JPH01241781A - Connection configuration of oxide-superconductor and connection method thereof - Google Patents

Connection configuration of oxide-superconductor and connection method thereof

Info

Publication number
JPH01241781A
JPH01241781A JP6764388A JP6764388A JPH01241781A JP H01241781 A JPH01241781 A JP H01241781A JP 6764388 A JP6764388 A JP 6764388A JP 6764388 A JP6764388 A JP 6764388A JP H01241781 A JPH01241781 A JP H01241781A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxide
metal
intermediate layer
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6764388A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Masaru Sugimoto
優 杉本
Mikio Nakagawa
中川 三紀夫
Atsushi Kume
篤 久米
Kenji Goto
謙次 後藤
Taichi Yamaguchi
太一 山口
Kosuke Iijima
飯島 康祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6764388A priority Critical patent/JPH01241781A/en
Publication of JPH01241781A publication Critical patent/JPH01241781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE:To reduce contact resistance of an oxide-superconductor by providing between the oxide-superconductor and a connector an intermediate layer made of metal material which generates covalent bond where the oxide-superconductor and oxygen are parameters. CONSTITUTION:An oxide-superconductor 1 and a metal electrode 2 are mechanically and electrically connected to each other by providing an intermediate layer 3 between the oxide-superconductor 1 and the metal electrode 2 and joining the oxide-superconductor 1 and the metal electrode 2 to the intermediate layer 3 respectively. As for the material of the intermediate layer 3, a metal material generating covalent bond where the oxide-superconductor 1 and oxygen are parameters is employed. For example, more than a kind of such as Ba-Pb alloy Re, Eu, Ru, Os, Ir, Tl and Sr-V alloy, etc., are preferably used. Accordingly, the oxide-superconductor 1 and the connector 2 are connected to each other with high joining strength and low contact resistance.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、磁気浮上列車、核融合炉、単結晶引上装置
、磁気分離装置、医療装置、磁気推進船等に用いられる
超電導マグネットコイルや電力輸送用等に用いられる超
電導線、ジョセフソン素子などの超電導素子、超電導配
線、磁気シールド材などに用いられる酸化物超電導体の
接合構造に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is applicable to superconducting magnet coils used in magnetic levitation trains, nuclear fusion reactors, single crystal pulling devices, magnetic separation devices, medical devices, magnetic propulsion ships, etc. The present invention relates to bonding structures of oxide superconductors used in superconducting wires used for power transport, superconducting elements such as Josephson elements, superconducting wiring, magnetic shielding materials, etc.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
超電導体が種々発見されている。この種の酸化物超電導
体は、一般式A −I3−Cu−0(ただし、AはY、
Sc、La、Yb、Er、Eu、Ho、Dy等の周期律
表ma族元素の1種以上を示し、BはMg。
"Prior Art" Recently, various oxide superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide superconductor has the general formula A -I3-Cu-0 (where A is Y,
Indicates one or more elements of group ma of the periodic table, such as Sc, La, Yb, Er, Eu, Ho, Dy, etc., and B is Mg.

Ca、Sr、Ba等の周期律表Ila族元素のIFIt
以上を示す。)で示される酸化物などであり、液体ヘリ
ウムで冷却することが必要であった従来の合金系あるい
は金属間化合物系の超電導体と比較して格段に有利な冷
却条件で使用できることから、実用上極めて有望な超電
導材料として研究がなされている。
IFIt of group Ila elements of the periodic table such as Ca, Sr, Ba, etc.
The above is shown. ), and can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. It is being studied as an extremely promising superconducting material.

[発明が解決しようとする課gJ しかしながら、上記のような酸化物超電導体は金属と高
強度に接続するのが困難な問題があった。
[Issues to be Solved by the InventiongJ However, the above-mentioned oxide superconductor has a problem in that it is difficult to connect it to metal with high strength.

この原因としては、上記のような酸化物超電導体をはじ
めとして、一般にセラミックスと金属とを接合させる際
には、セラミックスと金属とが金属結合や化学的結合に
よって接合しているのではなく、単にセラミックス表面
の凹凸に金属が入り込んで単純な機械的接合により接合
されているからである。
The reason for this is that when bonding ceramics and metals, including the oxide superconductors mentioned above, the ceramics and metals are not simply bonded by metallic or chemical bonds. This is because the metal penetrates into the unevenness of the ceramic surface and is bonded by simple mechanical bonding.

そして、セラミックスと金属との接合強度を向上させる
ために、セラミックスの表面にAu、Ptなどの非酸化
性金属を蒸着して中間層を形成し、この中間層上に金属
を接合させることにより、中間層と金属とを金属結合に
より強固に接合するとともに、セラミックスと中間層間
の接触面積を大きくしてセラミックスと金属との接合強
度を向上させる方法も考えられている。しかし、このよ
うな接合方法を用いても、セラミックスと中間層間の結
合は、上述のような単純な機械的接合となっているため
に、接合強度が十分得られない問題がある。また、この
セラミックスが酸化物超電導体である場合、この酸化物
超電導体と中間層間に大きな接触抵抗を生じてしまう問
題がある。
In order to improve the bonding strength between ceramic and metal, non-oxidizing metals such as Au and Pt are deposited on the surface of the ceramic to form an intermediate layer, and the metal is bonded onto this intermediate layer. A method has also been considered in which the intermediate layer and the metal are firmly joined by metal bonding, and the contact area between the ceramic and the intermediate layer is increased to improve the bonding strength between the ceramic and the metal. However, even if such a bonding method is used, the bond between the ceramic and the intermediate layer is a simple mechanical bond as described above, so there is a problem that sufficient bonding strength cannot be obtained. Further, when the ceramic is an oxide superconductor, there is a problem in that a large contact resistance is generated between the oxide superconductor and the intermediate layer.

本発明は上記事情に鑑みてなされたもので、金属あるい
はセラミックスからなる接続体と酸化物超電導体との接
続において、高い接合強度が得られ、かつ接触抵抗を小
さくすることのできる接続構造および接続方法の提供を
目的としている。
The present invention has been made in view of the above circumstances, and is a connection structure and connection that can obtain high bonding strength and reduce contact resistance in connection between a connecting body made of metal or ceramics and an oxide superconductor. The purpose is to provide a method.

「課題を解決するための手段」 上記目的達成のために、本発明の酸化物超電導体の接続
構造においては、酸化物超電導体と金属あるいはセラミ
ックスからなる接続体との接続構造であって、接続体と
酸化物超電導体との間に、酸化物超電導体と酸素を媒介
とする共有結合を起こす金属材料からなる中間層を介在
させたらのである。
"Means for Solving the Problems" In order to achieve the above object, the connection structure of an oxide superconductor of the present invention is a connection structure of an oxide superconductor and a connection body made of metal or ceramics, An intermediate layer made of a metal material that forms a covalent bond with the oxide superconductor via oxygen is interposed between the body and the oxide superconductor.

また、酸化物超電導体と接続体との接続方法としては、
酸化物超電導体と接続体との間に、酸化物超電導体と酸
素を媒介とする共有結合を起こす金属材料からなる中間
層を介在させた後、熱処理を行うことが好ましい。
In addition, as a connection method between the oxide superconductor and the connecting body,
It is preferable to interpose between the oxide superconductor and the connector an intermediate layer made of a metal material that forms a covalent bond with the oxide superconductor through oxygen, and then heat treatment is performed.

「作用」 上記のように摺成された酸化物超電導体の接続構造にお
いては、中間層の金属と酸化物超電導体中の金属元素と
が、M i −0−M ii (ただしMiは酸化物超
電導体中の金属元素を示し、M iiは中間層の金属を
示す。)の共有結合が起こりやすく、このため中間層と
酸化物超電導体を強固に接合させることができる。
"Function" In the connection structure of the oxide superconductor formed as described above, the metal of the intermediate layer and the metal element in the oxide superconductor have a relationship between M i -0-M ii (where Mi is an oxide M ii indicates a metal element in the superconductor, and M ii indicates a metal in the intermediate layer.) Covalent bonds are likely to occur, and therefore the intermediate layer and the oxide superconductor can be firmly bonded.

そして、上記の中間層と酸化物超電導体間の共有結合を
促進させるために、酸化物超電導体と接続体との間に中
間層を介在させた後、熱処理を行うことが好ましい。
In order to promote covalent bonding between the intermediate layer and the oxide superconductor, heat treatment is preferably performed after interposing the intermediate layer between the oxide superconductor and the connecting body.

「実施例」 実施例について図面を参照して説明する。第1図は本発
明による酸化物超電′導体の接続構造の一例を示す図で
あって、この接続構造では、酸化物超電導体!と金属電
極2め間に中間HJ3を介在させ、酸化物超電導体1お
よび金属電極2の各々を中間53と接合することにより
、酸化物超電導体lと金属電極2とを機械的、電気的に
接合してなるものである。
"Example" An example will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a connection structure for oxide superconductors according to the present invention. In this connection structure, oxide superconductors! By interposing the intermediate HJ3 between the oxide superconductor 1 and the metal electrode 2 and joining each of the oxide superconductor 1 and the metal electrode 2 to the intermediate 53, the oxide superconductor 1 and the metal electrode 2 are mechanically and electrically connected. It is made by joining.

上記酸化物超電導体Iは、A −B −Cu−0(ただ
し、AはY、Sc、La、Yb、Er、Eu、I−go
、Dy等の周期律表Ha族元素の1種以上またはI3i
等の周期律表vb族元素の1種以上またはTI等の周期
律表mb族元素の1種以上を示し、BはMg、Ca、S
r、Ba等の周期律表■a族元素の1種以上を示す。)
で示される酸化物超電導体、例えばY IB arc 
LI30 ?−X。
The above oxide superconductor I is A-B-Cu-0 (where A is Y, Sc, La, Yb, Er, Eu, I-go
, one or more elements of the Ha group of the periodic table such as Dy, or I3i
represents one or more elements of group VB of the periodic table such as
Indicates one or more elements of group ■a of the periodic table, such as r, Ba, etc. )
An oxide superconductor represented by, for example, Y IB arc
LI30? -X.

i3i、  Sr u Ca v Cu Y OX(た
だし、0.5≦ ulo、2≦v、1≦yである。)、
T 1tI3 atCatc usOxなどが好適に使
用される。なお、この酸化物超電導体!の形状は、特に
限定されることなく、薄板状、厚板状、バルク状、線状
、パイプ状、テープ状、柱状などの種々の形状のものを
用いることができる。
i3i, Sru Ca v Cu Y OX (0.5≦ulo, 2≦v, 1≦y),
T 1tI3 atCatc usOx and the like are preferably used. Furthermore, this oxide superconductor! The shape is not particularly limited, and various shapes such as a thin plate, a thick plate, a bulk, a line, a pipe, a tape, and a column can be used.

上記金属電極2の材料としては、銅、銀、アルミニウム
などの良導電性金属材料が好適に用いられる。
As the material for the metal electrode 2, a highly conductive metal material such as copper, silver, or aluminum is preferably used.

上記中間層3の材料としては、酸化物超電導体1と酸素
を媒介とする共有結合を起こす金属材料が使用され、例
えばBa−Pb合金、Re、 Eu、 Rc+。
As the material for the intermediate layer 3, a metal material that forms a covalent bond with the oxide superconductor 1 via oxygen is used, such as Ba-Pb alloy, Re, Eu, Rc+.

Os、Ir、TI、S r−V合金などの1種以上が好
適に使用される。また、この中間層3の厚さは適宜設定
されるが、数μm〜数百μm程度の厚さとするのが望ま
しい。
One or more of Os, Ir, TI, Sr-V alloys, etc. are preferably used. Further, the thickness of this intermediate layer 3 is set appropriately, but it is desirable to set the thickness to about several μm to several hundred μm.

上述の接続構造を形成するには、まず酸化物超電導体l
上に中間層3を形成する。中間層3の形成方法としては
、中間層3の金属材料を、スパッタリング法、真空蒸着
法、プラズマPVD法などの薄膜形成方法を用いて酸化
物超電導体!上に薄膜形成する方法や、上記金属材料を
加熱溶融した溶湯中に酸化物超電導体lを通過させ、そ
の表面に金属材料を付着させる方法や、薄膜状の金属材
料を酸化物超電導体1上にクラツデイングする方法など
種々の方法を用いることができる。次に、この中間層3
上に、銅や銀などの金属を接合して金属電極2を形成す
る。中間層3上に金属電極層2を形成する方法としては
、上述と同様のスパッタリング法などの薄膜形成方法を
用いて薄膜形成する方法や、薄板状の金1iLJ極2を
、ハンダなどの金属接着剤を用いて接合させる方法など
が好適に用いられる。
To form the above-mentioned connection structure, first, an oxide superconductor l
An intermediate layer 3 is formed thereon. The intermediate layer 3 is formed by using a thin film forming method such as sputtering, vacuum evaporation, or plasma PVD to form the metal material of the intermediate layer 3 into an oxide superconductor! There is a method of forming a thin film on the oxide superconductor 1, a method of passing the oxide superconductor 1 through a molten metal made by heating and melting the above metal material, and attaching the metal material to the surface of the oxide superconductor 1, and a method of forming a thin film of the metal material on the oxide superconductor 1. Various methods can be used, such as a method of cladding. Next, this middle layer 3
A metal electrode 2 is formed by bonding a metal such as copper or silver thereon. The metal electrode layer 2 can be formed on the intermediate layer 3 by forming a thin film using a thin film forming method such as the sputtering method similar to that described above, or by bonding a thin plate of gold 1iLJ electrode 2 with metal such as solder. A method of bonding using an agent is preferably used.

このように構成された酸化物超電導体!と金属電極2の
接続構造にあっては、酸化物超電導体1と金属電極2の
間に、酸化物超電導体lと酸素を媒介とする共有結合を
起こす金属材料からなる中間層3を介在させたので、中
間層3の金属と酸化物超電導体!中の金属元素とを、M
 i −0−M ii (ただしMiは酸化物超電導体
!中の金属元素を示し、Miiは中間E3の金属を示す
)のように共有結合させることによって、中間!J3と
酸化物超電導体1を強固に接合することができ、酸化物
超電導体lと金属電極2とを高い接合強度でかつ接触抵
抗の小さい状聾で接続することができる。
An oxide superconductor configured like this! In the connection structure between the oxide superconductor 1 and the metal electrode 2, an intermediate layer 3 made of a metal material that forms a covalent bond with the oxide superconductor 1 through oxygen is interposed between the oxide superconductor 1 and the metal electrode 2. Therefore, the metal and oxide superconductor of intermediate layer 3! The metal element inside, M
i -0-M ii (where Mi indicates the metal element in the oxide superconductor!, and Mii indicates the metal in the intermediate E3), by covalently bonding the intermediate! J3 and the oxide superconductor 1 can be firmly bonded, and the oxide superconductor l and the metal electrode 2 can be connected with high bonding strength and with low contact resistance.

ところで、上述のように、酸化物超電導体1と金属電極
2との間に中間層3を形成して酸化物超電導体!と金属
電極2の接続を行う場合、金属電極2と中間層3とは、
両者を金属結合させて容易に強固な接合を行うことがで
きる。一方、中間層3と酸化物超電導体!との間に、上
述したM i −0−M ii (ただしMiは酸化物
超電導体l中の金属元素を示し、Mllは中間B3の金
属を示す)のような共有結合を起こさせて両者を接合さ
せるためには、第1図に示すように酸化物超電導体l上
に、中間Fa3と金属電極2を積層形成した後に、真空
中あるいは窒素ガス、アルゴンガスなどの不活性雰囲気
中で熱処理を施すことが望ましい。この熱処理条件は、
中間層3の金属材料や中間層3および金属電極2の厚さ
などによって適宜設定されるが、通常100〜200℃
の温度で数十分〜数時間程度とするのが好ましい。この
熱処理によって、中間層3の金属は、酸化物超電導体l
の酸素と結合して中間層3の金属と酸化物超電導体1の
金属元素間に起こるM i −0−M ii (ただし
Miは酸化物超電導体l中の金属元素を示し、Miiは
中間層3の金属を示す)のような共有結合が促進され中
間53と酸化物超電導体lとが強固に接合される。
By the way, as mentioned above, the intermediate layer 3 is formed between the oxide superconductor 1 and the metal electrode 2 to form an oxide superconductor! When connecting the metal electrode 2 to the metal electrode 2, the metal electrode 2 and the intermediate layer 3 are
A strong bond can be easily achieved by metal bonding the two. On the other hand, intermediate layer 3 and oxide superconductor! A covalent bond such as M i -0-M ii (where Mi indicates the metal element in the oxide superconductor l, and Mll indicates the metal in the intermediate B3) is caused between the two. In order to bond, as shown in Figure 1, after layering intermediate Fa3 and metal electrode 2 on oxide superconductor l, heat treatment is performed in vacuum or in an inert atmosphere such as nitrogen gas or argon gas. It is desirable to apply This heat treatment condition is
It is set appropriately depending on the metal material of the intermediate layer 3, the thickness of the intermediate layer 3 and the metal electrode 2, etc., but is usually 100 to 200°C.
Preferably, the temperature is about several tens of minutes to several hours. By this heat treatment, the metal of the intermediate layer 3 becomes the oxide superconductor l.
M i -0-M ii occurs between the metal of the intermediate layer 3 and the metal element of the oxide superconductor 1 by combining with the oxygen of Covalent bonds such as those shown in Fig. 3) are promoted, and the intermediate 53 and the oxide superconductor l are firmly bonded.

したがって、酸化物超電導体I上に、中間層3と金属電
極2を積層形成した後に、不活性雰囲気中で熱処理を施
すことにより、中間層3の金属と酸化物超電導体lの金
属元素間に起こる共有結合を促進させることができ、酸
化物超電導体1と中間層3とを強固に接合することがで
きる。
Therefore, after the intermediate layer 3 and the metal electrode 2 are laminated on the oxide superconductor I, heat treatment is performed in an inert atmosphere to create a bond between the metal of the intermediate layer 3 and the metal element of the oxide superconductor I. The covalent bond that occurs can be promoted, and the oxide superconductor 1 and the intermediate layer 3 can be firmly bonded.

なお、酸化物超電導体1と接続する接続体は、上記金属
電極2に限定されることなく、他の金属導体、あるいは
酸化物超電導体をはじめとするセラミックス材料であっ
ても、上記金属電極2と同様に酸化物超電導体!と良好
に接続することができる。
Note that the connecting body to be connected to the oxide superconductor 1 is not limited to the metal electrode 2, but may be another metal conductor or a ceramic material including an oxide superconductor. As well as oxide superconductors! It can be well connected with.

(実験例) 厚さ!■の板状のY −B a−Cu−0系超電導体の
表面に、B a−P b合金、ReおよびEuの各金属
材料を、各々厚さ20μmとなるように成膜して中間層
を形成した。次いで各々の中間層上に銅線をハンダ付け
して接合した後、これらを窒素雰囲気中において、15
0℃で20分間の熱処理を行った。そして、上記の接合
操作により酸化物超電導体と銅線との接合を柊えた各試
料を実施例1〜3とし、以下の実験を行った。
(Experiment example) Thickness! On the surface of the plate-shaped Y-B a-Cu-0 superconductor of (2), metal materials of B a-P b alloy, Re, and Eu were deposited to a thickness of 20 μm each to form an intermediate layer. was formed. Next, after soldering and bonding copper wires onto each intermediate layer, these were heated for 15 minutes in a nitrogen atmosphere.
Heat treatment was performed at 0° C. for 20 minutes. Then, the following experiments were conducted using each sample in which the bond between the oxide superconductor and the copper wire was removed by the above-described bonding operation as Examples 1 to 3.

上記の各試料を用い、液体窒素温度1こお1する酸化物
超電導体と銅線間の接触抵抗を1il11定した。また
、酸化物超電導体と銅線間の密着強度(褒1離弘1度)
を測定した。
Using each of the above samples, the contact resistance between the oxide superconductor and the copper wire was determined to be 1il11 at a liquid nitrogen temperature of 1k. In addition, the adhesion strength between the oxide superconductor and copper wire (1 degree)
was measured.

なお、上記実施例との比較のため1こ、上8己実施例と
同様の酸化物超電導体上1こ、AuおよびPtを厚さ2
0μmとなるように成膜して中間層を形成し、更にこれ
らの中間層上(こ銅線を)1ンダ付:すして接合し、上
記と同様の熱処理を施した試料(比較例1および2)を
作成し、上δ己と同様の実験を行った。
In addition, for comparison with the above example, one layer was placed on the same oxide superconductor as in the example, and Au and Pt were coated to a thickness of 2.
Samples (Comparative Example 1 and 2) was created and the same experiment as above was conducted.

上記実施例および比較例の実験結果を表11こ示す。Table 11 shows the experimental results of the above examples and comparative examples.

以下余白 表  1 表!に示す通り、本発明による接続では、高い密着強度
が得られ、かつ接触抵抗を小さくできろことが確認され
た。
Margin table below 1 table! As shown in FIG. 2, it was confirmed that the connection according to the present invention can provide high adhesion strength and reduce contact resistance.

「発明の効果」 本発明は、以上説明したように構成されているので、以
下に記載する効果を奏する。
"Effects of the Invention" Since the present invention is configured as described above, it produces the effects described below.

酸化物超電導体と接続体の接続構造にあっては、酸化物
超電導体と接続体の間に酸化物超電導体と酸素を媒介と
した共有結合を起こす金属材料からなる中間層を介在さ
せたので、中間層の金属と酸化物超電導体中の金属元素
とをM i −0−M ii (ただしMiは酸化物超
電導体中の金属元素を示し、Miiは中間層の金属を示
す)のように共有結合させることによって、中間層と酸
化物超電導体を強固に接合することができ、酸化物超電
導体と接続体とを高い接合強度でかつ接触抵抗の小さい
状態で接続することができる。
In the connection structure between the oxide superconductor and the connector, an intermediate layer made of a metal material that forms a covalent bond with the oxide superconductor through oxygen is interposed between the oxide superconductor and the connector. , the metal in the intermediate layer and the metal element in the oxide superconductor are expressed as M i -0-M ii (where Mi represents the metal element in the oxide superconductor and Mii represents the metal in the intermediate layer). By covalent bonding, the intermediate layer and the oxide superconductor can be firmly bonded, and the oxide superconductor and the connecting body can be connected with high bonding strength and low contact resistance.

また、酸化物超電導体と接続体の間に中間層を介在させ
た後、熱処理を施すことにより、中間層の金属と酸化物
超電導体の金属元素間に起こる共有結合を促進させるこ
とができ、酸化物超電導体と中間層とを強固に接合する
ことができる。
In addition, by interposing an intermediate layer between the oxide superconductor and the connecting body and then performing heat treatment, it is possible to promote covalent bonding between the metal of the intermediate layer and the metal element of the oxide superconductor. The oxide superconductor and the intermediate layer can be firmly bonded.

また、酸化物超電導体を電気機能素子として用いた場合
、リード線を酸化物超電導体にワイヤーボンディングす
るときに接触抵抗が小さいので、接続部のジュール発熱
を少なくすることができ、このジュール発熱によるクエ
ンチを起き難くすることができる。
In addition, when an oxide superconductor is used as an electrical functional element, the contact resistance is small when wire bonding the lead wire to the oxide superconductor, so Joule heat generation at the connection part can be reduced. It can make quenching more difficult.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸化物超電導体の接続構造の1例を示
す断面図である。 !・・・酸化物超電導体、2・・・金属電極(接続体)
、3・・・中間層。
FIG. 1 is a sectional view showing an example of a connection structure of an oxide superconductor according to the present invention. ! ...Oxide superconductor, 2...Metal electrode (connector)
, 3... middle class.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体と金属あるいはセラミックスから
なる接続体との接続構造であって、酸化物超電導体と接
続体との間に、酸化物超電導体と酸素を媒介とする共有
結合を起こす金属材料からなる中間層を介在させたこと
を特徴とする酸化物超電導体の接続構造。
(1) A connection structure between an oxide superconductor and a connecting body made of metal or ceramics, in which a metal causes a covalent bond between the oxide superconductor and the connecting body through oxygen. A connection structure of oxide superconductors characterized by interposing an intermediate layer made of a material.
(2)酸化物超電導体と金属あるいはセラミックスから
なる接続体との接続方法であって、酸化物超電導体と接
続体との間に、酸化物超電導体と酸素を媒介とする共有
結合を起こす金属材料からなる中間層を介在させた後、
熱処理を行うことを特徴とする酸化物超電導体の接続方
法。
(2) A method of connecting an oxide superconductor and a connecting body made of metal or ceramics, in which a metal causes a covalent bond between the oxide superconductor and the connecting body through oxygen. After interposing an intermediate layer of material,
A method for connecting oxide superconductors, characterized by performing heat treatment.
JP6764388A 1988-03-22 1988-03-22 Connection configuration of oxide-superconductor and connection method thereof Pending JPH01241781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6764388A JPH01241781A (en) 1988-03-22 1988-03-22 Connection configuration of oxide-superconductor and connection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6764388A JPH01241781A (en) 1988-03-22 1988-03-22 Connection configuration of oxide-superconductor and connection method thereof

Publications (1)

Publication Number Publication Date
JPH01241781A true JPH01241781A (en) 1989-09-26

Family

ID=13350894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6764388A Pending JPH01241781A (en) 1988-03-22 1988-03-22 Connection configuration of oxide-superconductor and connection method thereof

Country Status (1)

Country Link
JP (1) JPH01241781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679328B2 (en) * 2005-10-26 2010-03-16 Denso Corporation Apparatus for detecting charged state of secondary battery
CN104917025A (en) * 2015-07-08 2015-09-16 北京依米康科技发展有限公司 Method for conductive connection of cables

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679328B2 (en) * 2005-10-26 2010-03-16 Denso Corporation Apparatus for detecting charged state of secondary battery
CN104917025A (en) * 2015-07-08 2015-09-16 北京依米康科技发展有限公司 Method for conductive connection of cables

Similar Documents

Publication Publication Date Title
US5079223A (en) Method of bonding metals to ceramics
JP3126977B2 (en) Reinforced direct bond copper structure
US5134040A (en) Melt formed superconducting joint between superconducting tapes
US7319195B2 (en) Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US4651191A (en) Semiconductor device and fabrication method thereof
US3985281A (en) Method of producing an electrical conductor
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
US5010053A (en) Method of bonding metals to ceramics
EP0469894B1 (en) Method of forming a joint between superconducting tapes
JP2001319750A (en) Connecting method of oxide superconductor
JPH01241781A (en) Connection configuration of oxide-superconductor and connection method thereof
US20210408700A1 (en) Method for making electrical contact with a superconductive strip conductor
JPH06224591A (en) Superconducting magnetic shielding material
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
US5843584A (en) Superconductive article and method of making
JPH0543341A (en) Method for joining oxide superconducting bulk to metal
JPH065342A (en) Superconducting wire connecting method
JP4171253B2 (en) Low resistance composite conductor and method of manufacturing the same
JPH0645141A (en) Electrode of oxide superconductor current lead
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPH05279140A (en) Method for joining oxide superconductor
JPH03274805A (en) Superconducting high frequency cavity
JPH0760836B2 (en) Brazing material
JPH0782927B2 (en) Insulation anchor for low temperature equipment
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture