JPH01247556A - Fe-base magnetic alloy excellent in iso-permeability characteristic - Google Patents
Fe-base magnetic alloy excellent in iso-permeability characteristicInfo
- Publication number
- JPH01247556A JPH01247556A JP63077314A JP7731488A JPH01247556A JP H01247556 A JPH01247556 A JP H01247556A JP 63077314 A JP63077314 A JP 63077314A JP 7731488 A JP7731488 A JP 7731488A JP H01247556 A JPH01247556 A JP H01247556A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic permeability
- magnetic alloy
- constant magnetic
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 79
- 239000000956 alloy Substances 0.000 claims abstract description 79
- 239000013078 crystal Substances 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 239000006104 solid solution Substances 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 26
- 230000035699 permeability Effects 0.000 claims description 26
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 238000010791 quenching Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910052758 niobium Inorganic materials 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 229910001361 White metal Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高周波トランスや各種チョークコイル等に適
するに恒透磁率性に優れたFe基磁性合金及びその製法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Fe-based magnetic alloy with excellent constant magnetic permeability suitable for high-frequency transformers, various choke coils, etc., and a method for producing the same.
[従来の技術]
従来から、各種電子機器やスイッチング電源等のノイズ
除去に用いられるコモンモードチョークや高周波トラン
ス用合金には、低角形比でB −8曲線の形がフラット
で恒透磁率性に優れた合金が好まれて使用されている。[Conventional technology] Conventionally, alloys for common mode chokes and high frequency transformers used for noise removal in various electronic devices and switching power supplies have a low squareness ratio, a flat B-8 curve shape, and constant magnetic permeability. Superior alloys are preferred and used.
このような合金としては、磁路と垂直方向に磁場を印加
しながら磁場中熱処理したパーマロイや磁路と垂直方向
に磁場を印加しながら磁場中熱処理したアモルファス合
金、表面を酸化させたFe基アモルファス合金等が知ら
れている。Examples of such alloys include permalloy that is heat-treated in a magnetic field while applying a magnetic field perpendicular to the magnetic path, amorphous alloy that is heat-treated in a magnetic field while applying a magnetic field perpendicular to the magnetic path, and Fe-based amorphous that has an oxidized surface. Alloys etc. are known.
このような例は、特開昭57−202709号公報、特
公昭59−34781号公報等に開示されている。Such examples are disclosed in Japanese Patent Application Laid-Open No. 57-202709, Japanese Patent Publication No. 59-34781, and the like.
[発明が解決しようとする問題点]
しかしながら、上記合金には種々の問題点が存在してい
る。[Problems to be Solved by the Invention] However, the above alloys have various problems.
たとえば、表面を酸化させたFe基アモルファス合金は
透磁率が5000前後とフェライト並の値しか冑られな
い。また、磁歪が大きく、含浸等により特性劣化する、
周波数によっては磁歪による共振が起こる等の問題があ
る。パーマロイは比抵抗が低いため高周波における透磁
率が低下しやすいという問題や、撮動や変形等による特
性劣化の問題がある。For example, an Fe-based amorphous alloy whose surface is oxidized has a magnetic permeability of around 5000, which is comparable to ferrite. In addition, the magnetostriction is large and the characteristics deteriorate due to impregnation, etc.
Depending on the frequency, there are problems such as resonance due to magnetostriction. Since permalloy has a low specific resistance, there are problems in that the magnetic permeability at high frequencies tends to decrease, and there is also a problem in that the characteristics deteriorate due to imaging, deformation, etc.
また、磁路と垂直方向に磁場を印加しながら磁場中熱処
理したアモルファス合金の場合は、経時変化が大きい問
題がある。また、飽和磁束密度はGO系の場合10K
(3以下と低く、Fe系の場合は飽和磁束密度が高いが
大きく含浸による特性劣化や磁歪共振の問題がある。Furthermore, in the case of an amorphous alloy that is heat-treated in a magnetic field while applying a magnetic field in a direction perpendicular to the magnetic path, there is a problem in that the alloy changes significantly over time. In addition, the saturation magnetic flux density is 10K in the case of GO system.
(It is low at 3 or less, and in the case of Fe-based materials, the saturation magnetic flux density is high, but there are problems such as characteristic deterioration due to impregnation and magnetostrictive resonance.
このような問題点を解決するために我々は先に特願昭6
2−58577号等で低角形比で恒透磁率性に優れた高
周波磁気特性を示す超微細な結晶粒組織を有するFeM
ii性合金が得られることを示した。In order to solve these problems, we first filed a patent application in 1986.
No. 2-58577 etc., FeM has an ultra-fine grain structure that exhibits high frequency magnetic properties with low squareness and excellent constant magnetic permeability.
It was shown that a ii-type alloy can be obtained.
このような特性は、磁場と垂直方向に磁場を印加しなが
ら磁場中熱処理することにより得られるが、このような
処理は量産性の点では不利であり、磁場を印加しないで
も低角形比で恒透磁率性に層れたFe基磁性合金の出現
が望まれていた。Such characteristics can be obtained by heat treatment in a magnetic field while applying a magnetic field in a direction perpendicular to the magnetic field, but such treatment is disadvantageous in terms of mass production, and even without applying a magnetic field, it is difficult to maintain a constant squareness with a low squareness ratio. The appearance of a Fe-based magnetic alloy layered with magnetic permeability has been desired.
本発明は量産性に優れ低角形比で恒透磁率性に優れた特
性を示すFe基磁性合金及びその製法を提供することを
目的とする。An object of the present invention is to provide a Fe-based magnetic alloy that is mass-producible, has a low squareness ratio, and exhibits excellent constant magnetic permeability, and a method for producing the same.
[問題点を解決する手段〕
上記問題解決するために鋭意検討の結果、本発明者等は
、
一般式:
%式%
(但し、MはGO及び/又はN1であり、M′はNb
、W、Ta 、Zr 、Hf 、Ti及びMoからなる
群から選ばれた少なくとも1種の元素、M LJはV、
Cr、Mn、AI、白金属元素、Sc 、Y。[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed the general formula: % formula % (where M is GO and/or N1, and M' is Nb
, W, Ta, Zr, Hf, Ti, and Mo; M LJ is V;
Cr, Mn, AI, white metal element, Sc, Y.
AU 、Zn 、Sn 、Re 、A(+からなる群か
ら選ばれた少なくとも1種の元素、XG、tC,P、G
e 。At least one element selected from the group consisting of AU, Zn, Sn, Re, A (+, XG, tC, P, G
e.
Ga、Sb、In、3e、Asからなる群から選ばれた
少なくとも1種の元素であり、a、x、y。At least one element selected from the group consisting of Ga, Sb, In, 3e, and As, and a, x, and y.
Z、α、β、及びγはそれぞれ0≦a≦0.5゜0.1
≦×≦ 3.0≦y≦30,0≦Z≦25.5≦y+7
≦30. 0.1≦α≦30.0≦β≦10.及び0≦
γ≦10を満たす。)
により表わされる組成を有し、組織の少なくとも50%
が微細な均一に分布した結晶粒からなり、各結晶粒の最
大寸法で測定した粒径の平均が1000Å以下であるF
e基磁性合金において合金表面付近に合金内部より平均
粒径の大きい結晶粒組織を有する層が形成された合金が
恒透磁率性に優れていることを見出し本発明に想到した
。Z, α, β, and γ are each 0≦a≦0.5゜0.1
≦×≦ 3.0≦y≦30, 0≦Z≦25.5≦y+7
≦30. 0.1≦α≦30.0≦β≦10. and 0≦
γ≦10 is satisfied. ) and at least 50% of the tissue
F is composed of fine, uniformly distributed crystal grains, and the average grain size measured at the maximum dimension of each crystal grain is 1000 Å or less.
The inventors have discovered that an e-based magnetic alloy in which a layer having a crystal grain structure with a larger average grain size than the inside of the alloy is formed near the alloy surface has excellent constant magnetic permeability, and has conceived the present invention.
本発明において、C1は必須元素であり、同じく必須元
素であるNb 、W、Ta 、Zr 、Hf 。In the present invention, C1 is an essential element, and Nb, W, Ta, Zr, and Hf are also essential elements.
Ti及びMOからなる群から選ばれた少なくとも1種の
元素との複合添加効果により結晶粒を微細化し軟磁気特
性を改善する効果を有する。The combined effect of adding at least one element selected from the group consisting of Ti and MO has the effect of making crystal grains finer and improving soft magnetic properties.
好ましいC1の添加量は0.1〜3原子%である。The preferable amount of C1 added is 0.1 to 3 atomic %.
特に好ましい範囲は0.5へ・2原子%である。A particularly preferred range is 0.5 to 2 atomic %.
添加元素M′はNb 、W、Ta 、Zr 、Hf 。The additive elements M' are Nb, W, Ta, Zr, and Hf.
Ti及びMOからなる群から選ばれた少なくとも1種の
元素であり、その添加量は0.1〜30原子%である。It is at least one element selected from the group consisting of Ti and MO, and the amount added is 0.1 to 30 atomic %.
より好ましい範囲は0.1〜10原子%で、特にこのま
しい範囲は2.〜8原子%である。A more preferable range is 0.1 to 10 at%, and a particularly preferable range is 2. ~8 atom%.
3i及びBは合金組織の微細化及び磁歪調整に有用な元
素である。本発明の合金は、非晶質合金を作製後に熱処
理し通常得ることができるが、3i及びBはこの目的に
は最も適する元素である。3i and B are elements useful for refining the alloy structure and adjusting magnetostriction. The alloy of the present invention can usually be obtained by heat treating an amorphous alloy after its preparation, and 3i and B are the most suitable elements for this purpose.
3i及びBの添加量V 、 z G、t o≦y ≦3
0. O≦7≦25.5≦y+z≦30である。3i and B addition amount V, z G, to≦y≦3
0. O≦7≦25.5≦y+z≦30.
より好ましくは6≦y≦25.3≦2≦15.14≦y
+z≦30である。More preferably 6≦y≦25.3≦2≦15.14≦y
+z≦30.
M llはV、Cr 、Mn 、AI 、白金属元素。Mll is V, Cr, Mn, AI, and a platinum metal element.
Sc 、Y、Au 、Zn 、Sn 、Re 、A(+
からなる群から選ばれた少なくとも1種の元素であり、
耐蝕性の改善、磁気特性の改善、または磁歪調整効果等
が得られる。Sc, Y, Au, Zn, Sn, Re, A(+
At least one element selected from the group consisting of
Improvements in corrosion resistance, magnetic properties, magnetostriction adjustment effects, etc. can be obtained.
M I+の添加量βは、0≦β≦10が好ましい。The amount β of M I+ added is preferably 0≦β≦10.
XはC,P、Ge、Ga、Sb、In、Be。X is C, P, Ge, Ga, Sb, In, Be.
ASからなる群から選ばれた少なくとも1種の元素であ
り、非晶質化を助けたり、磁歪やキュリー温度を調整す
る効果等を有づる。It is at least one element selected from the group consisting of AS, and has effects such as assisting amorphization and adjusting magnetostriction and Curie temperature.
Xの添加量γは、0≦γ≦10が好ましい。The addition amount γ of X is preferably 0≦γ≦10.
残部は不純物を除いて、実質的にl”eが主体であるが
、Feの1部は成分M (Co及び/又はNi)により
置換されていても良い。Mの含有量aは0≦a≦ 0.
5特に好ましい範囲は0≦a≦0.3である。The remainder is essentially l"e excluding impurities, but a part of Fe may be replaced by component M (Co and/or Ni). The content a of M is 0≦a ≦ 0.
5 A particularly preferred range is 0≦a≦0.3.
また、本発明合金は、bcc構造のFe固溶体を主体と
した合金であり、組織の少くとも50%が微細な均一に
分布した結晶粒からなり、各結晶粒の最大寸法で測定し
た粒径の平均が1000Å以下であるFe基磁性合金に
おいて、合金表面付近に合金内部より平均粒径の大きい
結晶粒組織を有する層が形成されていることを特徴とす
る。In addition, the alloy of the present invention is an alloy mainly composed of Fe solid solution with a bcc structure, and at least 50% of the structure consists of fine, uniformly distributed crystal grains, and the grain size measured by the maximum dimension of each crystal grain is A Fe-based magnetic alloy having an average grain size of 1000 Å or less is characterized in that a layer having a crystal grain structure with a larger average grain size than the inside of the alloy is formed near the alloy surface.
このような合金組織のでは恒透磁率性に優れ、低角形比
で比較的フラットなり−H曲線の合金が得られる。With such an alloy structure, an alloy with excellent constant magnetic permeability, a low squareness ratio, and a relatively flat -H curve can be obtained.
特に好ましい軟磁気特性は前記内部にある結晶の粒径が
500Å以下の場合に得やすい。Particularly preferable soft magnetic properties are easily obtained when the grain size of the crystal inside is 500 Å or less.
このような特性を示す合金の表面結晶粒は内部に形成さ
れている結晶粒より粒径が大きく厚み方向に< 100
>方位が配向する傾向がある。内部の結晶粒はほとんど
配向はしていない。The surface grains of an alloy that exhibits these characteristics are larger than the grains formed inside, and have a diameter of <100 mm in the thickness direction.
>The direction tends to be oriented. The internal crystal grains are hardly oriented.
また、合金表面付近に形成している結晶粒組織は柱状組
織になっている場合が多い。Furthermore, the crystal grain structure formed near the alloy surface is often a columnar structure.
次にもう1つの発明である、前記合金の製法について説
明する。Next, a method for producing the alloy, which is another invention, will be explained.
1つの方法はまず、前記合金組成の合金溶湯を単ロール
法等の液体急冷法により合金溶湯を急冷し非晶質合金薄
帯を製造する。この際、冷却速度をコントロールするこ
とにより合金表面付近に結晶相を形成させる。単ロール
法の場合は、−膜内には自由凝固面側に結晶相が形成し
、内部及びロール接触面側は非晶質となる。本発明では
表面に形成する結晶は全体積の50%未満とする。好ま
しくは20%以下である。なお、表面に形成する結晶は
内部より大きな結晶である必要があり、1000Aを越
えた粒径でも良い。One method is to first rapidly cool a molten alloy having the above alloy composition by a liquid quenching method such as a single roll method to produce an amorphous alloy ribbon. At this time, a crystalline phase is formed near the alloy surface by controlling the cooling rate. In the case of the single roll method, a crystal phase is formed in the film on the free solidification surface side, and the inside and the roll contact surface side are amorphous. In the present invention, the crystals formed on the surface account for less than 50% of the total volume. Preferably it is 20% or less. Note that the crystals formed on the surface must be larger than those inside, and may have a grain size exceeding 1000A.
次にこの表面付近に結晶が形成した合金を加熱し熱処理
を行い、残りの非晶質の部分を結晶化させ、組織の少く
とも50%が微細な均一に分布した結晶粒となるように
熱処理を行い前記Fen磁性合金を製造する。また熱処
理により実質的に 100%結品相としても良い。Next, the alloy in which crystals have formed near the surface is heated and heat-treated to crystallize the remaining amorphous portion, and heat-treated so that at least 50% of the structure becomes fine, uniformly distributed crystal grains. The above-mentioned Fen magnetic alloy is manufactured by performing the following steps. Further, it may be made into a substantially 100% cohesive phase by heat treatment.
前記甲ロール法において、例えばロールを加熱したり、
薄帯作製中に薄帯表面を加熱する等の方法で表面に結晶
相を形成しても良い。In the above roll method, for example, heating the roll,
A crystalline phase may be formed on the surface of the ribbon by, for example, heating the surface of the ribbon during production of the ribbon.
また、熱処理は大気中、真空中、不活性ガス雰囲気等種
々な雰囲気で行うことができるし、石川中において行っ
ても良い。薄帯を磁心として使用する場合は通常トロイ
ダル状に巻いた後、熱処理する。Further, the heat treatment can be performed in various atmospheres such as air, vacuum, and inert gas atmosphere, and may be performed in Ishikawa. When a thin ribbon is used as a magnetic core, it is usually wound into a toroidal shape and then heat treated.
もう1つの方法はまず、前記合金組成の合金溶湯を単ロ
ール法等の液体急冷法により急冷し非晶質合金薄帯を製
造後、これを加熱し合金表面付近をまず結晶化させ、次
に内部を結晶化させるために加熱し熱処理を行い、組織
の少くとも50%が微細な均一に分布した結晶粒となる
ように熱処理する製法である。Another method is to first quench a molten alloy having the above alloy composition using a liquid quenching method such as a single roll method to produce an amorphous alloy ribbon, then heat it to first crystallize near the alloy surface, and then This is a manufacturing method in which heat treatment is performed to crystallize the inside so that at least 50% of the structure becomes fine, uniformly distributed crystal grains.
この製法では前記方法と異なり、液体急冷法の際、表面
に結晶が形成しないように冷却速度を大きくし急冷し非
晶質合金を作製後、熱処理を行う。In this manufacturing method, unlike the above-mentioned method, during the liquid quenching method, the cooling rate is increased to prevent crystal formation on the surface, and the amorphous alloy is rapidly quenched to produce an amorphous alloy, followed by heat treatment.
この熱処理は2工程に分れており、まず表面付近が結晶
化するように熱処理する。この熱処理は表面にレーザー
光等をあて表面だけ加熱する等の方法や熱処理雰囲気を
調整して表面だけ結晶化させる等の方法の熱処理である
。表面の結晶粒は、内部より太きく 1000人を越え
た粒径でも良い。This heat treatment is divided into two steps: first, heat treatment is performed to crystallize the vicinity of the surface. This heat treatment is performed by heating only the surface by applying a laser beam or the like to the surface, or by adjusting the heat treatment atmosphere to crystallize only the surface. The crystal grains on the surface may be thicker than those inside and may have a grain size exceeding 1000 grains.
第2の熱処理は、合金薄帯内部まで結晶化させる熱処理
であり、CIlとNb、Mo等の複合添加効果により著
しく微細な結晶が形成される。一方、表面に形成される
結晶は、内部の結晶化の場合と異なりC1の結晶核形成
効果の寄与が小さく結晶粒は大きく不均一になりやすい
。The second heat treatment is a heat treatment for crystallizing the inside of the alloy ribbon, and extremely fine crystals are formed due to the combined effect of adding CII, Nb, Mo, and the like. On the other hand, in the case of crystals formed on the surface, the contribution of the crystal nucleation effect of C1 is small, unlike in the case of internal crystallization, and the crystal grains tend to be large and non-uniform.
このように2つの形態の結晶相が2層状態で存在するこ
とにより低角形比で恒透磁率性に優れた特性が得られる
。Since the two types of crystal phases exist in a two-layer state in this way, characteristics with a low squareness ratio and excellent constant magnetic permeability can be obtained.
この製造方法においても前記製法と同様の雰囲気で熱処
理したり、磁場中で熱処理することもできる。In this manufacturing method, heat treatment can also be performed in the same atmosphere as in the above manufacturing method, or in a magnetic field.
[実施例]
以下、本発明を実施例に従って説明するが本発明はこれ
らに限定されるものではない。[Examples] Hereinafter, the present invention will be explained according to Examples, but the present invention is not limited thereto.
支fi1M1
原子%でCu1%、Nb2.8%、Si7%、89%、
及び残部実質的にFeからなる組成の合金溶湯を甲ロー
ル法により急冷し厚さ18μm9幅5Iの非晶質合金薄
帯を作製した。Support fi1M1 atomic% Cu1%, Nb2.8%, Si7%, 89%,
The molten alloy having a composition consisting essentially of Fe and the remainder was rapidly cooled by the first roll method to produce an amorphous alloy ribbon with a thickness of 18 μm and a width of 5I.
得られた合金の自由凝固面側のX線回折パターンを第1
図に示す。The X-ray diffraction pattern of the free solidifying surface side of the obtained alloy is
As shown in the figure.
非晶質特有のハローパターンとbccFe固溶体(20
0)に対応する結晶ピークだけが認められ形成している
結晶は< 100>が厚さ方向に配向していることが
わかる。次のこの合金のロール接触面側のX線回折ピー
クを測定したところ(200)に対応する結晶ピークは
僅かしか認められず本非晶質合金は自由凝固面側に結晶
が主に形成していることが確認された。断面観察の結果
、結晶は自由凝固面側に形成しており断面の20%を占
めていることが確認された。Amorphous halo pattern and bccFe solid solution (20
It can be seen that only the crystal peak corresponding to 0) is observed, and the formed crystals have <100> orientation in the thickness direction. When the next X-ray diffraction peak of this alloy was measured on the roll contact surface side, only a few crystal peaks corresponding to (200) were observed, indicating that crystals are mainly formed on the free solidification surface side of this amorphous alloy. It was confirmed that there is. As a result of cross-sectional observation, it was confirmed that crystals were formed on the free solidification surface side and occupied 20% of the cross section.
次にこの合金を、外径19mll1.内径15mmのト
ロイダル状に巻き回し、窒素ガス雰囲気中で570℃ま
で10℃/sinの速度で昇温し無磁場中で1時間保持
後室温まで5℃/minの速度で冷却し熱処理を行った
。Next, this alloy was coated with an outer diameter of 19ml1. It was wound into a toroidal shape with an inner diameter of 15 mm, heated to 570°C in a nitrogen gas atmosphere at a rate of 10°C/sin, held in a non-magnetic field for 1 hour, and then cooled to room temperature at a rate of 5°C/min for heat treatment. .
次に熱処理後の合金の1部をコアから取り自由凝固面側
のX線回折を行った。得られた結果を第2図に示ず。Next, a portion of the heat-treated alloy was removed from the core and subjected to X-ray diffraction on the free solidification surface side. The results obtained are not shown in Figure 2.
非晶質特有のハローパターンはほとんど認められなくな
り、bccFe固溶体(200)結晶ピーク以外に(1
00) 、 (211)ピークが認められるようにな
り、はとんど結晶化していることがわかる。The halo pattern peculiar to amorphous is almost no longer observed, and in addition to the bccFe solid solution (200) crystal peak, (1
00) and (211) peaks are now observed, indicating that most of them are crystallized.
また、(200)ピークだけでなく(110)、(21
1)ピークが認められることから熱処理により形成した
結晶はかなりランダムな方位を示していることがわかる
。Moreover, not only the (200) peak but also the (110) and (21)
1) The presence of peaks indicates that the crystals formed by heat treatment exhibit a fairly random orientation.
次にこの合金の表面付近及び内部のミクロ組織を透過電
子顕微鏡に五り1!察した。内部組織の概略図を第3図
(a)、表面付近の組織の概略図を第3図(b )に示
寸。Next, we used a transmission electron microscope to examine the microstructure near the surface and inside the alloy. I guessed it. A schematic diagram of the internal structure is shown in Figure 3(a), and a schematic diagram of the tissue near the surface is shown in Figure 3(b).
表面の結晶はかなり不均一な形態をしており柱状の組織
をしているのに対し内部の結晶は表面に比べると粒径が
小さく均一な組織である。The crystals on the surface have a fairly non-uniform shape and have a columnar structure, whereas the crystals inside have a uniform structure with smaller grain sizes compared to the surface.
熱処理後の合金からなるトロイダルコアの直流B−Hカ
ーブを第4図に示す。FIG. 4 shows the DC B-H curve of the toroidal core made of the alloy after heat treatment.
また、比較のため合金表面をエツチングし表面結晶相を
除去した合金の直流B −Hカーブを第5図に示す。For comparison, FIG. 5 shows a DC B-H curve of an alloy whose surface was etched to remove the surface crystalline phase.
本発明合金の直流B−1」カーブは傾斜しており低角形
比でフラットな形状を示すのに対し、表面の結晶相を除
去した合金はラウンドの形状のB−H曲線を示している
。The DC B-1 curve of the alloy of the present invention is slanted and shows a flat shape with a low squareness ratio, whereas the alloy from which the surface crystalline phase has been removed shows a round B-H curve.
次にこの2種のコアの1kl−IZにおける透磁率の励
!i磁界Hn依存性を測定した。Next, excite the magnetic permeability of these two types of cores at 1 kl-IZ! The i magnetic field Hn dependence was measured.
得られ結果を第6図に示す。表面に粒径の大きい結晶が
存在している合金からなる本発明合金のコアの場合はエ
ツチングし表面の結晶を取った場合より透磁率の励磁磁
場依存性が小さく恒透磁率性に優れている。The results obtained are shown in FIG. In the case of the core of the alloy of the present invention, which is made of an alloy with large grain size crystals on the surface, the dependence of the magnetic permeability on the excitation magnetic field is smaller than that in the case where the surface crystals are removed by etching, and the constant magnetic permeability is excellent. .
実施例2
原子%T”CU1%、Nb3%、St2%、813%、
co15%、残部実質的にFeからなる組成の合金溶湯
を単ロール法により急冷し、厚さ17μm。Example 2 Atomic %T”CU1%, Nb3%, St2%, 813%,
A molten alloy having a composition of 15% Co and the remainder substantially Fe was rapidly cooled by a single roll method to a thickness of 17 μm.
幅5mlの非晶質合金薄帯を大気中で作製した。得られ
た合金のX線回折を行った結果、実施例1と同様自由凝
固面側に結晶が存在しているのが確認された。An amorphous alloy ribbon with a width of 5 ml was produced in the air. As a result of performing X-ray diffraction on the obtained alloy, it was confirmed that crystals were present on the free solidification surface side as in Example 1.
次にこの合金を自由凝固面を外側にし、外径131、内
径10+uに巻き回し、Arガス中で急加熱し550℃
に1時間保後室潟まで炉から取り出し空冷した。熱処理
後の合金は実施例1と同様なミクロ組織であったこの巻
磁心の直流B−Hカーブを第7図に示す。Next, this alloy was wound with the free-solidifying surface facing outward to an outer diameter of 131 mm and an inner diameter of 10 mm, and was rapidly heated to 550°C in Ar gas.
After being heated for 1 hour, it was taken out of the furnace and cooled in the air. The alloy after heat treatment had a microstructure similar to that of Example 1. A DC B-H curve of this wound core is shown in FIG.
実施例1と同様なフラットな直流B−)」カーブであっ
た。次に1kHzにおける透磁率μe lkの励磁磁界
Hm依存性を調べた。It was a flat DC curve similar to that of Example 1. Next, the dependence of the magnetic permeability μe lk on the excitation magnetic field Hm at 1 kHz was investigated.
tl mが!JOeの場合、Fe1には2000、Hr
Aが50m0eの場合、μe 1には2050であり恒
透磁率性に優れていた。この合金はノーマルモードチョ
ーク等に適すると考えられる。tl m! In the case of JOe, Fe1 has 2000, Hr
When A was 50 m0e, μe 1 was 2050, and the constant magnetic permeability was excellent. This alloy is considered suitable for normal mode chokes and the like.
叉1」LL
原子%でC1I O,5%、Nb3.2%、3i2%
。C1I O, 5%, Nb 3.2%, 3i 2% in atomic%
.
313%、残部実質的にFeからなる組成の合金溶湯を
単ロール法により急冷し、厚さ13μm1幅5m+11
の非晶質合金薄帯をHcガス雰囲気中で作製した。tS
られた合金のX線回折を行った結果、非晶質特有のハロ
ーパターンが認められ結晶ピークは認められずほぼ非晶
質単相になっていることが確認された。A molten alloy having a composition of 313% and the remainder substantially consisting of Fe was rapidly cooled by a single roll method to form a molten alloy having a thickness of 13 μm, a width of 5 m, and a thickness of 11 mm.
An amorphous alloy ribbon was produced in an Hc gas atmosphere. tS
As a result of X-ray diffraction of the resulting alloy, a halo pattern peculiar to amorphous was observed, and no crystalline peaks were observed, confirming that the alloy was almost an amorphous single phase.
次にこの合金を、外径19mm、内径15m1に巻き回
しトロイダルコアを作製した債、窒素ガス90%。Next, this alloy was wound to an outer diameter of 19 mm and an inner diameter of 15 m1 to form a toroidal core using 90% nitrogen gas.
酸素10%の雰囲気中で550℃まで10℃/sinの
速度で昇温し1時間保持後2℃7mtnの冷却速度で室
温まで冷Wした。The temperature was raised to 550° C. at a rate of 10° C./sin in an atmosphere of 10% oxygen, held for 1 hour, and then cooled to room temperature at a cooling rate of 2° C. and 7 mtn.
熱処理後の合金はミクロ組織観察の結果、実施例1と同
様な組織であることが確認された。As a result of microstructural observation of the alloy after heat treatment, it was confirmed that the alloy had a similar structure to that of Example 1.
次にこの合金コアの直流B−Hカーブを測定した。得ら
れた結果を第8図に示す。Next, the DC BH curve of this alloy core was measured. The results obtained are shown in FIG.
無!i場中熱処理であるがフラットな直流B −Ll得
られることが確認された。Nothing! Although it was an in-situ heat treatment, it was confirmed that a flat direct current B-Ll could be obtained.
次にこのコアの1k)(Zにおける透磁率μe lkの
励!1磁界t−1++依存性を調べた。Next, the dependence of the magnetic permeability μe lk at 1k) (Z) of this core on the excitation!1 magnetic field t-1++ was investigated.
t1m+が5111Oeの場合、μelkは 1600
0. Hllが50IIへの場合、μe 1には170
00であり恒透磁率性に優れていることが確認された。If t1m+ is 5111Oe, μelk is 1600
0. When Hll goes to 50II, μe 1 has 170
00, and it was confirmed that the constant magnetic permeability was excellent.
実施例4
第1表に示す組成の合金溶湯を単ロール法により急冷し
、厚さ15μm2幅5 mmの非晶質合金薄帯を作製し
た。得られた合金のX線回折及びミクロ組織1察を行い
自由凝固面に形成した結晶相の有無を調べた。Example 4 A molten alloy having the composition shown in Table 1 was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a thickness of 15 μm and a width of 5 mm. The resulting alloy was subjected to X-ray diffraction and microstructure observation to examine the presence or absence of a crystalline phase formed on the free solidification surface.
次にこの合金を外径25au++、内径20mmに巻き
回し、i〜ロイダルコアを作製し、熱処理後、X線回折
。Next, this alloy was wound to an outer diameter of 25 au++ and an inner diameter of 20 mm to produce an i~roidal core, and after heat treatment, X-ray diffraction was performed.
ミクロII観察、直流B−Hカーブ、1kH2における
透磁率μe1k 、 100kHz 、 2KGにお
けるコア損失Pcを測定した。得られた結果を第1表に
示す。Micro II observation, DC B-H curve, magnetic permeability μe1k at 1 kHz, and core loss Pc at 100 kHz and 2 KG were measured. The results obtained are shown in Table 1.
(以下、余白)
表かられかるように、本発明合金は角型比3r/ B
T。が低く、μ 1 k/μ5 1kが小さいため恒
透磁率性に優れている。このためコモンモードチョーク
等に最適である。(Hereinafter, blank space) As can be seen from the table, the alloy of the present invention has a squareness ratio of 3r/B
T. is low and μ 1 k/μ5 1k is small, so it has excellent constant magnetic permeability. Therefore, it is ideal for common mode chokes, etc.
また、コア損失pcも実用上十分近い値であり、パルス
トランス等の高周波トランスにも適している。Furthermore, the core loss pc is close enough for practical use, making it suitable for high-frequency transformers such as pulse transformers.
し発明の効果]
本発明によれば高周波トランスや各種チョークコイル等
に適する恒透磁率性に優れたFe基磁性合金及び量産性
に漬れた製法を提供できるためその効果は著しいものが
ある。Effects of the Invention] According to the present invention, it is possible to provide an Fe-based magnetic alloy with excellent constant magnetic permeability suitable for high-frequency transformers, various choke coils, etc., and a manufacturing method suitable for mass production, so the effects are remarkable.
第1図は本発明合金を製造する工程途中で製造される非
晶質合金のX線回折パターン、第2図は本発明合金のX
線回折パターン、第3図(a )は本発明合金の内部の
ミクロ組織、第3図(h )は本発明合金表面のミクロ
組織の概略図、第4図は本発明合金の直流B−1−1カ
ーブ、第5図は表面結晶層を除去した合金の直流B−’
Hカーブ、第6図は本発明合金表面結晶相を除去した合
金の透磁率の励!111場)1m依存性を示した図、第
7図、第8図は本発明合金の直流B−Hカーブを示した
図である。Figure 1 shows the X-ray diffraction pattern of the amorphous alloy produced during the process of manufacturing the alloy of the present invention, and Figure 2 shows the X-ray diffraction pattern of the alloy of the present invention.
Linear diffraction pattern, Figure 3(a) is a schematic diagram of the internal microstructure of the alloy of the present invention, Figure 3(h) is a schematic diagram of the microstructure of the surface of the alloy of the present invention, Figure 4 is the DC B-1 of the alloy of the present invention. -1 curve, Figure 5 shows the DC B-' of the alloy with the surface crystal layer removed.
H curve, Figure 6 shows the excitation of magnetic permeability of the alloy of the present invention from which the surface crystal phase has been removed! Figures 7 and 8 are diagrams showing the direct current B-H curve of the alloy of the present invention.
Claims (5)
_y_−_z_−_α_−_β_−_γCu_xSi_
yB_zM′_αM″_βX(原子%) (但し、MはCo及び/又はNiであり、M′はNb,
W,Ta,Zr,Hf,Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M″はV,Cr,Mn,
Al,白金属元素,Sc,Y,Au,Zn,Sn,Re
,Agからなる群から選ばれた少なくとも1種の元素、
XはC,P,Ge,Ga,Sb,In,Be,Asから
なる群から選ばれた少なくとも1種の元素であり、a,
x,y,z,α,β,及びγはそれぞれ0≦a≦0.5
,0.1≦x≦3,0≦y≦30,0≦z≦25,5≦
y+z≦30,0.1≦α≦30,0≦β≦10,及び
0≦γ≦10を満たす。) により表わされる組成を有し、組織の少なくとも50%
が微細な均一に分布した結晶粒からなり、各結晶粒の最
大寸法で測定した粒径の平均が1000Å以下であるF
e基磁性合金において、合金表面付近に合金内部より平
均粒径の大きい結晶粒組織を有する層が形成されている
ことを特徴とする恒透磁率性に優れたFe基磁性合金。(1) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_β_−_γCu_xSi_
yB_zM′_αM″_βX (atomic %) (However, M is Co and/or Ni, M′ is Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti and Mo, M'' is V, Cr, Mn,
Al, platinum metal element, Sc, Y, Au, Zn, Sn, Re
, at least one element selected from the group consisting of Ag,
X is at least one element selected from the group consisting of C, P, Ge, Ga, Sb, In, Be, and As;
x, y, z, α, β, and γ are each 0≦a≦0.5
, 0.1≦x≦3, 0≦y≦30, 0≦z≦25, 5≦
y+z≦30, 0.1≦α≦30, 0≦β≦10, and 0≦γ≦10. ) and at least 50% of the tissue
F is composed of fine, uniformly distributed crystal grains, and the average grain size measured at the maximum dimension of each crystal grain is 1000 Å or less.
An Fe-based magnetic alloy having excellent constant magnetic permeability, characterized in that a layer having a crystal grain structure with a larger average grain size than the inside of the alloy is formed near the alloy surface.
e固溶体を主体としたものであり、厚み方向に<100
>方位が配向している結晶が合金表面に形成されている
ことを特徴とする特許請求の範囲1項記載の恒透磁率性
に優れたFe基磁性合金。(2) The crystal grains formed near the alloy surface are bccF
e It is mainly composed of solid solution and has a thickness of <100 in the thickness direction.
The Fe-based magnetic alloy with excellent constant magnetic permeability according to claim 1, wherein crystals with oriented orientations are formed on the surface of the alloy.
織になつていることを特徴とする特許請求の範囲第1項
又は第2項に記載の恒透磁率性に優れたFe基磁性合金
。(3) Fe-based magnetism with excellent constant magnetic permeability according to claim 1 or 2, characterized in that the crystal grain structure formed near the alloy surface is a columnar structure. alloy.
に結晶相が存在する非晶質合金を製造する工程とこれを
加熱し、組織の少くとも50%が微細な均一に分布した
結晶粒からなるように熱処理する工程を含むことを特徴
とする恒透磁率性に優れたFe基磁性合金の製法。(4) The process of rapidly cooling the molten alloy using the liquid quenching method to produce an amorphous alloy in which a crystalline phase exists near the alloy surface, and heating this to produce an amorphous alloy in which at least 50% of the structure has fine, uniformly distributed crystal grains. 1. A method for producing a Fe-based magnetic alloy having excellent constant magnetic permeability, the method comprising the step of heat-treating the alloy so that the alloy comprises:
製造する工程と、これを加熱し、合金表面付近を結晶化
させる第1の熱処理工程と、合金内部を結晶化させ組織
の少くとも50%が微細な均一に分布した結晶粒を形成
させる第2の熱処理工程を含むことを特徴とする恒透磁
率性に優れたFe基磁性合金の製法。(5) The process of rapidly cooling the molten alloy to produce an amorphous alloy using the liquid quenching method, the first heat treatment process of heating this to crystallize the vicinity of the alloy surface, and the process of crystallizing the inside of the alloy to reduce the structure. A method for producing an Fe-based magnetic alloy having excellent constant magnetic permeability, the method comprising a second heat treatment step in which 50% of each grain forms fine, uniformly distributed crystal grains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63077314A JPH01247556A (en) | 1988-03-30 | 1988-03-30 | Fe-base magnetic alloy excellent in iso-permeability characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63077314A JPH01247556A (en) | 1988-03-30 | 1988-03-30 | Fe-base magnetic alloy excellent in iso-permeability characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01247556A true JPH01247556A (en) | 1989-10-03 |
Family
ID=13630460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63077314A Pending JPH01247556A (en) | 1988-03-30 | 1988-03-30 | Fe-base magnetic alloy excellent in iso-permeability characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01247556A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222445A (en) * | 1988-07-08 | 1990-01-25 | Nippon Steel Corp | Alloy having superfine crystalline structure and its manufacture |
EP0473782A1 (en) * | 1990-03-27 | 1992-03-11 | Kabushiki Kaisha Toshiba | Magnetic core |
US5622768A (en) * | 1992-01-13 | 1997-04-22 | Kabushiki Kaishi Toshiba | Magnetic core |
JP2005517305A (en) * | 2002-02-08 | 2005-06-09 | メトグラス・インコーポレーテッド | Filter circuit with iron base core |
CN111485173A (en) * | 2020-04-09 | 2020-08-04 | 广东德纳斯金属制品有限公司 | Novel constant-temperature material and preparation method and application thereof |
-
1988
- 1988-03-30 JP JP63077314A patent/JPH01247556A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222445A (en) * | 1988-07-08 | 1990-01-25 | Nippon Steel Corp | Alloy having superfine crystalline structure and its manufacture |
EP0473782A1 (en) * | 1990-03-27 | 1992-03-11 | Kabushiki Kaisha Toshiba | Magnetic core |
US5622768A (en) * | 1992-01-13 | 1997-04-22 | Kabushiki Kaishi Toshiba | Magnetic core |
US5804282A (en) * | 1992-01-13 | 1998-09-08 | Kabushiki Kaisha Toshiba | Magnetic core |
JP2005517305A (en) * | 2002-02-08 | 2005-06-09 | メトグラス・インコーポレーテッド | Filter circuit with iron base core |
JP2011035405A (en) * | 2002-02-08 | 2011-02-17 | Metglas Inc | Filter circuit having fe-based core |
JP2014042039A (en) * | 2002-02-08 | 2014-03-06 | Metglas Inc | FILTER CIRCUIT HAVING Fe-BASED CORE |
CN111485173A (en) * | 2020-04-09 | 2020-08-04 | 广东德纳斯金属制品有限公司 | Novel constant-temperature material and preparation method and application thereof |
CN111485173B (en) * | 2020-04-09 | 2020-12-08 | 广东德纳斯金属制品有限公司 | Novel constant-temperature material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445889B2 (en) | Soft magnetic alloy, manufacturing method thereof, and magnetic component | |
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
JP5455040B2 (en) | Soft magnetic alloy, manufacturing method thereof, and magnetic component | |
EP0635853B1 (en) | Nanocrystalline alloy having pulse attenuation characteristics, method of producing the same, choke coil, and noise filter | |
JP4210986B2 (en) | Magnetic alloy and magnetic parts using the same | |
JP2573606B2 (en) | Magnetic core and manufacturing method thereof | |
JPH01242755A (en) | Fe-based magnetic alloy | |
JP3719449B2 (en) | Nanocrystalline alloy, method for producing the same, and magnetic core using the same | |
JP2710938B2 (en) | High saturation magnetic flux density soft magnetic alloy | |
JP3357386B2 (en) | Soft magnetic alloy, method for producing the same, and magnetic core | |
JP2006241569A (en) | High saturated magnetic flux density low loss magnetic alloy and magnetic component using the same | |
JP2008231534A (en) | Soft magnetic thin band, magnetic core, and magnetic component | |
JP3231149B2 (en) | Noise filter | |
JP2868121B2 (en) | Method for producing Fe-based magnetic alloy core | |
JP2710949B2 (en) | Manufacturing method of ultra-microcrystalline soft magnetic alloy | |
JP2667402B2 (en) | Fe-based soft magnetic alloy | |
JPH02236259A (en) | Alloy excellent in iso-permeability and its production | |
JPH0885821A (en) | Production of nano-crystal alloy with high magnetic permeability | |
JPH01247556A (en) | Fe-base magnetic alloy excellent in iso-permeability characteristic | |
JP3705446B2 (en) | Nanocrystallization heat treatment method for nanocrystalline alloys | |
JP3322407B2 (en) | Fe-based soft magnetic alloy | |
JPH03107417A (en) | Production of supermicrocrystalline soft magnetic alloy | |
JP2934471B2 (en) | Ultra-microcrystalline magnetic alloy and its manufacturing method | |
JP4003166B2 (en) | Co-based magnetic alloy and magnetic component using the same | |
JP2005187917A (en) | Soft magnetic alloy, and magnetic component |