be produced using a general heating furnace without requiring complicated treatments such as sputtering. It can be easily formed and is suitable for four productions. Moreover, inexpensive commercially available nitrogen gas can be used without requiring high-purity nitrogen gas, which is extremely effective in reducing manufacturing costs.

また750°C〜850℃の温度範囲で加熱すれば、美
しい金色を呈する均一な窒化チタン被膜を?’Jること
ができる。
Also, if heated in the temperature range of 750°C to 850°C, a uniform titanium nitride film with a beautiful golden color can be produced. 'J can.

また加熱炉の一端部側から窒素ガスを導入し、他端部側
から窒素ガスを排出するようにすれば、小型の加熱炉を
用いた場合でも反応雰囲気中の窒素ガスか不足すること
がなく、常に一定の窒素固溶化をaする窒化チタン波膜
を得ることかできる。
In addition, by introducing nitrogen gas from one end of the heating furnace and discharging nitrogen gas from the other end, even if a small heating furnace is used, there will be no shortage of nitrogen gas in the reaction atmosphere. , it is possible to obtain a titanium nitride wave film that always has a constant nitrogen solid solution.

またこの場合には金属チタンより酸化され易い金属を被
処理材を取囲むように配置せず、被処理材に対して1−
流側のみに配置するようにしても同様な効川か得られる
In addition, in this case, a metal that is more easily oxidized than titanium metal is not placed so as to surround the material to be treated, and instead
A similar river effect can be obtained by placing it only on the stream side.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第1図は加
熱炉の断面図、第2図は窒化チタン波膜を形成した被処
理材の断面の模式図、第3図は窒化チタン波膜のX線回
折試験の結果を示す回折強度と回折角の関係図である。 1・・・加熱炉、 9・・・被処理材、 10・・・金属チタンより酸化され易い金属。 第1図 第2図 /12冒4乙奇7・7句員 4欅(lIゴ
The drawings show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of a heating furnace, FIG. 2 is a schematic cross-sectional view of a material to be treated on which a titanium nitride wave film is formed, and FIG. 3 is a cross-sectional view of a titanium nitride wave film. FIG. 2 is a diagram showing the relationship between diffraction intensity and diffraction angle, showing the results of an X-ray diffraction test of a wave film. DESCRIPTION OF SYMBOLS 1... Heating furnace, 9... Material to be treated, 10... Metal that is more easily oxidized than metal titanium. Figure 1 Figure 2 / 12 Era 4 Oki 7.7 Poetry member 4 Keyaki

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも表面に金属チタンを有する被処理材と
、金属チタンより酸化し易い金属とを加熱炉内に配置し
、ついで上記加熱炉内に窒素ガスを導入して加熱するこ
とを特徴とする窒化チタンの形成方法。
(1) A material to be treated having metallic titanium on at least its surface and a metal that is more easily oxidized than metallic titanium are placed in a heating furnace, and then nitrogen gas is introduced into the heating furnace and heated. How to form titanium nitride.
(2)加熱温度を750℃〜850℃とすることを特徴
とする請求項1記載の窒化チタン形成方法。
(2) The titanium nitride forming method according to claim 1, characterized in that the heating temperature is 750°C to 850°C.
(3)窒素ガスを上記加熱炉の一端部側から供給しかつ
他端部側から排出し、上記被処理材に対して少なくとも
上流側に上記金属を配置することを特徴とする請求項1
または2記載の窒化チタン形成方法。
(3) Nitrogen gas is supplied from one end of the heating furnace and discharged from the other end, and the metal is disposed at least upstream of the material to be treated.
Or the method for forming titanium nitride according to 2.
JP13422388A 1988-05-31 1988-05-31 Formation of titanium nitride Pending JPH01306548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13422388A JPH01306548A (en) 1988-05-31 1988-05-31 Formation of titanium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13422388A JPH01306548A (en) 1988-05-31 1988-05-31 Formation of titanium nitride

Publications (1)

Publication Number Publication Date
JPH01306548A true JPH01306548A (en) 1989-12-11

Family

ID=15123298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13422388A Pending JPH01306548A (en) 1988-05-31 1988-05-31 Formation of titanium nitride

Country Status (1)

Country Link
JP (1) JPH01306548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497844U (en) * 1991-01-11 1992-08-25
JPH06146031A (en) * 1992-11-09 1994-05-27 Natl Res Inst For Metals Method for suppressing high-temperature oxidation of tial-base intermetallic compound and its product
WO1997036019A1 (en) * 1996-03-27 1997-10-02 Sumitomo Sitix Corporation Method for color development of metallic titanium, and black titanium and colored titanium prepared by said method
WO1997037050A1 (en) * 1996-03-29 1997-10-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Ti-Al-BASE ALLOY HAVING EXCELLENT OXIDATION RESISTANCE AND PROCESS FOR PREPARING THE SAME
CN103620066A (en) * 2011-06-17 2014-03-05 山特维克知识产权股份有限公司 Method for handling hard metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338966A (en) * 1976-09-22 1978-04-10 Toshiba Corp Magnetron
JPS616147A (en) * 1984-06-18 1986-01-11 Matsushita Electric Ind Co Ltd Glaze composition for porcelain enamel having low melting point

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338966A (en) * 1976-09-22 1978-04-10 Toshiba Corp Magnetron
JPS616147A (en) * 1984-06-18 1986-01-11 Matsushita Electric Ind Co Ltd Glaze composition for porcelain enamel having low melting point

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497844U (en) * 1991-01-11 1992-08-25
JPH06146031A (en) * 1992-11-09 1994-05-27 Natl Res Inst For Metals Method for suppressing high-temperature oxidation of tial-base intermetallic compound and its product
WO1997036019A1 (en) * 1996-03-27 1997-10-02 Sumitomo Sitix Corporation Method for color development of metallic titanium, and black titanium and colored titanium prepared by said method
US6093259A (en) * 1996-03-27 2000-07-25 Sumitomo Sitix Corporation Color development method of metallic titanium and black and colored titanium manufactured by this method
WO1997037050A1 (en) * 1996-03-29 1997-10-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Ti-Al-BASE ALLOY HAVING EXCELLENT OXIDATION RESISTANCE AND PROCESS FOR PREPARING THE SAME
US6410154B2 (en) 1996-03-29 2002-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Tial-based alloys with excellent oxidation resistance, and method for producing the same
CN103620066A (en) * 2011-06-17 2014-03-05 山特维克知识产权股份有限公司 Method for handling hard metal
US9101960B2 (en) 2011-06-17 2015-08-11 Sandvik Intellectual Property Ab Method for handling hard metal

Similar Documents

Publication Publication Date Title
EP0883698B1 (en) METHOD FOR FORMING Ti 1-xAlxN COATINGS
FR2577944A1 (en) HARD SURFACE COATINGS OF METALS IN FLUIDIZED BEDS
CA2152216A1 (en) Corrosion-Resistant Metallic Porous Member and Method of Manufacturing the Same
JPH01306548A (en) Formation of titanium nitride
DE60120036D1 (en) Process for producing metal powder by thermal decomposition
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
RU1836484C (en) Method of application of nitride layers on parts made of titanium and titanium alloys
Wahl Component properties after salt-bath nitrocarburising by the Tufftride process
EP1010474A3 (en) Preparation of platinium coatings through plasma polymerization
US5292555A (en) Process for applying nitride layers to titanium
JPH04141576A (en) Ornaments and production thereof
JPS5464012A (en) Heat resistant metallic member free of pick-up phenomenon for use in heat treating furnace
Rie et al. Microstructure of plasma nitrided titanium and titanium alloys
KR940003785B1 (en) Ornament with glass material having heat and fire resistance and method for making the same
Rie et al. Surface treatment of PM materials by plasma nitrocarburizing
Taniguchi Coatings for TiAl
JPS6372866A (en) Decorative coating method with titanium nitride
JPS5831884Y2 (en) Watch exterior parts treated to prevent fading and corrosion
KR100312838B1 (en) Improved method and its apparatus for aluminizing coating process
JP2957232B2 (en) Decorative products with heat and fire resistance
JPS61127858A (en) Golden color external parts
JPH02289498A (en) Formation of alumina whisker
Zharnitskii et al. Study of the Process of Producing Nitrided Ferrovanadium
JPH0261553B2 (en)
Michel et al. New Method for Physical Vapour Deposition of Metals, Alloys and Compounds Such as Nitrides and Carbides