JPH01254797A - Production of mesophase pitch - Google Patents
Production of mesophase pitchInfo
- Publication number
- JPH01254797A JPH01254797A JP8165388A JP8165388A JPH01254797A JP H01254797 A JPH01254797 A JP H01254797A JP 8165388 A JP8165388 A JP 8165388A JP 8165388 A JP8165388 A JP 8165388A JP H01254797 A JPH01254797 A JP H01254797A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- mesoface
- solvent extraction
- mesophase
- quinoline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000011302 mesophase pitch Substances 0.000 title abstract description 14
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims abstract description 56
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000000638 solvent extraction Methods 0.000 claims abstract description 35
- 238000011282 treatment Methods 0.000 claims abstract description 33
- 238000000926 separation method Methods 0.000 claims abstract description 26
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 7
- 239000011295 pitch Substances 0.000 abstract description 138
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 21
- 239000004917 carbon fiber Substances 0.000 abstract description 21
- 239000003153 chemical reaction reagent Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 238000005119 centrifugation Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 10
- 238000006068 polycondensation reaction Methods 0.000 description 9
- 239000011269 tar Substances 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 239000011337 anisotropic pitch Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000010426 asphalt Substances 0.000 description 3
- 238000004523 catalytic cracking Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- -1 gasoline fractions Chemical class 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
- D01F9/155—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Working-Up Tar And Pitch (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は炭素繊維及び成形炭素材料を製造するのに適し
たメソフェースピッチの製造方法に関する。更に詳しく
は1本発明は高強度、高弾性率を有する高性能の炭素繊
維及び成形炭素材料の原料として好適なメソフェースピ
ッチの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing mesoface pitch suitable for producing carbon fibers and shaped carbon materials. More specifically, the present invention relates to a method for producing mesoface pitch, which is suitable as a raw material for high-strength, high-modulus, high-performance carbon fibers and molded carbon materials.
従来、自動車、航空機その他の各種産業分野にわたって
、軽量、高強度、高弾性率等を有する高性能素材の開発
が要望されており、か)る観点から炭素繊維が注目され
ている。BACKGROUND ART Conventionally, there has been a demand for the development of high-performance materials having light weight, high strength, high elastic modulus, etc. in various industrial fields such as automobiles, aircraft, etc., and carbon fiber has been attracting attention from these viewpoints.
現在市販の炭素繊維は依然としてポリアクリロニトリル
を原料とするPAN系炭素炭素繊維流であるが、石炭又
は石油系ピッチ類を原料とする炭素繊維も原料が安価で
、炭化工程での歩留りが高く、弾性率の高い繊維が得ら
れるなどの利点から重要視され、活発な開発研究が行な
われている。Currently, commercially available carbon fibers are still PAN-based carbon fibers made from polyacrylonitrile, but carbon fibers made from coal or petroleum pitches are also cheaper raw materials, have a higher yield in the carbonization process, and have more elasticity. It is regarded as important due to its advantages such as the ability to obtain fibers with high fiber content, and active research and development efforts are being carried out.
光学的に等方性のピッチから得られる炭素繊維は強度1
弾性率ともに低いが、光学的等方性ピッチを熱処理して
得られる光学的異方性ピッチ(即ちメソフェースピッチ
)からは高性能炭素繊維が得られる。これらの方法とし
て、例えば、単に原料ピッチを加熱処理する(特開昭4
9−19127号、同57−42924号各公報)、光
学的等方性ピッチを溶媒で抽出しその不溶分を加熱処理
する(特開昭54−160427号公報等)、不活性ガ
スを吹込みながら加熱処理する(特開昭58−1686
87号公報)、部分水添した後、加熱処理する(特開昭
57−100186号、同58−18421号各公報)
、熱分解重縮合を半ばで打切って、比重差によって沈積
分離又は遠心分離して高濃度異方性ピッチを得る(特公
昭61−38755号、同62−24036号各公報)
方法などが提案されている。Carbon fiber obtained from optically isotropic pitch has a strength of 1
Although both the modulus of elasticity is low, high-performance carbon fibers can be obtained from optically anisotropic pitch (i.e., mesoface pitch) obtained by heat-treating optically isotropic pitch. These methods include, for example, simply heat-treating the raw material pitch (Japanese Patent Laid-Open No.
9-19127 and 57-42924), extracting the optically isotropic pitch with a solvent and heat-treating the insoluble matter (Japanese Patent Application Laid-open No. 160427/1984, etc.), and blowing inert gas. (Japanese Patent Application Laid-Open No. 58-1686
No. 87), heat treatment after partial hydrogenation (Japanese Unexamined Patent Publications Nos. 57-100186 and 58-18421)
, terminating the pyrolysis polycondensation in the middle and performing sedimentation separation or centrifugation depending on the difference in specific gravity to obtain highly concentrated anisotropic pitch (Japanese Patent Publications No. 61-38755 and No. 62-24036)
Several methods have been proposed.
ただ、これらのメソフェースピッチの使用によす、PA
N系炭素炭素繊維べて、超高弾性率、高弾性率の繊維が
容易に得られるものの、高強度を発現させるには、未だ
不充分なものであった。However, depending on the use of these mesoface pitches, PA
Although fibers with ultra-high elastic modulus and high elastic modulus can be easily obtained for all N-based carbon fibers, they are still insufficient to develop high strength.
本発明者らは、高強度炭素繊維を得るためのメソフェー
スピッチの製造について、鋭意検討した結果、メンフェ
ース分難工程で得られたメソフェースピッチを、キノリ
ン不溶成分除去のための第1溶剤抽出処理及びn−ヘプ
タン可溶成分除去のための第2溶剤抽出処理に付すこと
により、炭素繊維製造時に高い強度を発現し得るメソフ
ェースピッチが得られることを見出し1本発明を完成し
た。As a result of intensive studies on the production of mesoface pitch for obtaining high-strength carbon fibers, the present inventors determined that the mesoface pitch obtained in the mesoface separation process was treated with a first solvent for removing quinoline insoluble components. The present invention was completed based on the discovery that a mesoface pitch that can exhibit high strength during carbon fiber production can be obtained by subjecting it to an extraction treatment and a second solvent extraction treatment for removing n-heptane soluble components.
本発明の目的は、高強度を発現し得る。ピッチ系炭素繊
維の製造に適した、軟化点が低く且つ極めて均質なメソ
フェースピッチを安定的に製造する方法を提供すること
にある。The object of the present invention is to be able to develop high strength. The object of the present invention is to provide a method for stably producing mesoface pitch, which has a low softening point and is extremely homogeneous, and is suitable for producing pitch-based carbon fibers.
本発明によれば、炭素質原料を熱処理してメソフェース
含有ピッチを生成させる熱処理工程及び生成メソフェー
ス含有ピッチをメソフェースピッチ成分と非メソフェー
スピッチ成分とに分離してメソフェースピッチを得るメ
ソフェースピッチ分離工程を含むメソフェースピッチの
製造方法において、前記メソフェースピッチ分離工程で
得られたメソフェースピッチを、キノリン不溶成分除去
のための第1溶剤抽出処理及びn−ヘプタン可溶成分除
去のための第2溶剤抽出処理に付すことを特徴とするメ
ソフェースピッチの製造方法が提供される。According to the present invention, a heat treatment step of heat-treating a carbonaceous raw material to produce mesoface-containing pitch, and a mesoface pitch in which mesoface pitch is obtained by separating the produced mesoface-containing pitch into a mesoface pitch component and a non-mesoface pitch component. In a method for producing mesoface pitch including a separation step, the mesoface pitch obtained in the mesoface pitch separation step is subjected to a first solvent extraction treatment for removing quinoline insoluble components and a first solvent extraction treatment for removing n-heptane soluble components. A method for producing mesoface pitch is provided, which comprises subjecting the pitch to a second solvent extraction treatment.
即ち、本発明のメソフェースピッチの製造方法は、メソ
フェースピッチ分離工程で得られたメソフェースピッチ
を、キノリン不溶成分除去のための第1溶剤抽出処理に
付すことによって、キノリン不溶成分中に含まれる。炭
素繊維にしたときに高い強度の発現を阻害する、分子サ
イズの著るしく異なる成分や固形物などを除去し、更に
n−ヘプタン可溶成分除去のための第2溶剤抽出処理に
付すことによって、メソフェース化を阻害する成分を除
去して、炭素繊維にしたときに高い強度の発現を示す1
分子斌分布の狭い、均質なメソフェースピッチを得るも
のである。That is, in the method for producing mesoface pitch of the present invention, the mesoface pitch obtained in the mesoface pitch separation step is subjected to a first solvent extraction treatment for removing quinoline insoluble components, thereby removing the quinoline insoluble components. It will be done. By removing components with significantly different molecular sizes and solid substances that would inhibit the development of high strength when made into carbon fibers, and further subjecting the fibers to a second solvent extraction treatment to remove n-heptane soluble components. 1, which shows high strength when made into carbon fiber by removing components that inhibit mesophasing.
A homogeneous mesophase pitch with a narrow molecular distribution is obtained.
なお、本発明で言うメソフェースピッチ(即ち光学的異
方性ピッチ)とは、常温で固化したピッチ塊の断面を研
摩し、反射型偏光顕微鏡で直交ニコルを回転して光輝が
認められるピッチ、即ち実質的に光学的異方性であるピ
ッチが大部分であるピッチを意味し、光輝が認められず
光学的等方性であるピッチについては、本明細書では非
メソフェースピッチ(光学的等方性ピッチ)と呼称する
。In addition, the mesoface pitch (i.e., optically anisotropic pitch) referred to in the present invention refers to a pitch in which brightness is observed by polishing the cross section of a pitch lump solidified at room temperature and rotating crossed nicols with a reflective polarizing microscope. In other words, it means a pitch in which most of the pitches are substantially optically anisotropic, and pitches that are optically isotropic without any brilliance are referred to as non-mesoface pitches (optically isotropic) in this specification. It is called directional pitch).
従って、水閘a書におけるメソフェースピッチには、純
粋な光学的異方性ピッチのみならず、光学的異方性相の
中に光学的等方性相が球状又は不定形の島状に包含され
ている場合も含まれる。これとは逆に、非メソフェース
ピッチとは、光学的等方性ピッチ中に、少量の光学的異
方性相を包含するものも含まれる。またメンフェースに
はキノリン又はピリジンに不溶なものとキノリン又はピ
リジンに可溶な成分を多く含むものとの二種類があり、
本明細書で言うメソフェースは主として、後者のメンフ
ェースである。Therefore, the mesophase pitch in the Suiza book includes not only a pure optically anisotropic pitch but also an optically isotropic phase contained in an optically anisotropic phase in the form of a spherical or irregularly shaped island. This also includes cases where On the contrary, non-mesophase pitches also include those containing a small amount of optically anisotropic phase in optically isotropic pitches. There are also two types of memface: those that are insoluble in quinoline or pyridine, and those that contain a large amount of components that are soluble in quinoline or pyridine.
The mesophase referred to herein is primarily the latter mesophase.
また、本発明でいうメソフェース含有量とは、試料を偏
光顕微鏡で直交ニコル下で観察写真撮影して、試料中の
メソフェース部分の占める面積割合を測定することによ
り求めたものである。なお本発明でいうピッチの軟化点
とは、ピッチの同−液転移温度をいうが、差動走査型熱
量計を用い、ピッチの融解又は凝固する潜熱の吸、放出
ピーク温度から求めたものである。この温度はピッチ試
料について他のリングアンドボール法、*i融点法など
で測定したものと±10℃の範囲で一致する。Furthermore, the mesophase content in the present invention is determined by observing and photographing a sample under crossed Nicols using a polarizing microscope and measuring the area ratio occupied by mesophase portions in the sample. The softening point of pitch in the present invention refers to the same-liquid transition temperature of pitch, which is determined from the peak temperature of absorption and release of latent heat during melting or solidification of pitch using a differential scanning calorimeter. be. This temperature agrees within a range of ±10°C with those measured by other ring-and-ball methods, *i melting point methods, etc. for pitch samples.
以下、本発明のメソフェースピッチの製造方法について
詳細に説明する。Hereinafter, the method for manufacturing mesoface pitch of the present invention will be explained in detail.
本発明は、炭素質原料を熱処理してメソフェース含有ピ
ッチを生成する熱処理工程、生成メソフェース含有ピッ
チをメソフェースピッチ成分と非メソフェースピッチ成
分とに分離してメソフェースピッチを得るメソフェース
ピッチ分離工程並びにキノリン不溶成分除去のための第
1溶剤抽出処理工程及びn−ヘプタン可溶成分除去のた
めの第2溶剤抽出工程からなる後処理工程を含む。The present invention includes a heat treatment step of heat-treating a carbonaceous raw material to produce mesoface-containing pitch, and a mesoface pitch separation step of separating the generated mesoface-containing pitch into a mesoface pitch component and a non-mesoface pitch component to obtain mesoface pitch. It also includes a post-treatment step consisting of a first solvent extraction step for removing quinoline insoluble components and a second solvent extraction step for removing n-heptane soluble components.
本発明で用いるメソフェースピッチ製造用の炭素質原料
としては、種々の、いわゆる重質炭化水素油、タール又
はピッチを使用することができる。Various so-called heavy hydrocarbon oils, tars, or pitches can be used as the carbonaceous raw material for producing mesoface pitch used in the present invention.
これらの原料の例としては、例えば、石油系の種々の重
質油、アスファルト(例えばストレートアスファルト、
ブローンアスファルト等)、熱分解タール、又は接触分
解タール、或いは石炭の乾留などで得られる重質油、タ
ール、ピッチ又は1石炭液化工程から製造される重質液
化石炭等を挙げることができ、特に好適なものとして石
油の接触分解残渣油が挙げられる。これらは必要な場合
には、濾過、溶剤抽出等の予備処理を施した上で使用さ
れる。更に本発明により製造されるメソフェースピッチ
の品質を安定させるため、特に、熱分解重縮合反応の結
果、一部、既に少量のメソフェースピッチを含む炭素質
ピッチを原料として使用してもよい。Examples of these raw materials include various heavy petroleum oils, asphalt (e.g. straight asphalt,
blown asphalt, etc.), pyrolysis tar, catalytic cracking tar, heavy oil, tar, pitch obtained by carbonization of coal, or heavy liquefied coal produced from one coal liquefaction process, etc. Suitable examples include catalytic cracking residual oil of petroleum. These are used after being subjected to preliminary treatments such as filtration and solvent extraction, if necessary. Furthermore, in order to stabilize the quality of the mesophase pitch produced by the present invention, carbonaceous pitch, which partially already contains a small amount of mesophase pitch as a result of the pyrolysis polycondensation reaction, may be used as a raw material.
メソフェース含有ピッチを生成する熱処理工程は、熱分
解重縮合反応によりメソ化反応(メソフェースを生成さ
せる反応と定義する)を行なう工程である。なお熱分解
重縮合反応とは1重質炭化水素の熱分解反応と重縮合反
応とが、ともに主反応として併列的に起ることにより、
ピッチ成分分子の化学構造を変化させる反応を意味し、
この反応の結果、パラフィン#′1構造の切断、脱水素
、閉環、重縮合による多環縮合芳香族の平面構造の発達
等が進行するものである。The heat treatment step for producing mesophase-containing pitch is a step for performing a meso-formation reaction (defined as a reaction for producing mesophase) by pyrolysis polycondensation reaction. The thermal decomposition polycondensation reaction is a reaction in which the thermal decomposition reaction of one heavy hydrocarbon and the polycondensation reaction occur in parallel as main reactions.
Refers to a reaction that changes the chemical structure of pitch component molecules,
As a result of this reaction, scission of the paraffin #'1 structure, dehydrogenation, ring closure, development of a planar structure of polycyclic condensed aromatics due to polycondensation, etc. proceed.
この反応のために、炭素質原料は約380〜約460℃
、好ましくは400〜430℃で熱処理される。反応温
度が約460℃を超過すると、原料未反応物の揮発が増
大し、メソフェースの軟化点も高くなり且つコーキング
を発生し易くなるので不適当であり。For this reaction, the carbonaceous feedstock is heated to about 380°C to about 460°C.
, preferably heat treated at 400-430°C. If the reaction temperature exceeds about 460° C., the volatilization of unreacted raw materials increases, the softening point of mesophase increases, and coking is likely to occur, which is unsuitable.
逆に約380℃未満では、反応に長時間を要し好ましく
ない。On the other hand, if the temperature is lower than about 380°C, the reaction will take a long time, which is not preferable.
熱処理工程では、局部過熱を防ぎ、均一に反応させるた
めに、撹拌が行なわれるが、更に、熱分解の結果、生成
した低分子量の物質を速やかに除くため、減圧下におい
て、又は必要な場合には、不活性ガスを反応器中へ吹き
込みながら行なうことができる。この場合、不活性ガス
としては、窒素、水蒸気、炭酸ガス、軽質炭化水素ガス
、又はこれらの混合ガス等1反応温度でピッチとの化学
反応性が充分小さいものを使用することができる。In the heat treatment process, stirring is performed to prevent local overheating and to ensure uniform reaction, but in addition, stirring is performed under reduced pressure or as necessary to quickly remove low molecular weight substances generated as a result of thermal decomposition. This can be carried out while blowing an inert gas into the reactor. In this case, the inert gas may be nitrogen, water vapor, carbon dioxide, light hydrocarbon gas, or a mixed gas thereof, which has sufficiently low chemical reactivity with pitch at one reaction temperature.
これらの不活性ガスは、吹込み前に予熱しておくことが
、反応温度を下げることなく好ましい。It is preferable to preheat these inert gases before blowing them in without lowering the reaction temperature.
分解油ガスを含んだ該不活性ガスは1反応器上部より抜
き出され、コンデンサー、スクラバー。The inert gas containing cracked oil gas is extracted from the upper part of one reactor and sent to a condenser and a scrubber.
分離槽等を経て、分解油ガスが除去される。その 。The cracked oil and gas are removed through a separation tank and the like. the .
後、該不活性ガスを再循環使用することも可能である。Afterwards, it is also possible to recycle and use the inert gas.
この熱処理反応器は通常円筒状容器からなるものが用い
られ、原料供給口、分解油、分解ガス、不活性ガス等の
排出口、ピッチ抜出口、後記する非メソフェースピッチ
導入口等が設けられ1反応器内部には撹拌装置等が、ま
た外部にはヒーター等が配設されている。This heat treatment reactor is usually made of a cylindrical container, and is equipped with a raw material supply port, a discharge port for cracked oil, cracked gas, inert gas, etc., a pitch extraction port, a non-mesoface pitch introduction port (described later), etc. 1 A stirring device and the like are provided inside the reactor, and a heater and the like are provided outside.
本発明の熱処理工程では、低分子量分解生成物や未反応
物を実質上瞼いた生成ピッチ中にメソフェース成分が約
30〜約80%、好ましくは約380〜約70%含有さ
れるような状態になったとき、中止し、次のメソフェー
スピッチ分離工程へ移送するのが好ましい。と言うのは
、メソフェースピッチ分離工程で低軟化点の均質なメソ
フェースピッチを高収率で得るためには、熱分解重縮合
反応後のピッチ収率が高く且つメソフェース含有量が約
20〜約80%、軟化点が260℃以下であるものが好
ましいためである。熱分解重縮合反応後のピッチ中のメ
ソフェース成分が20メ未滴のものでは、次の分離工程
でのメソフェースピッチの収率が極めて小さく、逆にメ
ンフェース成分を80%より大きいものにしたり、軟化
点が260℃より高いものにしたりすると1分離工程で
の分離性が悪くなって高濃度のメソフェースピッチが得
られず、取得メソフェースピッチの軟化点が高いものと
なる。この工程で得られるメソフェース含有ピッチとし
ては、メソフェースの大部分又は実質的に全てが直径5
00μ重以下、好ましくは300μ醜以下の球状の状態
であるものが適切である。In the heat treatment step of the present invention, the mesophase component is brought to a state in which the produced pitch is substantially free of low molecular weight decomposition products and unreacted substances and contains about 30 to about 80%, preferably about 380 to about 70%, of the mesophase component. When this happens, it is preferable to stop the process and transfer to the next mesoface pitch separation process. This is because in order to obtain a high yield of homogeneous mesophase pitch with a low softening point in the mesophase pitch separation process, it is necessary to have a high pitch yield after the pyrolysis polycondensation reaction and a mesophase content of approximately 20 to 20%. This is because it is preferable that the softening point is about 80% or less and the softening point is 260°C or less. If the mesophase component in the pitch after the pyrolysis polycondensation reaction is less than 20 meters, the yield of mesophase pitch in the next separation step will be extremely low, and conversely, if the mesophase component is increased to more than 80%, If the softening point is higher than 260° C., the separability in one separation step will deteriorate, making it impossible to obtain mesoface pitch with a high concentration, and the obtained mesoface pitch will have a high softening point. The mesoface-containing pitch obtained in this process has a diameter of 5.
Spherical particles with a weight of 00μ or less, preferably 300μ or less are suitable.
なお2本発明においては、キノリン不溶成分除去のため
の第1溶剤抽出処理及びn−ヘプタン可溶成分除去のた
めの第2溶剤抽出処理からなる後処理工程が設けられて
いるため、後記メソフェースピッチ分離工程での分離性
が悪くならない範囲内において、軟化点の高い又は少量
の低分子量物質を含むメソフェースピッチを熱処理工程
で生成させることが許容され、その結果原料変動等に対
し微妙な熱処理条件の対応を講じる必要がなく、安定し
た熱処理を実施することができる。2. In the present invention, since a post-treatment step consisting of a first solvent extraction treatment for removing quinoline insoluble components and a second solvent extraction treatment for removing n-heptane soluble components is provided, the mesophase described below It is permissible to generate mesoface pitch in the heat treatment process, which has a high softening point or contains a small amount of low molecular weight substances, within a range that does not deteriorate the separability in the pitch separation process. There is no need to take any measures regarding conditions, and stable heat treatment can be performed.
本発明においては、前記熱処理工程で生成したメソフェ
ース含有ピッチは、次のメソフェースピッチ分離工程に
送られ、ここでメソフェースピッチ成分と非メソフェー
スピッチ成分とに分離される。このメソフェースピッチ
と非メソフェースピッチを分離するための方法としては
、公知の種々の固液分離法が適宜採用されるが、特に比
重差を利用する分離法(参、特公昭61−38755号
、同62−24036号各公報)を採用するのが好まし
く、とりわけ工業生産においては、遠心分離法を採用す
るのが好ましい。In the present invention, the mesoface-containing pitch produced in the heat treatment step is sent to the next mesoface pitch separation step, where it is separated into mesoface pitch components and non-mesoface pitch components. Various known solid-liquid separation methods can be appropriately employed to separate mesoface pitch and non-mesoface pitch, but in particular, a separation method using a difference in specific gravity (see Japanese Patent Publication No. 38755/1983) , No. 62-24036) is preferred, and particularly in industrial production, centrifugation is preferred.
遠心分離法は、熱処理工程で生成したメソフェース含有
ピッチに、その溶融状態で、遠心分離操作を加えること
により、メンフェース成分は等方性成分よりも比重が大
きいために迅速に沈降し。In the centrifugal separation method, mesophase-containing pitch generated in a heat treatment process is subjected to a centrifugal separation operation in its molten state, whereby the mesophase component quickly settles because it has a higher specific gravity than the isotropic component.
合体成長しつつ下層(遠心力方向の層)へ集積し、メソ
フェースが約80%以上で連続相を成し、その中にわず
かに等方性相を島状または微小な球状体の形で包含する
メソフェースピッチが下層となり。As it coalesces and grows, it accumulates in the lower layer (layer in the direction of centrifugal force), and approximately 80% or more of the mesophase forms a continuous phase, which contains a slight isotropic phase in the form of islands or minute spherules. The mesoface pitch is the lower layer.
−右上層は等方性相が大部分で、その中にメソフェース
が微小な球状体で分散している形態の非メソフェースピ
ッチとなり、しかもこの上層と下層との界面が明瞭であ
って、しかも上層と下層の溶融状態での比重が大きく異
ることを利用して、下層を上層より分離して取出し、メ
ソフェースピッチと非メソフェースピッチとを分離する
方法である。なお、遠心分離操作とは、流体に高速回転
作用を与え、流体中のより比重の大きい相を下層(J心
力の方向)へ集め、これを分離する処理操作であり、そ
の実施態様の一つとしていわゆる遠心分離機による操作
、特に連続的に重相と軽相を分離排出する連続型遠心分
離機などが有利に使用される。-The upper right layer is mostly an isotropic phase, with a non-mesophase pitch in which mesophases are dispersed as minute spherical bodies, and the interface between the upper and lower layers is clear. This method utilizes the fact that the specific gravity of the upper layer and the lower layer in the molten state is significantly different, and the lower layer is separated and taken out from the upper layer to separate mesoface pitch and non-mesoface pitch. The centrifugal separation operation is a processing operation that applies high-speed rotation to a fluid, collects a phase with a higher specific gravity in the fluid to a lower layer (in the direction of J center force), and separates this, and is one of its embodiments. As such, operation using a so-called centrifugal separator, particularly a continuous type centrifugal separator that continuously separates and discharges a heavy phase and a light phase, is advantageously used.
本工程における温度は遠心力の大きさにもよるが、メソ
フェース含有ピッチの軟化点以上好ましくは280℃〜
400℃、さらに好ましくは320℃〜380℃の範囲
である。この範囲内の所定の一定温度でもよく、また必
らずしも一定温度でなくてもよい。The temperature in this step depends on the magnitude of centrifugal force, but is preferably above the softening point of the mesophase-containing pitch, preferably from 280°C to
The temperature is 400°C, more preferably 320°C to 380°C. A predetermined constant temperature within this range may be used, and the temperature does not necessarily have to be constant.
この工程では、メソフェースの多くの部分を遠心力方向
へ沈積させ合体せしめることが主目的であり、熱分解お
よび重縮合反応はできるだけ避ける必要がある。従って
400℃以上の温度は好ましくないし、また必要以上の
温度は遠心分離装置の長時間の連続運転を難しくするが
、上述の温度では、その問題もない。また上述の範囲よ
りも低温ではピッチ系全体の、特にメソフェース成分の
粘度が大きいため下層メソフェース中に共沈した等方性
相が脱けにくく、長時間の且つ非常に大きい遠心力加速
度を与えても分離が難しくなる。In this step, the main purpose is to deposit and coalesce many parts of the mesophase in the direction of centrifugal force, and it is necessary to avoid thermal decomposition and polycondensation reactions as much as possible. Therefore, a temperature higher than 400° C. is not preferable, and a temperature higher than necessary makes it difficult to operate the centrifugal separator continuously for a long time, but there is no such problem at the above-mentioned temperature. Furthermore, at temperatures lower than the above range, the viscosity of the pitch system as a whole, especially of the mesophase component, is high, making it difficult for the isotropic phase co-precipitated in the lower mesophase to come off, giving rise to a long and extremely large centrifugal acceleration. It also becomes difficult to separate.
また、該遠心分離操作の遠心力加速度は、如何なる値で
あってもよいが、メンフェース成分(重相)と非メソフ
ェース成分(軽相)とを、滞留時間を短かくして、効率
的に短時間で分離するために、好ましくは1 、0OO
G以上、特に10,000〜40,0OOGの範囲を採
用することができる。なお、50,0OOG以上では装
置面の制約がある。The centrifugal force acceleration of the centrifugation operation may be of any value, but the mesophase component (heavy phase) and non-mesophase component (light phase) can be efficiently separated in a short time by shortening the residence time. Preferably 1,0OO
G or more, particularly in the range of 10,000 to 40,000 OOG can be adopted. Note that there are restrictions in terms of equipment when using 50,000 OOG or more.
本工程からメソフェース含有量が90%以上、特に95
%以上のメソフェースピッチが、短時間に、経済的に得
られる。From this process, the mesophase content is 90% or more, especially 95%.
% or more of mesoface pitch can be obtained economically in a short time.
また本工程で分離された非メソフェースピッチは、再度
の熱処理を加えることによって、メンフェース含有ピッ
チに転化することができるので、好ましい態様において
は、この非メソフェースピッチは特定時点で前記熱処理
工程に循環される。In addition, the non-mesoface pitch separated in this step can be converted into pitch containing menphace by applying heat treatment again, so in a preferred embodiment, this non-mesoface pitch is subjected to the heat treatment step at a specific point in time. is circulated.
たダこの循環は、前記熱処理工程におけるメソフェース
の滞留時間分布(即ち分子量分布)が広がることを回避
するために、前記熱処理工程における生成ピッチの物性
が非メソフェースピッチの物性とはゾ同一になった時点
で行なうことが好ましい。In order to avoid broadening the residence time distribution (i.e., molecular weight distribution) of mesophase in the heat treatment process, this cycle ensures that the physical properties of the pitch produced in the heat treatment process are the same as those of the non-mesophase pitch. It is preferable to do this at the same time.
この非メソフェースピッチの循環により、該非メソフェ
ースピッチは再度熱処理を受け、最終的なピッチの収率
を向上させる。This circulation of non-mesoface pitch causes it to undergo heat treatment again, improving the final pitch yield.
なお1本発明においては、メソフェースピッチ分離工程
の直後に、適当な仕上げ熱処理工程を加えることも可能
である。即ち、前記分離工程で特に短い滞留時間を用い
て、軟化点は充分低いが。In addition, in the present invention, it is also possible to add an appropriate finishing heat treatment step immediately after the mesoface pitch separation step. That is, if a particularly short residence time is used in the separation step, the softening point is sufficiently low.
メソフェース含有量が約80%〜90%と、やや不充分
なメソフェースピッチを製造し、次にこれを300℃〜
430℃の温度で熱重質化反応処理を加えて、メソフェ
ースピッチの特性が狭い品質管理限界内に入るように調
節する方法を採用することもできる。A slightly insufficient mesoface pitch with a mesoface content of approximately 80% to 90% is produced, and then this is heated at 300°C to
It is also possible to adopt a method of adding a thermograviding reaction treatment at a temperature of 430° C. to adjust the properties of the mesoface pitch to within narrow quality control limits.
メソフェースを80〜90%含有するメソフェースピッ
チは等方性成分を10〜20%含有しているが、この等
方性成分はさらに熱重質化反応処理を少し加えることに
よって減少し、また軟化点も次第に上昇することが判っ
ているので、適度に調節された温度と処理時間で1分離
後のピッチを熱重質化することによって、メソフェース
の含有量を90%以上、好ましくは95%以上に調節す
ることができる。Mesoface pitch containing 80 to 90% mesophase contains 10 to 20% isotropic components, but this isotropic component can be further reduced by adding a small amount of thermal weighting reaction treatment, and it can also be softened. It is known that the mesophase content gradually increases, so by thermograviding the pitch after one minute using appropriately controlled temperatures and treatment times, the mesophase content can be increased to 90% or more, preferably 95% or more. can be adjusted to
本発明においては、メソフェースピッチ分離工程で分離
されたメソフェースピッチ(又は前記仕上げ熱処理を付
した場合には仕上げ熱処理を受けたメソフェースピッチ
)は、次にキノリン不溶成分除去のための第1溶剤抽出
処理工程に送られる。In the present invention, the mesoface pitch separated in the mesoface pitch separation step (or the mesoface pitch that has undergone the final heat treatment in the case where the final heat treatment has been applied) is then subjected to a first process to remove quinoline insoluble components. Sent to solvent extraction process.
即ち、前記メソフェースピッチは通常21〜80重量%
のキノリン不溶成分を含有するが、第1溶剤抽出処理を
受け、そのキノリン不溶成分濃度は通常0.01〜20
重量%、好ましくは0.1〜5重量%程度まで減少し、
同時にその軟化点も低下する。That is, the mesoface pitch is usually 21 to 80% by weight.
However, after undergoing the first solvent extraction treatment, the concentration of the quinoline insoluble component is usually 0.01 to 20.
% by weight, preferably about 0.1 to 5% by weight,
At the same time, its softening point also decreases.
この第1溶剤抽出工程で用いる油剤としては、ベンゼン
、トルエン、キシレン等の芳香族炭化水素系溶媒やキノ
リン、ピリジンなどが挙げられ、これらは単独で用いて
もよいし、また混合して用いることもできる。本工程は
通常、油剤対メソフェースピッチ比50:1〜3:1、
温度70〜330’C,圧力大気圧〜50Kg/aJの
範囲で実施され、キノリン不溶成分が抽出残渣としてメ
ソフェースピッチ中から分離される。なお、本工程の実
施に当っては、前記抽剤を超臨界条件下に保持してメソ
フェースピッチと接触させる方法を採用することも、キ
ノリン抽出率の向上、β−レジン成分(ベンゼン不溶で
キノリン可溶成分)の抽出物への移行性の向上等の効果
があるので、好ましい。Examples of the oil agent used in the first solvent extraction step include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, as well as quinoline and pyridine, which may be used alone or in combination. You can also do it. This process usually uses an oil to mesoface pitch ratio of 50:1 to 3:1,
It is carried out at a temperature of 70 to 330'C and a pressure of from atmospheric pressure to 50 Kg/aJ, and the quinoline-insoluble components are separated from the mesoface pitch as an extraction residue. In addition, when carrying out this step, it is also possible to adopt a method in which the extraction agent is kept under supercritical conditions and brought into contact with mesoface pitch. It is preferable because it has effects such as improving the transferability of quinoline-soluble components) to the extract.
キノリン不溶成分を主成分とする固形物は、濾過、遠心
分離等の手段によって、メソフェースピッチ−油剤混合
物から分離され、更にメソフェースピッチ−油剤混合物
からなる液から真空ストリッピング、真空蒸発等の手段
によって、抽剤が除去される。抽剤は回収して再使用す
ることができる。The solid substance mainly composed of quinoline insoluble components is separated from the mesoface pitch-oil mixture by means such as filtration and centrifugation, and is further separated from the liquid consisting of the mesoface pitch-oil mixture by vacuum stripping, vacuum evaporation, etc. The extractant is removed by the means. The extractant can be recovered and reused.
本発明においては、第1溶剤抽出処理を受けたメソフェ
ースピッチは、更にn−ヘプタン可溶成分除去のための
第2溶剤抽出処理工程に送られる。In the present invention, the mesoface pitch that has undergone the first solvent extraction treatment is further sent to a second solvent extraction treatment step for removing n-heptane soluble components.
即ち、第1溶剤抽出処理を受けたメソフェースピッチは
、通常5〜30重量%のn−ヘプタン可溶成分を含有す
るが、第2溶剤抽出処理により、そのn−ヘプタン可溶
成分濃度は通常0.01−5重量2、好ましくは0.1
〜3重量で程度まで減少し、同時にその軟化点は上昇す
る。That is, mesoface pitch that has undergone the first solvent extraction treatment usually contains 5 to 30% by weight of n-heptane soluble components, but the concentration of n-heptane soluble components usually decreases by the second solvent extraction treatment. 0.01-5 weight 2, preferably 0.1
~3 weight, and at the same time its softening point increases.
この第2溶剤抽出処理工程で用いる油剤としては、炭素
数3〜10の飽和炭化水素系溶媒、即ちプロパン、ブタ
ン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン
、デカン等が挙げられ、これらは単独で用いてもよいし
、また混合して用いることもできる。また沸点250℃
以下のガソリン留分、ナフサ、灯油留分などの石油系炭
化水素を用いること冬差支えない。本工程は通常、油剤
対メソフェースピッチ比10:1−1:1.温度25〜
300℃、圧力大気圧〜30にg/ciの範囲で実施さ
れ、n−ヘプタン可溶成分が抽出成分としてメソフェー
スピッチ中から分離される。Examples of the oil used in this second solvent extraction process include saturated hydrocarbon solvents having 3 to 10 carbon atoms, such as propane, butane, pentane, hexane, heptane, octane, nonane, and decane. They may be used or may be used in combination. Also boiling point 250℃
The following petroleum hydrocarbons such as gasoline fractions, naphtha, and kerosene fractions can be used in winter. This process typically uses an oil to mesoface pitch ratio of 10:1-1:1. Temperature 25~
The process is carried out at 300° C. and a pressure ranging from atmospheric pressure to 30 g/ci, and n-heptane soluble components are separated from the mesoface pitch as extracted components.
n−ヘプタン可溶成分−抽剤混合物は、濾過、遠心分離
等の手段によって、メソフェースピッチから分離される
。該ピッチ中に残留している油剤は、通常の真空ストリ
ッピング、真空蒸発等の手段によって除去される。もち
ろん、n−ヘプタン可溶成分−抽剤混合物からなる濾液
は、抽剤をストリッピングした後、分離された油剤を再
使用することが好ましい。The n-heptane soluble component-extractant mixture is separated from the mesoface pitch by means such as filtration, centrifugation, etc. Any remaining oil in the pitch is removed by conventional vacuum stripping, vacuum evaporation, or other means. Of course, after stripping the extractant from the filtrate consisting of the n-heptane soluble component-extractant mixture, it is preferable to reuse the separated oil agent.
本工程で得られたピッチは連続的に系外へ取出され、液
状のままあるいは固化され製品となる。The pitch obtained in this process is continuously taken out of the system and remains in a liquid state or is solidified to become a product.
本工程からは、軟化点が充分に低い、即ち230℃〜3
20℃、好ましくは250℃〜300℃の範囲のピッチ
が得られる。From this process, the softening point is sufficiently low, that is, 230℃~3
A pitch in the range of 20°C, preferably 250°C to 300°C is obtained.
以上のようにして得られたピッチを、公知の方法に従っ
て、溶融紡糸し、得られたピッチ繊維を不融化し、炭化
し、場合により更に黒鉛化することにより、高性能のピ
ッチ系炭素繊維及び黒鉛繊維を得ることができる。The pitch obtained as described above is melt-spun according to a known method, and the obtained pitch fibers are made infusible, carbonized, and optionally further graphitized to produce high-performance pitch-based carbon fibers. Graphite fibers can be obtained.
本発明によれば、メソフェースピッチ分離工程で分離さ
れたメソフェースピッチに、更にキノリン不溶成分除去
のための第1溶剤抽出処理及びn−ヘプタン可溶成分除
去のための第2溶剤抽出処理を付すことにより、炭素繊
維にしたときに、高い強度を発現し得、且つ低軟化点で
紡糸時の紡糸性が良好なピッチが安定的に得られる。ま
た、黒鉛化まで進めることによって、高強度、超高弾性
率のピッチ系黒鉛繊維が製造できる。According to the present invention, the mesoface pitch separated in the mesoface pitch separation step is further subjected to a first solvent extraction treatment for removing quinoline insoluble components and a second solvent extraction treatment for removing n-heptane soluble components. By adding carbon fibers, it is possible to stably obtain a pitch that can exhibit high strength when made into carbon fibers, has a low softening point, and has good spinnability during spinning. Furthermore, by proceeding to graphitization, pitch-based graphite fibers with high strength and ultra-high modulus of elasticity can be produced.
以下、実施例により本発明を更に詳細に説明するが、も
ちろん本発明の範囲はこれに限定されるものではない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is of course not limited thereto.
実施例
石油の接触分解で副生ずるタールを、常圧に換算して4
50℃まで減圧蒸留し、更に得られたタールを100℃
において10,0OOGで遠心分離し、更に静電集塵装
置にかけて、タール中の固形分を除去して得たタールを
出発原料とした。Example Tar produced as a by-product during catalytic cracking of petroleum is converted to normal pressure at 4
Distilled under reduced pressure to 50℃, and further distilled the obtained tar to 100℃
The tar obtained by centrifuging at 10,0 OOG and then using an electrostatic precipitator to remove solids from the tar was used as a starting material.
固形分除去後の原料タールを、内容+120Qの撹拌機
付熱処理反応器に13kg張込み、反応器の上部から窒
素ガスを吹込みながら、415℃に5.5時間保って熱
処理し、メソフェース含有ピッチを得た。13 kg of the raw material tar after the solid content was removed was put into a heat treatment reactor with a stirrer with a content of +120Q, and while blowing nitrogen gas from the top of the reactor, it was heat treated at 415°C for 5.5 hours to produce mesophase-containing pitch. I got it.
このメンフェース含有ピッチのメソフェース含有量は5
5%であり、ピンチの収率は33重量%であった。The mesoface content of this mesoface-containing pitch is 5
5%, and the pinch yield was 33% by weight.
反応器での熱処理反応終了後、反応器の底部からメソフ
ェース含有ピッチを抜出し、メソフェース分離用の連続
遠心分離機に導入し、連続的に350℃において、10
,0OOGの遠心力で遠心分離を行ない、メンフェース
成分と非メソフェース成分とに分離した。メソフェース
ピッチ成分中のメソフェース含有量は97%であり、そ
のピッチの軟化点は325℃であった。また該ピッチの
キノリン不溶成分濃度は60重量%であり、n−ヘプタ
ン可溶成分濃度は6.3重量%であった。After the heat treatment reaction in the reactor, the mesophase-containing pitch was extracted from the bottom of the reactor, introduced into a continuous centrifugal separator for mesophase separation, and continuously heated at 350°C for 10 minutes.
Centrifugation was performed at a centrifugal force of .0OOG to separate mesophase components and non-mesophase components. The mesoface content in the mesoface pitch component was 97%, and the softening point of the pitch was 325°C. Further, the concentration of quinoline insoluble components in the pitch was 60% by weight, and the concentration of n-heptane soluble components was 6.3% by weight.
そのメソフェースピッチ1に対してキノリン10.0の
割合で混合し、大気圧下、200℃で30分間保持して
第1溶剤抽出処理を行なった。第1溶剤抽出処理後、1
0,0OOGで遠心分離を行ない、抽出物と抽出残渣と
に分離した。抽出物から、抽出溶剤であるキノリンを減
圧蒸留により除去して、ピッチを得た。そのピッチの軟
化点は261℃であり。The mixture was mixed at a ratio of 1 part of mesoface pitch to 10.0 parts of quinoline, and held at 200° C. for 30 minutes under atmospheric pressure to perform a first solvent extraction treatment. After the first solvent extraction treatment, 1
Centrifugation was performed at 0.0OOG to separate the extract and extraction residue. From the extract, quinoline, which is an extraction solvent, was removed by vacuum distillation to obtain pitch. The softening point of the pitch is 261°C.
キノリン不溶成分濃度は1.2重量%であり、ローへブ
タン可溶成分濃度は15重景気であった。またそのピッ
チの収率は、遠心分離後のピッチに対して38.5重量
%であった。The concentration of quinoline insoluble components was 1.2% by weight, and the concentration of rhohebutane soluble components was 15% by weight. Moreover, the yield of the pitch was 38.5% by weight based on the pitch after centrifugation.
このピッチを、ピッチ1に対してn−ヘプタン3.0の
割合で混合し、98℃で30分間保持して第2溶剤抽出
処理を行なった。第2溶剤抽出処理後、10,0OOG
で遠心分離を行ない、抽出物とピッチとに分離した。ピ
ッチ中に残留しているn−ヘプタンは、真空蒸発によっ
て除去した。このピッチの軟化点は280℃であり、キ
ノリン不溶成分濃度は1.3重f%であり、ローへブタ
ン可溶成分濃度は0.8重量2であった。またこのピッ
チの収率は、遠心分離後のピッチに対して23重量%で
あった。This pitch was mixed at a ratio of 3.0 parts n-heptane to 1 part pitch, and was held at 98°C for 30 minutes to perform a second solvent extraction process. After the second solvent extraction process, 10,0OOG
Centrifugation was performed to separate the extract and pitch. The n-heptane remaining in the pitch was removed by vacuum evaporation. The softening point of this pitch was 280°C, the concentration of quinoline insoluble components was 1.3% by weight, and the concentration of rhohebutane soluble components was 0.8% by weight2. The yield of this pitch was 23% by weight based on the pitch after centrifugation.
このピッチを直径0.3nvwφのノズルを有する紡糸
機に入れ、330℃で溶融して、200+m+Hgの窒
素ガス圧で押し出し、 500m/分の速度で30分間
巻取った。この紡糸の間の紡糸性は極めて良好で、糸切
れはなかった。This pitch was put into a spinning machine having a nozzle with a diameter of 0.3 nvwφ, melted at 330° C., extruded with a nitrogen gas pressure of 200+m+Hg, and wound for 30 minutes at a speed of 500 m/min. The spinnability during this spinning was extremely good, and there was no yarn breakage.
11)られだピッチ繊維の1部を、酸素″J′g囲気中
で、230℃で2時間保持して不融化を行ない1次いで
窒素ガス中で、30℃/分の速度で1,500℃まで昇
温しで、炭素繊維を得た。得られた炭素繊維の引張強度
は3.9GPaであり、その引張弾性率は280GPa
であった・
比較例1
実施例における遠心分離後のメソフェースピッチに第1
溶剤抽出処理及び第2溶剤抽出処理を行なわずに、実施
例と同様にして紡糸したところ、紡糸性は不良で、10
分間の紡糸の間に3回糸切れした。11) A part of the pitch fiber was held at 230°C for 2 hours in an oxygen atmosphere of J'g to make it infusible, and then heated to 1,500°C at a rate of 30°C/min in nitrogen gas. The tensile strength of the obtained carbon fiber was 3.9 GPa, and the tensile modulus was 280 GPa.
Comparative Example 1 The first mesoface pitch after centrifugation in Example
When spinning was carried out in the same manner as in the example without performing the solvent extraction treatment and the second solvent extraction treatment, the spinnability was poor, with a score of 10.
The yarn broke three times during the minute of spinning.
このピッチ繊維を、実施例と同様にして1 、500℃
まで昇温しで得た炭素繊維は、引張強度が2.4GPa
で、引張弾性率が250PGaであった。This pitch fiber was heated to 1,500°C in the same manner as in the example.
The carbon fiber obtained by raising the temperature to 2.4 GPa has a tensile strength of
The tensile modulus was 250PGa.
比較例2
実施例における遠心分離後のメソフェースピッチに、第
2溶剤抽出処理を行なわなかった以外は、実施例と同様
に処理した。Comparative Example 2 The mesoface pitch after centrifugation in Example was treated in the same manner as in Example, except that the second solvent extraction treatment was not performed.
この場合、紡糸時の紡糸性は良好であったが、不融化時
に繊維の1部が融着を起していた。また炭素繊維にした
ときの引張強度は3 、5GPaで、引張弾性率は27
0GPaであり、実施例に較べて低い物性を示した。In this case, the spinnability during spinning was good, but some of the fibers were fused during infusibility. Also, when made into carbon fiber, the tensile strength is 3.5 GPa, and the tensile modulus is 27.
0 GPa, and showed lower physical properties compared to the examples.
特許出願人 東亜燃料工業株式会社Patent applicant: Toa Fuel Industries Co., Ltd.
Claims (4)
を生成させる熱処理工程及び生成メソフェース含有ピッ
チをメソフェースピッチ成分と非メソフェースピッチ成
分とに分離してメソフェースピッチを得るメソフェース
ピッチ分離工程を含むメソフェースピッチの製造方法に
おいて、前記メソフェースピッチ分離工程で得られたメ
ソフェースピッチを、キノリン不溶成分除去のための第
1溶剤抽出処理及びn−ヘプタン可溶成分除去のための
第2溶剤抽出処理に付すことを特徴とするメソフェース
ピッチの製造方法。(1) A heat treatment step in which a carbonaceous raw material is heat-treated to produce mesoface-containing pitch, and a mesoface pitch separation step in which the generated mesoface-containing pitch is separated into a mesoface pitch component and a non-mesoface pitch component to obtain mesoface pitch. In the method for producing mesoface pitch, the mesoface pitch obtained in the mesoface pitch separation step is subjected to a first solvent extraction treatment for removing quinoline insoluble components and a second solvent extraction treatment for removing n-heptane soluble components. A method for producing mesoface pitch, the method comprising subjecting it to an extraction process.
水素系溶媒、キノリン及びピリジンの少くとも1種を用
いるものである特許請求の範囲第1項に記載の方法。(2) The method according to claim 1, wherein the first solvent extraction process uses at least one of an aromatic hydrocarbon solvent, quinoline, and pyridine as an extractant.
成分濃度が0.01〜20重量%である特許請求の範囲
第1項又は第2項に記載の方法。(3) The method according to claim 1 or 2, wherein the concentration of quinoline insoluble components in the pitch after the first solvent extraction treatment is 0.01 to 20% by weight.
可溶成分濃度が0.01〜5重量%である特許請求の範
囲第1項〜第3項の何れか1項に記載の方法。(4) The method according to any one of claims 1 to 3, wherein the concentration of n-heptane soluble components in the pitch after the second solvent extraction treatment is 0.01 to 5% by weight. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8165388A JPH01254797A (en) | 1988-04-01 | 1988-04-01 | Production of mesophase pitch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8165388A JPH01254797A (en) | 1988-04-01 | 1988-04-01 | Production of mesophase pitch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01254797A true JPH01254797A (en) | 1989-10-11 |
Family
ID=13752290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8165388A Pending JPH01254797A (en) | 1988-04-01 | 1988-04-01 | Production of mesophase pitch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01254797A (en) |
-
1988
- 1988-04-01 JP JP8165388A patent/JPH01254797A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0044714B1 (en) | Process for producing mesophase pitch | |
EP0057108B1 (en) | Process of producing optically anisotropic carbonaceous pitch | |
JPS6154836B2 (en) | ||
JPS62270685A (en) | Production of mesophase pitch | |
US4601813A (en) | Process for producing optically anisotropic carbonaceous pitch | |
GB2075049A (en) | Preparation of A Pitch for Carbon Artifact Manufacture | |
JPH0336869B2 (en) | ||
JPH0320433B2 (en) | ||
US4597853A (en) | Pitch as a raw material for making carbon fibers and process for producing the same | |
US4554148A (en) | Process for the preparation of carbon fibers | |
US4591424A (en) | Method of preparing carbonaceous pitch | |
US4655902A (en) | Optically anisotropic carbonaceous pitch | |
JPH01247487A (en) | Production of mesophase pitch | |
EP0150223B1 (en) | Process for manufacturing carbon fiber and graphite fiber | |
JPH01254797A (en) | Production of mesophase pitch | |
JPS6224036B2 (en) | ||
JPH01249887A (en) | Production of mesophase pitch | |
EP0089840B1 (en) | Process for producing an optically anisotropic carbonaceous pitch | |
EP0865411B1 (en) | Self-stabilizing pitch for carbon fiber manufacture | |
JPS58113292A (en) | Preparation of raw material pitch for production of carbon product | |
JPH03167291A (en) | Optically anisotropic pitch and its manufacture | |
JPH01268788A (en) | Production of mesophase pitch for carbon fiber | |
JPH03227396A (en) | Production of optically anisotropic pitch | |
JPH0415274B2 (en) | ||
JPH054999B2 (en) |