JPH0125476Y2 - - Google Patents
Info
- Publication number
- JPH0125476Y2 JPH0125476Y2 JP1983075881U JP7588183U JPH0125476Y2 JP H0125476 Y2 JPH0125476 Y2 JP H0125476Y2 JP 1983075881 U JP1983075881 U JP 1983075881U JP 7588183 U JP7588183 U JP 7588183U JP H0125476 Y2 JPH0125476 Y2 JP H0125476Y2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cooling tank
- cooling
- sample
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 51
- 239000003507 refrigerant Substances 0.000 claims description 51
- 239000007788 liquid Substances 0.000 claims description 43
- 238000001073 sample cooling Methods 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 49
- 239000007789 gas Substances 0.000 description 24
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Description
【考案の詳細な説明】
本考案は、電子顕微鏡等における試料冷却装置
に関するものである。[Detailed Description of the Invention] The present invention relates to a sample cooling device for an electron microscope or the like.
一般に試料を光軸と直交する方向から挿入する
所謂、サイドエントリータイプの試料装置におけ
る試料冷却装置としては、鏡体外に設置した冷却
槽の冷媒、例えば液体窒素を可撓性のパイプを介
して試料近傍まで直接導くことにより試料を冷却
する方法が採用されている。 Generally speaking, the sample cooling device in a so-called side-entry type sample device, in which the sample is inserted from the direction perpendicular to the optical axis, cools the sample through a flexible pipe using a coolant, such as liquid nitrogen, in a cooling tank installed outside the microscope body. A method has been adopted in which the sample is cooled by directly guiding it to the vicinity.
しかし乍ら斯様な装置では、液体窒素の温度程
度しか冷却することが出来ず、例えば、液体窒素
の温度から−100℃程度の比較的高い温度までの
広い範囲にわたつて可変することが出来ない。そ
こで従来においては、試料を極めて低い温度まで
冷却しようとする場合には、冷媒液を試料の近傍
に導くようにし、試料の冷却を緩和させようにす
る場合には切換弁を切換えて試料の近傍に冷媒液
に代えて冷媒ガスを導くことにより、比較的広い
範囲で試料の冷却温度を可変にしている。しかし
ながら、このような従来の装置においては、冷媒
液を供給するための冷媒液槽と冷媒ガスを供給す
るための冷媒ガス容器を別個に設ける必要がある
と共に、冷媒液と冷媒ガスの供給量を調整するた
めには調整機構を冷媒液と冷媒ガス毎に個別に必
要とした。そのため装置が複雑になると共に、そ
れに伴い装置の製作コストも上昇せざるを得なか
つた。 However, such devices are only capable of cooling the temperature of liquid nitrogen, and cannot be varied over a wide range, for example, from the temperature of liquid nitrogen to a relatively high temperature of about -100°C. do not have. Conventionally, when trying to cool a sample to an extremely low temperature, the refrigerant liquid is guided to the vicinity of the sample, and when the cooling of the sample is to be moderated, the switching valve is switched to bring the refrigerant to the vicinity of the sample. By introducing refrigerant gas instead of refrigerant liquid, the cooling temperature of the sample can be varied over a relatively wide range. However, in such conventional devices, it is necessary to separately provide a refrigerant liquid tank for supplying refrigerant liquid and a refrigerant gas container for supplying refrigerant gas, and it is necessary to separately provide a refrigerant liquid tank and a refrigerant gas container for supplying refrigerant gas. In order to make adjustments, separate adjustment mechanisms were required for each refrigerant liquid and refrigerant gas. As a result, the device becomes complicated, and the manufacturing cost of the device also increases accordingly.
本考案はこのような従来の欠点を解決し、構造
が簡単で製作コストの低廉な電子顕微鏡等におけ
る試料冷却装置を提供することを目的とするもの
で、試料と熱的に接続された冷却部材が配置され
ており、該冷却部材に冷媒を導入するためのパイ
プと導入された冷媒を排出するためのパイプが設
けられており、該冷媒液を収容するための冷却槽
が備えられており、該冷却槽内に2個の導入孔と
1個の導出孔を有する切換弁が備えられており、
該切換弁の一方の導入孔は冷媒液中に連通されて
いると共に他方の導入孔は冷媒液面と冷却槽上面
との間に存在する冷媒ガス雰囲気中に連通されて
おり、前記導入用パイプの一端は冷媒の供給を受
けるため前記冷却槽内に挿入されて前記導出孔に
接続されており、前記導出孔に接続される導入孔
を切換えるため弁体を冷却槽外から操作するため
の手段が備えられており、前記冷却槽内で発生し
た冷媒ガスの圧力によつて前記導入孔への冷媒液
及び冷媒ガスの供給が可能なように前記冷却槽は
大気側に対して閉鎖されていると共に、該ガス圧
を調整して前記熱伝導棒への冷媒の輸送量を調整
するためのヒーターが前記冷却槽内に備えられて
いることを特徴としている。 The purpose of the present invention is to solve these conventional drawbacks and provide a sample cooling device for electron microscopes, etc., which has a simple structure and low manufacturing cost. is arranged, a pipe for introducing a refrigerant into the cooling member and a pipe for discharging the introduced refrigerant, and a cooling tank for accommodating the refrigerant liquid, A switching valve having two inlet holes and one outlet hole is provided in the cooling tank,
One introduction hole of the switching valve communicates with the refrigerant liquid, and the other introduction hole communicates with the refrigerant gas atmosphere existing between the refrigerant liquid level and the top surface of the cooling tank, and the introduction pipe One end is inserted into the cooling tank and connected to the outlet hole in order to receive refrigerant supply, and means for operating the valve body from outside the cooling tank to switch the introduction hole connected to the outlet hole. The cooling tank is closed to the atmosphere so that the refrigerant liquid and refrigerant gas can be supplied to the introduction hole by the pressure of the refrigerant gas generated in the cooling tank. In addition, a heater is provided in the cooling tank to adjust the gas pressure and the amount of refrigerant to be transported to the heat conduction rod.
以下、本考案の一実施例を図面に基づき詳説す
る。 Hereinafter, one embodiment of the present invention will be explained in detail based on the drawings.
第1図は、本考案の一実施例を示す縦断面図で
あり、1は電子顕微鏡の鏡体2に光軸と直交した
方向から挿脱可能に保持された試料ホルダであ
り、その先端Aは板状に形成されて対物レンズの
上磁極3aと下磁極3bとの間に置かれ、又、光
軸と交叉する部分には、試料4を保持した試料台
5がガラス球等の熱絶縁部を介して熱的に遮断さ
れた状態で設置されている。6は大気中に設置さ
れた外槽で、内側に液体窒素7を満した冷却槽8
が熱的に遮断された状態で設置されている。9は
該液体窒素7を前記試料4と熱的に接続された冷
却部材10部分に導くための可撓性のパイプで、
該パイプの途中にはベローズ11が設けてあり、
液体窒素の蒸発による冷却槽8の振動が試料4に
伝達されるのを防止している。又、該パイプの外
周はベローズ12を有した外筒13で覆われて二
重管構造とされ、その空間を真空に保つことによ
り熱流入の阻止を図つている。14は切換弁であ
り、14aは弁体である。弁体14aはその一端
が冷却槽8の外部に取り出された操作軸15に接
続されており、操作軸15により上下動されて弁
の切換のために使用される。第2図により詳細に
示すように、操作軸15はパイプ状に形成されて
おり、切換弁の一方の導入孔としても兼用されて
いる。即ち、パイプ状操作軸15は穴18を有し
ており、液体窒素7の液面と冷却槽8の上面との
間には気化により生じた窒素ガスが存在するが、
穴18はこの気化ガス雰囲気中に連通する位置に
ある。パイプ状の操作軸15の下端には穴17が
あり、穴17が弁室14bに連通している。弁室
14bは穴16によつて液体窒素中に連通してお
り、この穴16が弁室14bに連通する他方の導
入孔になつている。前記パイプ9の一端は液体窒
素又は気化ガスの供給を受けるため、冷却槽8内
に挿入されて弁室14bの導出孔に接続されてい
る。操作軸15の操作によつて弁体14aが上側
に位置する場合には穴17が塞がれると共に穴1
6が開放されるため、弁室14bを介して穴16
とパイプ9が接続されて液体窒素7が冷却部材1
0に送られ、又、第2図の状態のように軸15の
操作により弁体14aが下側に位置する場合に
は、穴16が塞がれると共に穴17が開放される
ため、穴17とパイプ9が接続されて窒素ガスが
冷却部材に送られる。前記冷却槽8内で発生した
窒素ガスの圧力によつて、前記穴16への液体窒
素の供給と穴18への窒素ガスの供給が可能な程
度に前記冷却槽17は大気側に対して閉鎖されて
いる。又、窒素ガスのガス圧を調整して前記冷却
部材10への冷媒の輸送量を調整するため、ヒー
ター21が前記冷却槽8内の液体窒素中に配置さ
れている。19は輸送路の径を制御することによ
り、冷媒の流量を制御するためのニードルバルブ
である。20は前記冷却槽8に液体窒素を供給す
るための導入パイプである。 FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, in which numeral 1 denotes a sample holder which is held in a mirror body 2 of an electron microscope so that it can be inserted into and removed from a direction perpendicular to the optical axis; is formed into a plate shape and placed between the upper magnetic pole 3a and the lower magnetic pole 3b of the objective lens, and a sample stage 5 holding the sample 4 is placed on a thermally insulated glass bulb or the like at the part intersecting the optical axis. It is installed in a state where it is thermally isolated through a section. 6 is an outer tank installed in the atmosphere, and a cooling tank 8 filled with liquid nitrogen 7 inside.
is installed in a thermally isolated state. 9 is a flexible pipe for guiding the liquid nitrogen 7 to a portion of the cooling member 10 that is thermally connected to the sample 4;
A bellows 11 is provided in the middle of the pipe,
This prevents vibrations of the cooling tank 8 due to evaporation of liquid nitrogen from being transmitted to the sample 4. Further, the outer periphery of the pipe is covered with an outer cylinder 13 having a bellows 12 to form a double pipe structure, and by keeping the space in a vacuum, heat inflow is prevented. 14 is a switching valve, and 14a is a valve body. One end of the valve element 14a is connected to an operating shaft 15 taken out from the cooling tank 8, and is moved up and down by the operating shaft 15 and used for switching the valve. As shown in more detail in FIG. 2, the operating shaft 15 is formed into a pipe shape, and also serves as one of the introduction holes of the switching valve. That is, the pipe-shaped operating shaft 15 has a hole 18, and nitrogen gas generated by vaporization exists between the liquid level of the liquid nitrogen 7 and the upper surface of the cooling tank 8.
The hole 18 is located in a position communicating with this vaporized gas atmosphere. A hole 17 is provided at the lower end of the pipe-shaped operating shaft 15, and the hole 17 communicates with the valve chamber 14b. The valve chamber 14b communicates with liquid nitrogen through a hole 16, which serves as the other introduction hole communicating with the valve chamber 14b. One end of the pipe 9 is inserted into the cooling tank 8 and connected to an outlet hole of the valve chamber 14b in order to receive supply of liquid nitrogen or vaporized gas. When the valve body 14a is located on the upper side by operating the operating shaft 15, the hole 17 is closed and the hole 1 is closed.
6 is opened, the hole 16 is opened through the valve chamber 14b.
and pipe 9 are connected, and liquid nitrogen 7 is supplied to cooling member 1.
0, and when the valve body 14a is located at the lower side by operating the shaft 15 as in the state shown in FIG. 2, the hole 16 is closed and the hole 17 is opened. and pipe 9 are connected to send nitrogen gas to the cooling member. Due to the pressure of nitrogen gas generated in the cooling tank 8, the cooling tank 17 is closed to the atmosphere to the extent that liquid nitrogen can be supplied to the holes 16 and nitrogen gas can be supplied to the holes 18. has been done. Further, in order to adjust the gas pressure of nitrogen gas and the amount of refrigerant transported to the cooling member 10, a heater 21 is placed in the liquid nitrogen in the cooling tank 8. 19 is a needle valve for controlling the flow rate of the refrigerant by controlling the diameter of the transport path. 20 is an introduction pipe for supplying liquid nitrogen to the cooling tank 8.
前記試料ホルダ1とパイプ9との接続部Bは、
第3図に拡大図を示す様に軸受21及び22を介
して回転可能に接続されていると共に袋ナツト2
3を緩めることによりパイプ9を取外し出来る様
に構成されている。これによりパイプ9に関係な
しに試料ホルダ1を自由に回転せしめて試料4を
傾斜させることが出来る。24は試料ホルダ1と
パイプ9との接続部分(軸受部分)を大気から遮
断するためのOリングンパツキングであり、軸受
部分に水滴や霜が付着するのを防止するためのも
のである。25は冷却部材10に到達した液体窒
素やその気化ガスを回収するための回収パイプで
ある。 The connection part B between the sample holder 1 and the pipe 9 is
As shown in an enlarged view in FIG. 3, the cap nut 2 is rotatably connected via bearings 21 and 22
The pipe 9 can be removed by loosening the pipe 3. Thereby, the sample holder 1 can be freely rotated and the sample 4 can be tilted regardless of the pipe 9. Reference numeral 24 denotes an O-ring packing for insulating the connecting part (bearing part) between the sample holder 1 and the pipe 9 from the atmosphere, and is used to prevent water droplets and frost from adhering to the bearing part. 25 is a recovery pipe for recovering liquid nitrogen and its vaporized gas that have reached the cooling member 10.
而して、試料の冷却を開始するには、先ず切換
弁14を下方に位置せしめて冷却槽8内の気化ガ
スをパイプ9に供給することによりこのパイプ、
ベローズ11、冷却部材10及び回収パイプ25
を予冷する。その後、切換弁14を上方に移動せ
しめれば、液体窒素7がパイプ9を通して直接冷
却部材10まで送られるため、試料4を液体窒素
温度(−180℃程度)まで冷却することが出来る。
一方、この状態で切換弁14を下方に移動せしめ
れば、気化ガスが冷却部材に送られるため、試料
は比較的高い冷却温度(−100℃程度)に保たれ
る。又、液体窒素温度(−180℃程度)と気化ガ
スの温度(−100℃程度)との間の温度を実現す
るためには、液体窒素や窒素ガスの流量を調整す
れば良い。この調整はヒーター21への加熱電流
の調整により気化の速度を調整して窒素ガスの圧
力を調整することによつて行われる。この場合、
ニードルバルブ19の開閉量を制御することによ
り、よりきめ細かく流量を調整することもでき
る。 In order to start cooling the sample, first, the switching valve 14 is positioned downward and the vaporized gas in the cooling tank 8 is supplied to the pipe 9.
Bellows 11, cooling member 10 and recovery pipe 25
Pre-cool. After that, if the switching valve 14 is moved upward, the liquid nitrogen 7 is sent directly to the cooling member 10 through the pipe 9, so that the sample 4 can be cooled to the liquid nitrogen temperature (approximately -180°C).
On the other hand, if the switching valve 14 is moved downward in this state, the vaporized gas is sent to the cooling member, so that the sample is maintained at a relatively high cooling temperature (about -100°C). Further, in order to achieve a temperature between the liquid nitrogen temperature (about -180°C) and the vaporized gas temperature (about -100°C), the flow rate of liquid nitrogen or nitrogen gas may be adjusted. This adjustment is performed by adjusting the heating current to the heater 21 to adjust the rate of vaporization and adjust the pressure of the nitrogen gas. in this case,
By controlling the amount of opening and closing of the needle valve 19, the flow rate can be adjusted more precisely.
上述した説明から明らかなように、本考案にお
いては、冷却槽内に2個の導入孔と1個の導出孔
を有する切換弁が備えられており、該切換弁の一
方の導入孔は冷媒液中に連通されていると共に他
方の導入孔は冷媒液面と冷却槽上面との間に存在
する冷媒ガス雰囲気中に連通されており、前記導
入用パイプの一端は冷媒の供給を受けるため前記
冷却槽内に挿入されて前記導出孔に接続されてお
り、前記導出孔に接続される導入孔を切換えるた
め弁体を冷却槽外から操作するための手段が備え
られており、前記冷却槽内で発生した冷媒ガスの
圧力によつて前記導入孔への冷媒液及び冷媒ガス
の供給が可能なように前記冷却槽は大気側に対し
て閉鎖されていると共に、該ガス圧を調整して前
記熱伝導棒への冷媒の輸送量を調整するためのヒ
ーターが備えられるように構成したため、冷媒液
槽と冷媒ガス槽を別個に設けたり、冷媒液と冷媒
ガスの流量調整手段を別個に設けることなく、単
一の冷却槽と流量を調整するための単一のヒータ
ーを使用することにより、冷媒液と冷媒ガスのう
ちの一方を任意に切換えて流量を調整しながら試
料冷却部材に送ることができる。従つて、本考案
により構造が簡単で製作コストを低減させること
のできる電子顕微鏡等における試料冷却装置が提
供される。 As is clear from the above description, in the present invention, a switching valve having two inlet holes and one outlet hole is provided in the cooling tank, and one of the inlet holes of the switching valve is connected to the refrigerant liquid. The other inlet hole is in communication with the refrigerant gas atmosphere existing between the refrigerant liquid level and the upper surface of the cooling tank, and one end of the inlet pipe is connected to the cooling tank to receive the refrigerant supply. The valve body is inserted into the tank and connected to the outlet hole, and is provided with means for operating the valve body from outside the cooling tank in order to switch the introduction hole connected to the outlet hole. The cooling tank is closed to the atmosphere so that the refrigerant liquid and refrigerant gas can be supplied to the introduction hole by the pressure of the refrigerant gas generated, and the gas pressure is adjusted to reduce the heat. Since the configuration is equipped with a heater to adjust the amount of refrigerant transported to the conduction rod, there is no need to provide separate refrigerant liquid tanks and refrigerant gas tanks, or separate flow rate adjustment means for refrigerant liquid and refrigerant gas. By using a single cooling tank and a single heater to adjust the flow rate, one of the refrigerant liquid and refrigerant gas can be switched arbitrarily and sent to the sample cooling member while adjusting the flow rate. . Therefore, the present invention provides a sample cooling device for an electron microscope or the like that has a simple structure and can reduce manufacturing costs.
以上の如き構成となせば、試料保持部分に加熱
ヒータを組込むことなく切換弁を移動させるだけ
で試料の温度を−180℃から−100℃程度の比較的
高い温度までの広い範囲にわたつて任意に可変す
ることが出来る為、構造の簡略化やコストの低下
を図ることが出来、又、液体窒素の無駄な消費を
防止することが出来る効果を有し、実用性大であ
る。 With the above configuration, the temperature of the sample can be arbitrarily adjusted over a wide range from -180°C to a relatively high temperature of about -100°C by simply moving the switching valve without incorporating a heater into the sample holding part. Since it can be varied, it is possible to simplify the structure and reduce costs, and also has the effect of preventing wasteful consumption of liquid nitrogen, which is highly practical.
尚、前述の説明では試料を液体窒素で冷却した
場合について述べたが、これに限定されることな
く他の冷媒、例えば液体ヘリウムにより試料を冷
却してもよい。又、サイドエントリータイプの試
料装置に実施した場合について述べたが、試料を
光軸方向から挿入する所謂、トツプエントリタイ
プにも実施することが出来る。更に、電子顕微鏡
に実施した場合について述べたが、走査電子顕微
鏡にも同様に実施出来ることは言うまでもない。 In the above description, the sample was cooled with liquid nitrogen, but the sample is not limited to this, and the sample may be cooled with other coolants, such as liquid helium. Furthermore, although the case has been described in which the present invention is implemented in a side entry type sample device, it can also be implemented in a so-called top entry type in which the sample is inserted from the optical axis direction. Further, although the case where the method is applied to an electron microscope has been described, it goes without saying that the method can be applied to a scanning electron microscope as well.
第1図は本考案の一実施例を示す縦断面図、第
2図及び第3図は夫々第1図の一部拡大断面図で
ある。
1:試料ホルダ、2:鏡体、3a:対物レンズ
の上磁極、3b:対物レンズの下磁極、4:試
料、5:試料台、6:外槽、7:液体窒素、8:
冷却槽、9:パイプ、10:冷却部材、11,1
2:ベローズ、13:外筒、14:切換弁、1
5:操作軸、16,17,18:穴、19:ニー
ドルバルブ。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, and FIGS. 2 and 3 are partially enlarged sectional views of FIG. 1, respectively. 1: Sample holder, 2: Mirror body, 3a: Upper magnetic pole of objective lens, 3b: Lower magnetic pole of objective lens, 4: Sample, 5: Sample stage, 6: Outer tank, 7: Liquid nitrogen, 8:
Cooling tank, 9: Pipe, 10: Cooling member, 11, 1
2: bellows, 13: outer cylinder, 14: switching valve, 1
5: Operation shaft, 16, 17, 18: Hole, 19: Needle valve.
Claims (1)
おり、該冷却部材に冷媒を導入するためのパイプ
と導入された冷媒を排出するためのパイプが設け
られており、該冷媒液を収容するための冷却槽が
備えられており、該冷却槽内に2個の導入孔と1
個の導出孔を有する切換弁が備えられており、該
切換弁の一方の導入孔は冷媒液中に連通されてい
ると共に他方の導入孔は冷媒液面と冷却槽上面と
の間に存在する冷媒ガス雰囲気中に連通されてお
り、前記導入用パイプの一端は冷媒の供給を受け
るため前記冷却槽内に挿入されて前記導出孔に接
続されており、前記導出孔に接続される導入孔を
切換えるため弁体を冷却槽外から操作するための
手段が備えられており、前記冷却槽内で発生した
冷媒ガスの圧力によつて前記導入孔への冷媒液及
び冷媒ガスの供給が可能なように前記冷却槽は大
気側に対して閉鎖されていると共に、該ガス圧を
調整して前記冷却部材への冷媒の輸送量を調整す
るためのヒーターが前記冷却槽内に備えられてい
ることを特徴とする電子顕微鏡等における試料冷
却装置。 A cooling member thermally connected to the sample is arranged, a pipe for introducing a refrigerant into the cooling member and a pipe for discharging the introduced refrigerant are provided, and the refrigerant liquid is accommodated. The cooling tank is equipped with two inlet holes and one
A switching valve having two outlet holes is provided, one introduction hole of the switching valve communicates with the refrigerant liquid, and the other introduction hole exists between the refrigerant liquid level and the top surface of the cooling tank. The introduction pipe is connected to a refrigerant gas atmosphere, and one end of the introduction pipe is inserted into the cooling tank and connected to the outlet hole in order to receive a supply of refrigerant, and the introduction hole connected to the outlet hole is connected to the outlet hole. A means for operating the valve body from outside the cooling tank is provided for switching, and the refrigerant liquid and refrigerant gas can be supplied to the introduction hole by the pressure of the refrigerant gas generated in the cooling tank. The cooling tank is closed to the atmosphere, and the cooling tank is equipped with a heater for adjusting the gas pressure and the amount of refrigerant to be transported to the cooling member. Features: Sample cooling device for electron microscopes, etc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7588183U JPS59181571U (en) | 1983-05-20 | 1983-05-20 | Sample cooling device for electron microscopes, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7588183U JPS59181571U (en) | 1983-05-20 | 1983-05-20 | Sample cooling device for electron microscopes, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59181571U JPS59181571U (en) | 1984-12-04 |
JPH0125476Y2 true JPH0125476Y2 (en) | 1989-07-31 |
Family
ID=30205941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7588183U Granted JPS59181571U (en) | 1983-05-20 | 1983-05-20 | Sample cooling device for electron microscopes, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59181571U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5560033B2 (en) * | 2009-12-21 | 2014-07-23 | 株式会社日立ハイテクノロジーズ | Cooled sample holder and method for cooling sample |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50134359A (en) * | 1974-04-10 | 1975-10-24 |
-
1983
- 1983-05-20 JP JP7588183U patent/JPS59181571U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50134359A (en) * | 1974-04-10 | 1975-10-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS59181571U (en) | 1984-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8192548B2 (en) | Arrangement for coating a substrate | |
JPH0125476Y2 (en) | ||
JPH1083960A (en) | Sputtering device | |
JPH046085A (en) | Device for cooling beverage component in automatic beverage supply device | |
JP5183310B2 (en) | Vapor deposition equipment | |
US5987896A (en) | System and method for regulating the flow of a fluid refrigerant to a cooling element | |
US3797264A (en) | Low-temperature pumping device | |
JPH0458434B2 (en) | ||
JP2000251819A (en) | Sample cooling holder | |
JP3208069B2 (en) | Superconducting member cooling device | |
JPH10246547A (en) | Re-liquefying device for liquefied gas for use in cooling physical and chemical equipment | |
JP2000208083A (en) | Sample cooling device for electron microscope | |
KR20020038625A (en) | Apparatus and method for depositing organic matter of vapor phase | |
JP3808072B2 (en) | Substrate processing equipment | |
JPS6314858A (en) | Vacuum deposition device | |
JP2766667B2 (en) | Frozen sample transfer device | |
KR20210082830A (en) | Cooling unit and thin film deposition apparatus including the same | |
JPH06208841A (en) | Cryogenic device for scanning electron microscope | |
JPH08176827A (en) | Semiconductor producing device | |
KR102363609B1 (en) | Cooling system | |
KR100589237B1 (en) | Thermal evaporator having boat to decrease consumption of thin film source | |
JPH1137396A (en) | Reservoir tank for liquefied carbon dioxide | |
JPH06163251A (en) | Cryogenic vessel | |
JPH1053402A (en) | Ozone concentrator and ozone concentration | |
JPH051048Y2 (en) |