JPH01298933A - Variable speed generator for valve water wheel - Google Patents

Variable speed generator for valve water wheel

Info

Publication number
JPH01298933A
JPH01298933A JP12580988A JP12580988A JPH01298933A JP H01298933 A JPH01298933 A JP H01298933A JP 12580988 A JP12580988 A JP 12580988A JP 12580988 A JP12580988 A JP 12580988A JP H01298933 A JPH01298933 A JP H01298933A
Authority
JP
Japan
Prior art keywords
generator
exciter
frequency
variable speed
valve water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580988A
Other languages
Japanese (ja)
Inventor
Takahiro Onishi
大西 孝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12580988A priority Critical patent/JPH01298933A/en
Publication of JPH01298933A publication Critical patent/JPH01298933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To obtain a variable speed generator having a brushless structure by controlling the output current of a frequency converter, and vector-controlling the amplitude and phase of the field current of an AC exciter. CONSTITUTION:An AC excited generator 1 is coupled directly or through a short shaft to the rotor of an AC exciter 2, and the field winding of the generator 1 is connected in reverse phase sequence to the armature winding of the exciter 2 on the rotor. The runners of a valve water wheel are connected to the main shaft of the generator 1, and so composed as to be rotatable integrally as a whole. The stator side armature winding of the generator 1 is connected to a power system having a predetermined frequency, and 3-phase AC exciting current of low frequency corresponding to the slip frequency is applied from a frequency converter 3 to the stator side field winding of the exciter 2.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水力発電所の円筒形バルブ水車への適用を目的
とする可変速発電機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a variable speed generator intended for application in cylindrical valve water turbines in hydroelectric power plants.

(従来の技術) 水力発電所の発電機は、はとんどが静止形励磁装置の場
合、ブラシを介して、またブラシレス励磁装置の場合、
交流励磁機を介して回転整流器で整流して直流で励磁さ
れ一定の速度で回転する回転界磁形の同期機が使用され
ている。
(Prior art) Generators in hydroelectric power plants are usually operated via brushes in the case of static exciters, or via brushes in the case of brushless exciters.
A rotating field type synchronous machine is used, which is rectified by a rotating rectifier via an AC exciter, excited by DC, and rotates at a constant speed.

上記同期発電機(10)は円筒形バルブ水車の場合、第
4図の通り可動羽根バルブ水車0)に主軸(9)を介し
て直結され水車の導水部に設置される為、防水構造の円
筒(11)の中に収納されている。
In the case of a cylindrical valve water turbine, the synchronous generator (10) is directly connected to the movable vane valve water turbine 0) via the main shaft (9) as shown in Fig. 4, and is installed in the water guide section of the water turbine. It is stored in (11).

(発明が解決しようとする課題) 従来円筒形バルブ水車は低落差(5〜30m位)に採用
され、比速度の制限上から回転速度が高く取れず、した
がって同期発電機も回転速度が低いので極数が多く成り
、回転子の大きさがポールを付ける制約から外形寸法が
非常に大きく成ってしまう。
(Problem to be solved by the invention) Conventionally, cylindrical valve water turbines were used for low head (approximately 5 to 30 m), and high rotational speeds could not be achieved due to specific speed limitations. Therefore, synchronous generators also had low rotational speeds. The number of poles increases, and the outer dimensions of the rotor become extremely large due to restrictions on the size of the rotor.

上記同期発電機は水車流路中の円筒内に設置される為、
外形寸法が大きく成るとバルブ水車の円筒内径、外径共
大きくする必要があり、水車の流路損失を減少させる為
、発電機の外形寸法は通常。
Since the above synchronous generator is installed inside a cylinder in the water turbine flow path,
As the external dimensions increase, both the cylindrical inner and outer diameters of the valve turbine must be increased, and in order to reduce the flow path loss of the turbine, the external dimensions of the generator are normally set.

ランナ径の1〜1.2倍の寸法におさえる必要があり、
それを超えると水車の効率が低下する。また、円筒外径
が大きく成る為、土木の掘削斌が増え、水力発電所の建
設コストが増え不経済である。
It is necessary to keep the size to 1 to 1.2 times the runner diameter.
Beyond that, the efficiency of the water wheel decreases. In addition, since the outer diameter of the cylinder becomes larger, the number of excavations required for civil engineering increases, which increases the construction cost of the hydroelectric power plant, making it uneconomical.

本発明は、以上のような問題点を解消するためのもので
、同期発電機の代わりに交流励磁形発電機と交流励磁機
を直結して構成したいわゆるブラシレス構造の可変速発
電機を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and provides a variable speed generator with a so-called brushless structure, which is constructed by directly connecting an AC excitation type generator and an AC exciter instead of a synchronous generator. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明によるバルブ水車用可変
速発電機は、第1図に示すように円筒形バルブ水車に直
結された交流励磁形発電機■と、この発電機と一体とな
って回転する回転電機子形の交流励磁機■と、この交流
励磁機■の励磁の固定子側界磁巻線に可変周波数の励磁
を行う周波数変換器0、たとえばサイクロコンバータを
備えた構成とする。交流励磁形発電機(1)は従来のも
のと同様の、1次側固定子に3組型機子巻線、2次側円
筒形回転子に3相界磁巻線を有する交流励磁形発電機で
、交流励磁機■は1次側円筒形回転子に3組型機子巻線
、2次側固定子に3相界磁巻線を有する回転電機子形の
交流励磁形発電機である。
(Means for Solving the Problems) In order to achieve the above object, the variable speed generator for a valve water turbine according to the present invention comprises an alternating current excitation type generator (1) directly connected to a cylindrical valve water turbine as shown in FIG. , a rotating armature-type AC exciter ■ that rotates integrally with this generator, and a frequency converter 0 that excites the stator side field winding of this AC exciter ■ at a variable frequency, for example. The configuration includes a cycloconverter. The AC-excited generator (1) is an AC-excited generator (1) similar to conventional ones, with a 3-set rotor winding on the primary stator and a 3-phase field winding on the secondary cylindrical rotor. The AC exciter ■ is a rotating armature-type AC-excited generator that has a 3-set mecha winding on the primary cylindrical rotor and a 3-phase field winding on the secondary stator. .

交流励磁形発電機(1)および交流励磁機■の回転子は
直接または短軸を介して結合され、交流励磁形発電機■
の界磁巻線と交流励磁機■の電機子巻線は回転子上で互
いに逆相順に接続されている。また、交流励磁形発電機
■の主軸にはバルブ水車のランナが結合され、これらは
全体で一体と成って回転し得るように構成されている。
The rotors of the AC excitation type generator (1) and the AC exciter ■ are coupled directly or via a short shaft, and the AC excitation type generator ■
The field winding of the AC exciter (2) and the armature winding of the AC exciter (2) are connected to each other in reverse phase order on the rotor. In addition, a runner of a valve water wheel is connected to the main shaft of the alternating current excitation type generator (1), and the runners of the valve water wheel are configured so that they can rotate as a whole.

交流励磁形発電機(υの固定子側電機子巻線は一定周波
数の電力系統に接続され、交流励磁機■の固定子側界磁
巻線には周波数変換器■からすべり周波数に相当する低
周波の3相交流励磁が加えられる。
The stator-side armature winding of an AC-excited generator (υ) is connected to a power system with a constant frequency, and the stator-side field winding of the AC exciter ■ is connected to a low frequency converter ■ corresponding to the slip frequency. Frequency three-phase AC excitation is applied.

(作 用) このように構成された発電機では、周波数変換器■の出
力電流すなわち交流励磁機■の界磁電流の大きさおよび
位相をベクトル制御することにより交流励磁機■の電機
子電流すなわち交流励磁形発電機ωの界磁電流が変化し
、交流励磁形発電機■のトルクおよび電機子電流が変化
する。従って周波数変換器のサイリスタゲートの制御に
より交流励磁形発電機の速度および有効・無効電力を制
御することができる。
(Function) In the generator configured as described above, the armature current of the AC exciter ■, i.e., is controlled by vector control of the magnitude and phase of the output current of the frequency converter ■, that is, the field current of the AC exciter ■. The field current of the AC excitation type generator ω changes, and the torque and armature current of the AC excitation type generator ■ change. Therefore, the speed and active/reactive power of the AC-excited generator can be controlled by controlling the thyristor gate of the frequency converter.

いま交流励磁形発電機■および交流励磁機■の極数をそ
れぞれPlおよびPまただしP2<Pl、電源系統の周
波数をFl(Hz)とすると、回転速度n (rpm)
と交流励磁形発電機(υおよび交流励磁機■の各励磁周
波数Fs1(Hz)およびfsz(Hl)との関係は第
2図のようになる。
Now, if the number of poles of the AC excitation type generator ■ and the AC exciter ■ are Pl and P, respectively, and P2<Pl, and the frequency of the power supply system is Fl (Hz), then the rotation speed n (rpm)
The relationship between and the excitation frequencies Fs1 (Hz) and fsz (Hl) of the AC excitation type generator (υ and AC exciter ■) is as shown in FIG.

第2図においてfstは交流励磁形発電機のすべり周波
数に等しく、F1P1n/120で与えられる。
In FIG. 2, fst is equal to the slip frequency of the AC-excited generator and is given by F1P1n/120.

これが、交流励磁機■の出力周波数となるので、交流励
磁機の固定子側励磁周波数は、fs2” l fsl−
f2’ l = I Fl−(p1+Pz)n/120
1となる。ココで、f2′はP2極の交流励磁機■を直
流励磁し、回転速度nで運転した時の電機子出力周波数
でf、1=Pzn/120であたえられる。 また、f
axと横軸との交点N1は120F、 /p、であり電
源周波数F1に対する可変速発電機0)の同期速度であ
り、fszと横軸との交点N、は120F1/ (P工
+p、)であり、これは電源系統周波数F1に対する極
数(P1+P2)と等価な発電機の同期速度にひとしい
、また、n=N、のときのfszの値はFSz = P
z Nt / 120で与えられる。
This becomes the output frequency of the AC exciter ■, so the stator side excitation frequency of the AC exciter is fs2" l fsl-
f2' l = I Fl-(p1+Pz)n/120
It becomes 1. Here, f2' is the armature output frequency when the P2-pole AC exciter (2) is DC-excited and operated at a rotational speed n, which is given by f, 1=Pzn/120. Also, f
The intersection N1 between ax and the horizontal axis is 120F, /p, which is the synchronous speed of the variable speed generator 0) with respect to the power supply frequency F1, and the intersection N1 between fsz and the horizontal axis is 120F1/ (P + p,) This is equivalent to the synchronous speed of the generator, which is equivalent to the number of poles (P1 + P2) for the power system frequency F1, and the value of fsz when n = N is FSz = P
It is given by z Nt / 120.

以上説明したように交流励磁機の励磁周波数をOつまり
直流からFSzの範囲で調整することにより一体となっ
た交流励磁形発f!i機および交流励磁機を(2N2 
 Nu)≦n<Nuの範囲の速度で運転することができ
る。ただしn)N、の場合とn<N、の場合とでは交流
励磁機の界磁の回転方向は逆となる。
As explained above, by adjusting the excitation frequency of the AC exciter in the range from O, that is, DC to FSz, an integrated AC excitation type generator f! i machine and AC exciter (2N2
It is possible to operate at speeds in the range Nu)≦n<Nu. However, the rotation direction of the field of the AC exciter is opposite in the case of n)N and the case of n<N.

(実施例) 第3図は本発明の実施例で、ブラシレス可変速発電機を
使用した水力発電所の主回路単線接続図である。交流励
磁形発電機(1)は主要変圧器(ハ)および並列用遮断
器0を介して電力系統に接続される。
(Embodiment) FIG. 3 is an embodiment of the present invention, which is a main circuit single-line connection diagram of a hydroelectric power plant using a brushless variable speed generator. The AC excitation type generator (1) is connected to the power system via the main transformer (c) and the parallel circuit breaker 0.

周波数変換器■の電源側は励磁用電源変圧器■を介して
交流励磁形発電機回路に、負荷側は交流励磁機■の固定
子側界磁巻線に接続される。この実施例において、発電
機の可変速運転は制御装置0からのゲート制御信号で周
波数変換器■のサイリスタを制御し、交流励磁形発電機
ωの回転速度。
The power supply side of the frequency converter (2) is connected to the AC excitation type generator circuit via the excitation power transformer (2), and the load side is connected to the stator side field winding of the AC exciter (2). In this embodiment, the variable speed operation of the generator is performed by controlling the thyristor of the frequency converter (1) with a gate control signal from the control device 0, and controlling the rotational speed of the alternating current excitation type generator (ω).

有効電力および無効電力に対応した周波数1位相および
大きさの励磁電流を交流励磁機■の界磁巻線に供給する
ことで行われる。
This is done by supplying an excitation current with a frequency of one phase and magnitude corresponding to the active power and reactive power to the field winding of the AC exciter (2).

例えば、電力系統周波数50七、水車定格回転速度18
8rpmに必要な発電機は、同期発電機の場合、極数3
2ポールの発電機となり、同期発電機の極数は交流励磁
形発電機の極数と交流励磁機の極数の和に等しく、交流
励磁形発電機の場合、発電機1台当たりの極数を最小に
するには交流励磁形発電機と交流励TIa機の極数を等
しくする必要が有る。
For example, power system frequency 507, water turbine rated rotation speed 18
The generator required for 8 rpm is a synchronous generator with 3 poles.
It is a two-pole generator, and the number of poles of the synchronous generator is equal to the sum of the number of poles of the AC excitation type generator and the number of poles of the AC exciter, and in the case of an AC excitation type generator, the number of poles per generator. In order to minimize this, it is necessary to make the number of poles of the AC-excited generator and the AC-excited TIa machine equal.

すなわち、交流励磁形発電機の極数を16ボール、交流
励磁機の極数も16ボールにする事によりポールを付け
るのに必要な回転子の制約が緩くなり、回転子および固
定子の直径が著しく減少し、バルブ水車の内筒および外
筒の直径を小さくする事ができる。
In other words, by increasing the number of poles of the AC excitation type generator to 16 balls and the number of poles of the AC exciter to 16 balls, the restrictions on the rotor required to attach the poles are relaxed, and the diameters of the rotor and stator are reduced. The diameter of the inner and outer cylinders of the valve turbine can be reduced significantly.

バルブ水車は低落差の時に採用され、わずかな落差の変
動に於いても水車の効率特性が変化する。
Bulb turbines are used when the head is low, and the efficiency characteristics of the turbine change even with slight fluctuations in head.

この場合、水車の回転速度を効率特性上、最適回転速度
で運転し、可変速発電機が電力系統上、必要な周波数の
電力を出力する様、周波数変換器を制御する事により、
落差変動の有る場合でも、どの落差に於いても水車の効
率特性が最適な所で運転できる。
In this case, the frequency converter is controlled so that the water turbine is operated at the optimal rotation speed based on efficiency characteristics, and the variable speed generator outputs power at the frequency required for the power grid.
Even if there is head fluctuation, the water turbine can be operated at the optimum efficiency characteristics at any head.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の可変速発電機はポール数を低
減することにより従来のバルブ水車発電機のように過大
な円筒径を必要としないため水車の効率を向上させると
ともに土木の掘削量も減少し、建設費の総合経済性が向
上する。
As described above, the variable speed generator of the present invention reduces the number of poles and does not require an excessively large cylinder diameter unlike conventional valve turbine generators, thereby improving the efficiency of the water turbine and reducing the amount of excavation for civil engineering. This will improve the overall economic efficiency of construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるバルブ水車用ブラシレス可変速発
電システムの基本的な構成を示すブロック図、第2図は
回転速度と可変速発電機および交流可変速励磁機の励磁
周波数との関係を示すグラフ、第3図は本発明の一実施
例を示すブラシレス可変速発電機を使用した発電所の主
回路単線接続図、第4図は従来の一例を示すバルブ水車
および発電機の組立断面図である。 1・・・交流励磁形発電機、2・・・交流励磁機3・・
・周波数変換器、  4・・・バルブ水車5・・・主要
変圧器、   6・・・並列用遮断器7・・・励磁用電
源変圧器、8・・・制御装置9・・・主軸、     
 1o・・・同期発電機11・・・円筒 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第1図 回数u(rPm) 第2図 第3図 第4図
Fig. 1 is a block diagram showing the basic configuration of the brushless variable speed power generation system for valve water turbines according to the present invention, and Fig. 2 shows the relationship between the rotation speed and the excitation frequency of the variable speed generator and the AC variable speed exciter. 3 is a main circuit single-line connection diagram of a power plant using a brushless variable speed generator showing an embodiment of the present invention, and FIG. 4 is an assembled sectional view of a valve water turbine and generator showing an example of the conventional technology. It is. 1...AC excitation type generator, 2...AC exciter 3...
- Frequency converter, 4... Valve water turbine 5... Main transformer, 6... Parallel circuit breaker 7... Excitation power transformer, 8... Control device 9... Main shaft,
1o...Synchronous generator 11...Cylindrical agent Patent attorney Rule Chika Ken Yudo Daishimaru Ken Figure 1 Number of times u (rPm) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒形バルブ水車に直結された交流励磁形発電機と、こ
れと一体となって回転する回転電機子形の交流励磁機と
、この交流励磁機の固定側界磁巻線に可変周波数の励磁
を行う周波数変換器とを備えていることを特徴とするバ
ルブ水車用可変速発電機。
An AC excitation type generator directly connected to a cylindrical valve water turbine, a rotating armature type AC exciter that rotates integrally with the generator, and a variable frequency excitation to the fixed field winding of this AC exciter. A variable speed generator for a valve water turbine, characterized in that it is equipped with a frequency converter that performs
JP12580988A 1988-05-25 1988-05-25 Variable speed generator for valve water wheel Pending JPH01298933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12580988A JPH01298933A (en) 1988-05-25 1988-05-25 Variable speed generator for valve water wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12580988A JPH01298933A (en) 1988-05-25 1988-05-25 Variable speed generator for valve water wheel

Publications (1)

Publication Number Publication Date
JPH01298933A true JPH01298933A (en) 1989-12-01

Family

ID=14919456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580988A Pending JPH01298933A (en) 1988-05-25 1988-05-25 Variable speed generator for valve water wheel

Country Status (1)

Country Link
JP (1) JPH01298933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053889A (en) * 2005-07-21 2007-03-01 Fumihiko Saito Generator
JP2007143323A (en) * 2005-11-21 2007-06-07 Mitsubishi Electric Corp Ac exciting generator
US20130127172A1 (en) * 2011-11-18 2013-05-23 Hitachi, Ltd. Electrical Rotating Machine System or Wind Turbine System
WO2014064747A1 (en) * 2012-10-22 2014-05-01 株式会社日立製作所 Rotary electric machine system and wind power generation system
WO2014136251A1 (en) * 2013-03-08 2014-09-12 株式会社日立製作所 Rotating electrical machine system and wind power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053889A (en) * 2005-07-21 2007-03-01 Fumihiko Saito Generator
JP2007143323A (en) * 2005-11-21 2007-06-07 Mitsubishi Electric Corp Ac exciting generator
US20130127172A1 (en) * 2011-11-18 2013-05-23 Hitachi, Ltd. Electrical Rotating Machine System or Wind Turbine System
US9484793B2 (en) * 2011-11-18 2016-11-01 Hitachi, Ltd. Electrical rotating machine system or wind turbine system
WO2014064747A1 (en) * 2012-10-22 2014-05-01 株式会社日立製作所 Rotary electric machine system and wind power generation system
JP5913618B2 (en) * 2012-10-22 2016-04-27 株式会社日立製作所 Rotating electrical machine system and wind power generation system
WO2014136251A1 (en) * 2013-03-08 2014-09-12 株式会社日立製作所 Rotating electrical machine system and wind power generation system
GB2526213A (en) * 2013-03-08 2015-11-18 Hitachi Ltd Rotating electrical machine system and wind power generation system
JP5908646B2 (en) * 2013-03-08 2016-04-26 株式会社日立製作所 Rotating electrical machine system and wind power generation system
GB2526213B (en) * 2013-03-08 2020-08-26 Hitachi Ltd Rotating electrical machine system and wind power generation system

Similar Documents

Publication Publication Date Title
CA1122639A (en) Two-stage electric generator system
US4367413A (en) Combined turbine and generator
JP3530911B2 (en) Variable speed generator motor
US20110018383A1 (en) Permanent-magnet switched-flux machine
CN110971095B (en) Double-stator wind driven generator and power generation system
CN108365718B (en) A kind of birotor permanent magnetic doubly-fed wind turbine and electricity generation system
US4228391A (en) Induction machine
CN104600930A (en) Permanent magnet excitation brushless doubly fed wind power generator
CN109639204A (en) Flywheel energy storage control system and control method based on ten two-phase permanent magnet synchronous motors
Gish et al. An adjustable speed synchronous machine for hydroelectric power applications
CN101183804A (en) Three-phase external rotor electric excitation biconvex pole wind power generator
JPH01298933A (en) Variable speed generator for valve water wheel
CA2890585C (en) System comprising a first electric motor and a second electric motor for driving a string
US8198743B2 (en) Multi-stage controlled frequency generator for direct-drive wind power
JP2000345952A (en) Multipolar wind power generator and wind power generating method
CN100362731C (en) Double-feeding speed varying salient-pole synchronous motor
Jovanovic et al. The use of doubly fed reluctance machines for large pumps and wind turbines
Koczara et al. Smart and decoupled power electronic generation system
JPS63302800A (en) Brushless variable speed generator-motor
JPH06269173A (en) Frequency converter
Galasso Adjustable speed operation of pumped hydroplants
Deshpande et al. Simplified Model of DFIG in Wind Integrated Power System
Carvalho Wind Energy Conversion Systems
JPS6299677A (en) Operation control system for variable speed pumping-up power generating system
JPS589556A (en) Variable-speed drive fixed frequency generator